On the Sufficiency of a Single Hidden Layer in Feed-Forward Neural Networks Used for Machine Learning of Materials Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Two-Dimensional Material Dataset for Band Gap Prediction
2.1.1. Data Preprocessing and Features
2.1.2. Model Training
2.2. Reorganization Energy Dataset and Model
2.2.1. Data Preprocessing and Features
2.2.2. Model Training
2.3. PAH Dataset and Model
2.3.1. Data Preprocessing and Features
2.3.2. Model Training
3. Results
3.1. Prediction of Band Gap of 2D Materials
3.2. Prediction of Reorganization Energies of Thiophene-Based Oligomers
3.3. Prediction of Relative Energies of Peri-Condensed Hydrocarbon Molecules
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Esan, O.C.; Pan, Z.; An, L. Machine learning for advanced energy materials. Energy AI 2021, 3, 100049. [Google Scholar] [CrossRef]
- Lu, Z. Computational discovery of energy materials in the era of big data and machine learning: A critical review. Mater. Rep. Energy 2021, 1, 100047. [Google Scholar] [CrossRef]
- Ramprasad, R.; Batra, R.; Pilania, G.; Mannodi-Kanakkithodi, A.; Kim, C. Machine learning in materials informatics: Recent applications and prospects. Npj Comput. Mater. 2017, 3, 54. [Google Scholar] [CrossRef]
- Bishop, C.M. Pattern Recognition and Machine Learning; Information science and statistics; Springer: New York, NY, USA, 2006; ISBN 978-0-387-31073-2. [Google Scholar]
- Stoll, A.; Benner, P. Machine learning for material characterization with an application for predicting mechanical properties. GAMM-Mitteilungen 2021, 44, e202100003. [Google Scholar] [CrossRef]
- Dabiri, H.; Farhangi, V.; Moradi, M.J.; Zadehmohamad, M.; Karakouzian, M. Applications of decision tree and random forest as tree-based machine learning techniques for analyzing the ultimate strain of spliced and non-spliced reinforcement bars. Appl. Sci. 2022, 12, 4851. [Google Scholar] [CrossRef]
- Kaneko, H. Clustering method for the construction of machine learning model with high predictive ability. Chemom. Intell. Lab. Syst. 2024, 246, 105084. [Google Scholar] [CrossRef]
- Allen, A.E.A.; Tkatchenko, A. Machine learning of material properties: Predictive and interpretable multilinear models. Sci. Adv. 2022, 8, eabm7185. [Google Scholar] [CrossRef]
- Chen, K.; Kunkel, C.; Reuter, K.; Margraf, J.T. Reorganization energies of flexible organic molecules as a challenging target for machine learning enhanced virtual screening. Digit. Discov. 2022, 1, 147–157. [Google Scholar] [CrossRef]
- Olsthoorn, B.; Geilhufe, R.M.; Borysov, S.S.; Balatsky, A.V. Band gap prediction for large organic crystal structures with machine learning. Adv. Quantum Technol. 2019, 2, 1900023. [Google Scholar] [CrossRef]
- Neural Networks: Tricks of the Trade, 2nd ed.; 2012 edition; Montavon, G., Orr, G., Müller, K.-R., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; ISBN 978-3-642-35288-1. [Google Scholar]
- Hong, Y.; Hou, B.; Jiang, H.; Zhang, J. Machine learning and artificial neural network accelerated computational discoveries in materials science. WIREs Comput. Mol. Sci. 2020, 10, e1450. [Google Scholar] [CrossRef]
- Bhadeshia, H.K.D.H. Neural networks in materials science. ISIJ Int. 1999, 39, 966–979. [Google Scholar] [CrossRef]
- Scott, D.J.; Coveney, P.V.; Kilner, J.A.; Rossiny, J.C.H.; Alford, N.M.N. Prediction of the functional properties of ceramic materials from composition using artificial neural networks. J. Eur. Ceram. Soc. 2007, 27, 4425–4435. [Google Scholar] [CrossRef]
- Zheng, X.; Zheng, P.; Zhang, R.-Z. Machine learning material properties from the periodic table using convolutional neural networks. Chem. Sci. 2018, 9, 8426–8432. [Google Scholar] [CrossRef]
- Demirbay, B.; Kara, D.B.; Uğur, Ş. A bayesian regularized feed-forward neural network model for conductivity prediction of ps/mwcnt nanocomposite film coatings. Appl. Soft Comput. 2020, 96, 106632. [Google Scholar] [CrossRef]
- Loh, G.C.; Lee, H.-C.; Tee, X.Y.; Chow, P.S.; Zheng, J.W. Viscosity prediction of lubricants by a general feed-forward neural network. J. Chem. Inf. Model. 2020, 60, 1224–1234. [Google Scholar] [CrossRef]
- Çaylak, O.; Yaman, A.; Baumeier, B. Evolutionary approach to constructing a deep feedforward neural network for prediction of electronic coupling elements in molecular materials. J. Chem. Theory Comput. 2019, 15, 1777–1784. [Google Scholar] [CrossRef]
- Tsubaki, M.; Mizoguchi, T. Fast and accurate molecular property prediction: Learning atomic interactions and potentials with neural networks. J. Phys. Chem. Lett. 2018, 9, 5733–5741. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Li, B.; Li, Q.; Zhao, H.-P.; Feng, X.-Q. Deep neural network method for predicting the mechanical properties of composites. Appl. Phys. Lett. 2019, 115, 161901. [Google Scholar] [CrossRef]
- Ye, W.; Chen, C.; Wang, Z.; Chu, I.-H.; Ong, S.P. Deep neural networks for accurate predictions of crystal stability. Nat. Commun. 2018, 9, 3800. [Google Scholar] [CrossRef]
- Fatriansyah, J.F.; Surip, S.N.; Hartoyo, F. Mechanical property prediction of poly(lactic acid) blends using deep neural network. Evergreen 2022, 9, 141–144. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition. In Doklady Akademii Nauk; Russian Academy of Sciences: Moscow, Russia, 1957; Volume 114, pp. 953–956. [Google Scholar]
- Hornik, K. Approximation capabilities of multilayer feedforward networks. Neural Netw. 1991, 4, 251–257. [Google Scholar] [CrossRef]
- Scarselli, F.; Chung Tsoi, A. Universal approximation using feedforward neural networks: A survey of some existing methods, and some new results. Neural Netw. 1998, 11, 15–37. [Google Scholar] [CrossRef] [PubMed]
- Kůrková, V. Kolmogorov’s theorem and multilayer neural networks. Neural Netw. 1992, 5, 501–506. [Google Scholar] [CrossRef]
- Cybenko, G. Approximation by superpositions of a sigmoidal function. Math. Control Signal Syst. 1989, 2, 303–314. [Google Scholar] [CrossRef]
- Funahashi, K.-I. On the approximate realization of continuous mappings by neural networks. Neural Netw. 1989, 2, 183–192. [Google Scholar] [CrossRef]
- Nees, M. Approximative versions of kolmogorov’s superposition theorem, proved constructively. J. Comput. Appl. Math. 1994, 54, 239–250. [Google Scholar] [CrossRef]
- Hornik, K.; Stinchcombe, M.; White, H. Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks. Neural Netw. 1990, 3, 551–560. [Google Scholar] [CrossRef]
- Katsuura, H.; Sprecher, D.A. Computational aspects of kolmogorov’s superposition theorem. Neural Netw. 1994, 7, 455–461. [Google Scholar] [CrossRef]
- Sprecher, D.A. A numerical implementation of kolmogorov’s superpositions. Neural Netw. 1996, 9, 765–772. [Google Scholar] [CrossRef]
- Sprecher, D.A. A numerical implementation of kolmogorov’s superpositions ii. Neural Netw. 1997, 10, 447–457. [Google Scholar] [CrossRef]
- Sprecher, D.A. An improvement in the superposition theorem of kolmogorov. J. Math. Anal. Appl. 1972, 38, 208–213. [Google Scholar] [CrossRef]
- Sprecher, D.A. On the structure of continuous functions of several variables. Am. Math. Soc. 1965, 115, 340–355. [Google Scholar] [CrossRef]
- Sprecher, D.A. A universal mapping for kolmogorov’s superposition theorem. Neural Netw. 1993, 6, 1089–1094. [Google Scholar] [CrossRef]
- Sprecher, D.A.; Draghici, S. Space-filling curves and kolmogorov superposition-based neural networks. Neural Netw. 2002, 15, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Gorban, A.N. Approximation of continuous functions of several variables by an arbitrary nonlinear continuous function of one variable, linear functions, and their superpositions. Appl. Math. Lett. 1998, 11, 45–49. [Google Scholar] [CrossRef]
- Donoho, D.L. High-dimensional data analysis: The curses and blessings of dimensionality. AMS Math Chall. Lect. 2000, 1, 32. [Google Scholar]
- Manzhos, S.; Carrington, T.; Ihara, M. Orders of coupling representations as a versatile framework for machine learning from sparse data in high-dimensional spaces. Artif. Intell. Chem. 2023, 1, 100008. [Google Scholar] [CrossRef]
- Manzhos, S.; Ihara, M. Advanced machine learning methods for learning from sparse data in high-dimensional spaces: A perspective on uses in the upstream of development of novel energy technologies. Physchem 2022, 2, 72–95. [Google Scholar] [CrossRef]
- Manzhos, S.; Yamashita, K.; Carrington, T. Extracting functional dependence from sparse data using dimensionality reduction: Application to potential energy surface construction. In Proceedings of the Coping with Complexity: Model Reduction and Data Analysis; Gorban, A.N., Roose, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 133–149. [Google Scholar]
- Manzhos, S.; Yamashita, K.; Carrington, T. Fitting sparse multidimensional data with low-dimensional terms. Comput. Phys. Commun. 2009, 180, 2002–2012. [Google Scholar] [CrossRef]
- Golub, P.; Manzhos, S. Kinetic energy densities based on the fourth order gradient expansion: Performance in different classes of materials and improvement via machine learning. Phys. Chem. Chem. Phys. 2019, 21, 378–395. [Google Scholar] [CrossRef]
- Mi, W.; Luo, K.; Trickey, S.B.; Pavanello, M. Orbital-free density functional theory: An attractive electronic structure method for large-scale first-principles simulations. Chem. Rev. 2023, 123, 12039–12104. [Google Scholar] [CrossRef] [PubMed]
- Manzhos, S.; Carrington, T., Jr. A random-sampling high dimensional model representation neural network for building potential energy surfaces. J. Chem. Phys. 2006, 125, 084109. [Google Scholar] [CrossRef]
- Majumder, M.; Hegger, S.E.; Dawes, R.; Manzhos, S.; Wang, X.-G.; Tucker, C., Jr.; Li, J.; Guo, H. Explicitly correlated mrci-f12 potential energy surfaces for methane fit with several permutation invariant schemes and full-dimensional vibrational calculations. Mol. Phys. 2015, 113, 1823–1833. [Google Scholar] [CrossRef]
- Castro, E.; Avila, G.; Manzhos, S.; Agarwal, J.; Schaefer, H.F.; Carrington, T., Jr. Applying a smolyak collocation method to cl2co. Mol. Phys. 2017, 115, 1775–1785. [Google Scholar] [CrossRef]
- Kamath, A.; Vargas-Hernández, R.A.; Krems, R.V.; Carrington, T., Jr.; Manzhos, S. Neural networks vs gaussian process regression for representing potential energy surfaces: A comparative study of fit quality and vibrational spectrum accuracy. J. Chem. Phys. 2018, 148, 241702. [Google Scholar] [CrossRef] [PubMed]
- Manzhos, S.; Wang, X.; Dawes, R.; Carrington, T. A nested molecule-independent neural network approach for high-quality potential fits. J. Phys. Chem. A 2006, 110, 5295–5304. [Google Scholar] [CrossRef] [PubMed]
- Manzhos, S.; Carrington, T., Jr. Neural network potential energy surfaces for small molecules and reactions. Chem. Rev. 2021, 121, 10187–10217. [Google Scholar] [CrossRef] [PubMed]
- Manzhos, S.; Dawes, R.; Carrington, T. Neural network-based approaches for building high dimensional and quantum dynamics-friendly potential energy surfaces. Int. J. Quantum Chem. 2015, 115, 1012–1020. [Google Scholar] [CrossRef]
- Jiang, B.; Guo, H. Permutation invariant polynomial neural network approach to fitting potential energy surfaces. J. Chem. Phys. 2013, 139, 054112. [Google Scholar] [CrossRef]
- Nandi, A.; Qu, C.; Houston, P.L.; Conte, R.; Bowman, J.M. Δ-machine learning for potential energy surfaces: A pip approach to bring a dft-based pes to ccsd(t) level of theory. J. Chem. Phys. 2021, 154, 051102. [Google Scholar] [CrossRef]
- Wang, Y.; Guan, Y.; Guo, H.; Yarkony, D.R. Enabling complete multichannel nonadiabatic dynamics: A global representation of the two-channel coupled, 1,21a and 13a states of nh3 using neural networks. J. Chem. Phys. 2021, 154, 094121. [Google Scholar] [CrossRef]
- Manzhos, S.; Carrington, T., Jr. Using neural networks to represent potential surfaces as sums of products. J. Chem. Phys. 2006, 125, 194105. [Google Scholar] [CrossRef] [PubMed]
- Manzhos, S.; Ihara, M. Neural network with optimal neuron activation functions based on additive gaussian process regression. J. Phys. Chem. A 2023, 127, 7823–7835. [Google Scholar] [CrossRef] [PubMed]
- Manzhos, S.; Ihara, M. Orders-of-coupling representation achieved with a single neural network with optimal neuron activation functions and without nonlinear parameter optimization. Artif. Intell. Chem. 2023, 1, 100013. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, W.; Liu, G.; Zhang, Z.; Zhu, J.; Li, M. Bandgap prediction of two-dimensional materials using machine learning. PLoS ONE 2021, 16, e0255637. [Google Scholar] [CrossRef]
- Abarbanel, O.D.; Hutchison, G.R. Machine learning to accelerate screening for marcus reorganization energies. J. Chem. Phys. 2021, 155, 054106. [Google Scholar] [CrossRef]
- Wahab, A.; Gershoni-Poranne, R. COMPAS-3: A dataset of peri -condensed polybenzenoid hydrocarbons. Phys. Chem. Chem. Phys. 2024, 26, 15344–15357. [Google Scholar] [CrossRef]
- Haastrup, S.; Strange, M.; Pandey, M.; Deilmann, T.; Schmidt, P.S.; Hinsche, N.F.; Gjerding, M.N.; Torelli, D.; Larsen, P.M.; Riis-Jensen, A.C.; et al. The computational 2d materials database: High-throughput modeling and discovery of atomically thin crystals. 2D Mater. 2018, 5, 042002. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. iii. the role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Rogers, D.; Hahn, M. Extended-connectivity fingerprints. J. Chem. Inf. Model. 2010, 50, 742–754. [Google Scholar] [CrossRef]
- RDKit: Open-Source Cheminformatics Software|Bibsonomy. Available online: https://www.bibsonomy.org/bibtex/ee9a4ddeff3121aa622cf35709fa6e21 (accessed on 22 November 2024).
- Bannwarth, C.; Ehlert, S.; Grimme, S. GFN2-xtb—An accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions. J. Chem. Theory Comput. 2019, 15, 1652–1671. [Google Scholar] [CrossRef]
- Yanai, T.; Tew, D.P.; Handy, N.C. A new hybrid exchange–correlation functional using the coulomb-attenuating method (cam-b3lyp). Chem. Phys. Lett. 2004, 393, 51–57. [Google Scholar] [CrossRef]
- Rupp, M.; Tkatchenko, A.; Müller, K.-R.; Von Lilienfeld, O.A. Fast and accurate modeling of molecular atomization energies with machine learning. Phys. Rev. Lett. 2012, 108, 058301. [Google Scholar] [CrossRef]
Parameters | SLNN | MLPNN |
---|---|---|
Number of neurons | 30 | 127, 109 |
Number of epochs | 547 | 151 |
Methods | Tanh | CELU in input and hidden layers, linear activation function at the output layer |
Solver | LBFGS | Adam |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thant, Y.M.; Manzhos, S.; Ihara, M.; Nukunudompanich, M. On the Sufficiency of a Single Hidden Layer in Feed-Forward Neural Networks Used for Machine Learning of Materials Properties. Physchem 2025, 5, 4. https://doi.org/10.3390/physchem5010004
Thant YM, Manzhos S, Ihara M, Nukunudompanich M. On the Sufficiency of a Single Hidden Layer in Feed-Forward Neural Networks Used for Machine Learning of Materials Properties. Physchem. 2025; 5(1):4. https://doi.org/10.3390/physchem5010004
Chicago/Turabian StyleThant, Ye Min, Sergei Manzhos, Manabu Ihara, and Methawee Nukunudompanich. 2025. "On the Sufficiency of a Single Hidden Layer in Feed-Forward Neural Networks Used for Machine Learning of Materials Properties" Physchem 5, no. 1: 4. https://doi.org/10.3390/physchem5010004
APA StyleThant, Y. M., Manzhos, S., Ihara, M., & Nukunudompanich, M. (2025). On the Sufficiency of a Single Hidden Layer in Feed-Forward Neural Networks Used for Machine Learning of Materials Properties. Physchem, 5(1), 4. https://doi.org/10.3390/physchem5010004