Cost-Effective Method for Dissolved Oxygen Sensing with Electrodeposited n-Cu2O Thin-Film Semiconductors
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Synchrotron X-Ray Diffraction (SXRD) Measurements of the Substrate Prior to DO Sensing
3.2. Resistance Variation
3.3. Wettability
3.4. Capacitance–Voltage (C-V) Measurements (Mott–Schottky)
3.5. Electrochemical Impedance Spectroscopy (EIS)
3.6. Scanning Electron Microscope (SEM)
3.7. Synchrotron X-Ray Diffraction (SXRD) for Post-Sensing DO
3.8. Raman Spectroscopy
3.9. Fourier-Transform Infrared (FTIR)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Glasgow, H.B.; Burkholder, J.M.; Reed, R.E.; Lewitus, A.J.; Kleinman, J.E. Real-Time Remote Monitoring of Water Quality: A Review of Current Applications, and Advancements in Sensor, Telemetry, and Computing Technologies. J. Exp. Mar. Biol. Ecol. 2004, 300, 409–448. [Google Scholar] [CrossRef]
- Agade, P.; Bean, E. GatorByte—An Internet of Things-Based Low-Cost, Compact, and Real-Time Water Resource Monitoring Buoy. HardwareX 2023, 14, e00427. [Google Scholar] [CrossRef] [PubMed]
- Gholizadeh, M.H.; Melesse, A.M.; Reddi, L. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques. Sensors 2016, 16, 1298. [Google Scholar] [CrossRef] [PubMed]
- Maddah, H.A. Predicting Optimum Dilution Factors for BOD Sampling and Desired Dissolved Oxygen for Controlling Organic Contamination in Various Wastewaters. Int. J. Chem. Eng. 2022, 2022, 8637064. [Google Scholar] [CrossRef]
- Wei, Y.; Jiao, Y.; An, D.; Li, D.; Li, W.; Wei, Q. Review of Dissolved Oxygen Detection Technology: From Laboratory Analysis to Online Intelligent Detection. Sensors 2019, 19, 3995. [Google Scholar] [CrossRef]
- Tai, H.; Yang, Y.; Liu, S.; Li, D.; Li, D.A. A Review of Measurement Methods of Dissolved Oxygen in Water. In Proceedings of the Computer and Computing Technologies in Agriculture V: 5th IFIP TC 5/SIG 5.1 Conference, CCTA 2011, Beijing, China, 29–31 October 2011; pp. 569–576. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, J.M.; Li, S. Minreview: Recent Advances in the Development of Gaseous and Dissolved Oxygen Sensors. Instrum. Sci. Technol. 2019, 47, 19–50. [Google Scholar] [CrossRef]
- Mcdonagh, C.; Kolle, C.; Mcevoy, A.K.; Dowling, D.L.; Cafolla, A.A.; Cullen, S.J.; Maccraith, B.D. Phase Fluorometric Dissolved Oxygen Sensor. Sens. Actuators B 2001, 74, 124–130. [Google Scholar] [CrossRef]
- Gruber, W.R.; Klimant, I.; Wolfbeis, O.S. Instrumentation for Optical Measurement of Dissolved Oxygen Based on Solid State Technology. Adv. Fluoresc. Sens. Technol. 1993, 1885, 448–457. [Google Scholar]
- Wang, F.; Chen, L.; Zhu, J.; Hu, X.; Yang, Y. A Phosphorescence Quenching-Based Intelligent Dissolved Oxygen Sensor on an Optofluidic Platform. Micromachines 2021, 12, 281. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, R.N.; Askeland, P.A.; Kramer, S.; Loloee, R. Optical Dissolved Oxygen Sensor Utilizing Molybdenum Chloride Cluster Phosphorescence. Appl. Phys. Lett. 2011, 98, 221103. [Google Scholar] [CrossRef]
- Tengberg, A.; Hovdenes, J.; Andersson, H.J.; Brocandel, O.; Diaz, R.; Hebert, D.; Arnerich, T.; Huber, C.; Körtzinger, A.; Khripounoff, A.; et al. Evaluation of a Lifetime-Based Optode to Measure Oxygen in Aquatic Systems. Limnol. Ocean. Methods 2006, 4, 7–17. [Google Scholar] [CrossRef]
- Nei, L.; Compton, R.G. An Improved Clark-Type Galvanic Sensor for Dissolved Oxygen. Sens. Actuators B 1996, 30, 83–87. [Google Scholar] [CrossRef]
- Wittkampf, M.; Chemnitius, G.-C.; Cammann, K.; Rospert, M.; Mokwa, W. Silicon Thin Film Sensor for Measurement of Dissolved Oxygen. Sens. Actuators B 1997, 43, 40–44. [Google Scholar] [CrossRef]
- Onken, U.; Hainke, M. Measurement of Hydrodynamics and Dissolved Oxygen with a Polarographic Microelectrode. Chem. Eng. Technol. 1999, 22, 767–772. [Google Scholar] [CrossRef]
- Hargreaves, J.A.; Tucker, C.S. Measuring Dissolved Oxygen Concentration in Aquaculture; SRAC Publications: New Delhi, India, 2002; p. 4601. [Google Scholar]
- Helm, I.; Karina, G.; Jalukse, L.; Pagano, T.; Leito, I. Comparative Validation of Amperometric and Optical Analyzers of Dissolved Oxygen: A Case Study. Environ. Monit. Assess. 2018, 190, 313. [Google Scholar] [CrossRef]
- Montgomery, H.A.C.; Thom, N.S.; Cockburn, A. Determination of Dissolved Oxygen by the Winkler Method and the Solubility of Oxygen in Pure Water and Sea Water. J. Appl. Chem. 1965, 14, 280–296. [Google Scholar] [CrossRef]
- James, H. Carpenter. The Accuracy of the Winkler Method for Dissolved Oxygen Analysis. Am. Soc. Limnol. Oceanogr. 1965, 10, 135–140. [Google Scholar]
- Pomeroy, R.; Darwin Kirschman, H. Determination OF Dissolved Oxygen Proposed Modification of the Winkler Method. Ind. Eng. Chem. Anal. Ed. 1945, 17, 715–716. [Google Scholar] [CrossRef]
- Industry ARC. Available online: https://www.industryarc.com/Report/15788/oxygen-sensor-market.html (accessed on 17 October 2024).
- Janantha, P.P.; Perera, L.N.; Jayathilaka, K.M.; Jayanetti, J.K.; Dissanayaka, D.P.; Siripala, W.P. Use of Cu2O Microcrystalline Thin Film Semiconductors for Gas Sensing. Proc. Tech. Sess. 2009, 25, 70–76. [Google Scholar]
- Gillanders, R.N.; Tedford, M.C.; Crilly, P.J.; Bailey, R.T. A Composite Thin Film Optical Sensor for Dissolved Oxygen in Contaminated Aqueous Environments. Anal. Chim. Acta 2005, 545, 189–194. [Google Scholar] [CrossRef]
- Bandara, K.N.D.; Jayathilaka, K.M.D.C.; Gunewardene, M.S.; Dissanayake, D.P.; Jayanetti, J.K.D.S. Surface Properties of Sulphur Based Surface Modified N-Cu2O Thin Films for Enhanced Liquefied Petroleum Gas Sensing. J. Phys. D Appl. Phys. 2017, 50, 9204. [Google Scholar] [CrossRef]
- Wijesundera, R.P.; Hidaka, M.; Koga, K.; Sakai, M.; Siripala, W. Growth and Characterisation of Potentiostatically Electrodeposited Cu 2O and Cu Thin Films. Thin Solid. Film. 2006, 500, 241–246. [Google Scholar] [CrossRef]
- Prasher, D.; Rajaram, P. Growth and Characterization of Electrodeposited Cu(In,Al)Se2 Thin Films. Thin Solid. Film. 2011, 519, 6252–6257. [Google Scholar] [CrossRef]
- Wu, L.; Tsui, L.K.; Swami, N.; Zangari, G. Photoelectrochemical Stability of Electrodeposited Cu2O Films. J. Phys. Chem. C 2010, 114, 11551–11556. [Google Scholar] [CrossRef]
- Xu, H.Y.; Chen, C.; Xu, L.; Dong, J.K. Direct Growth and Shape Control of Cu2O Film via One-Step Chemical Bath Deposition. Thin Solid. Film. 2013, 527, 76–80. [Google Scholar] [CrossRef]
- Xiong, L.; Huang, S.; Yang, X.; Qiu, M.; Chen, Z.; Yu, Y. P-Type and n-Type Cu2O Semiconductor Thin Films: Controllable Preparation by Simple Solvothermal Method and Photoelectrochemical Properties. Electrochim. Acta 2011, 56, 2735–2739. [Google Scholar] [CrossRef]
- Wright, A.F.; Nelson, J.S. Theory of the Copper Vacancy in Cuprous Oxide. J. Appl. Phys. 2002, 92, 5849–5851. [Google Scholar] [CrossRef]
- Rajshekar, K.; Kannadassan, D. P-Type Cu2O Thin Film Transistors for Active Matrix Displays: Physical Modeling and Numerical Simulation. IEEE Access 2021, 9, 158842–158851. [Google Scholar] [CrossRef]
- Kaufman, R.G.; Hawkins, R.T. Defect Luminescence of Thin Films of Cu2O on Copper. J. Electrochem. Soc. 1984, 131, 385–388. [Google Scholar] [CrossRef]
- Siripala, W.; Jayakody, J.R.P. Observation of N-Type Photoconductivity in Electrodeposited Copper Oxide Film Electrodes in a Photoelectrochemical Cell. Sol. Energy Mater. 1986, 14, 23–27. [Google Scholar] [CrossRef]
- Siddiqui, H.; Parra, M.R.P.; Singh, N.; Qureshi, M.S.; Haque, F.Z. A Review: Synthesis, Characterization and Cell Performance of Cu2O Based Material for Solar Cells. Orient. J. Chem. 2012, 28, 1533–1545. [Google Scholar] [CrossRef]
- Nguyen, V.; Uyen, L.; Thi, N.; Van, T.; Van Minh, N.; Tri, N.; Ky, H.; Ha, P. Fabrication of Cu2O-ZnO Nanocomposite by the Sol-Gel Technique and Its Antibacterial Activity. J. Biochem. Tech. 2020, 11, 18–24. [Google Scholar]
- Wijesundera, R.P. Fabrication of the CuO/Cu2O Heterojunction Using an Electrodeposition Technique for Solar Cell Applications. Semicond. Sci. Technol. 2010, 25, 045015. [Google Scholar] [CrossRef]
- Kalubowila, K.D.R.N.; Jayathileka, K.M.D.C.; Kumara, L.S.R.; Ohara, K.; Kohara, S.; Sakata, O.; Gunewardene, M.S.; Jayasundara, J.M.D.R.; Dissanayake, D.P.; Jayanetti, J.K.D.S. Effect of Bath PH on Electronic and Morphological Properties of Electrodeposited Cu2O Thin Films. J. Electrochem. Soc. 2019, 166, D113–D119. [Google Scholar] [CrossRef]
- Kafi, F.S.B.; Jayathileka, K.M.D.C.; Wijesundera, R.P.; Siripala, W. Effect of Bath PH on Interfacial Properties of Electrodeposited N-Cu2O Films. Phys. Status Solidi B Basic. Res. 2018, 255, 1700541. [Google Scholar] [CrossRef]
- Drelich, J. Guidelines to Measurements of Reproducible Contact Angles Using a Sessile-Drop Technique. Surf. Innov. 2013, 1, 248–254. [Google Scholar] [CrossRef]
- Drew Myers. Surfaces, Interfaces, and Colloids: Principles and Applications, 2nd ed.; John Wiley & Sons, Inc: New York, NY, USA, 1999; Volume 17. [Google Scholar]
- Bandara, K.N.D.; Jayathilaka, K.M.D.C.; Dissanayake, D.P.; Jayanetti, J.K.D.S. Surface Engineering of Electrodeposited Cuprous Oxide (Cu2O) Thin Films: Effect on Hydrophobicity and LP Gas Sensing. Appl. Surf. Sci. 2021, 561, 150020. [Google Scholar] [CrossRef]
- Ravichandiran, C.; Sakthivelu, A.; Deva Arun Kumar, K.; Davidprabu, R.; Valanarasu, S.; Kathalingam, A.; Ganesh, V.; Shkir, M.; Algarni, H.; AlFaify, S. Influence of Rare Earth Material (Sm3+) Doping on the Properties of Electrodeposited Cu2O Films for Optoelectronics. J. Mater. Sci. Mater. Electron. 2019, 30, 2530–2537. [Google Scholar] [CrossRef]
- Gupta, D.; Meher, S.R.; Illyaskutty, N.; Alex, Z.C. Facile Synthesis of Cu2O and CuO Nanoparticles and Study of Their Structural, Optical and Electronic Properties. J. Alloys Compd. 2018, 743, 737–745. [Google Scholar] [CrossRef]
- Ait Hssi, A.; Atourki, L.; Labchir, N.; Ouafi, M.; Abouabassi, K.; Elfanaoui, A.; Ihlal, A.; Benmokhtar, S.; Bouabid, K. High-Quality Cu2O Thin Films via Electrochemical Synthesis under a Variable Applied Potential. J. Mater. Sci. Mater. Electron. 2020, 31, 4237–4244. [Google Scholar] [CrossRef]
- Pagare, P.K.; Torane, A.P. Band Gap Varied Cuprous Oxide (Cu2O) Thin Films as a Tool for Glucose Sensing. Microchim. Acta 2016, 183, 2983–2989. [Google Scholar] [CrossRef]
- Kooti, M.; Matouri, L. Fabrication of Nanosized Cuprous Oxide Using Fehling’s Solution. Trans. F Nanotechnol. 2010, 17, 73–78. [Google Scholar]
- Horti, N.C.; Kamatagi, M.D.; Patil, N.R.; Sannaikar, M.S.; Inamdar, S.R. Synthesis and Optical Properties of Copper Oxide Nanoparticles: Effect of Solvents. J. Nanophotonics 2020, 14, 046010. [Google Scholar] [CrossRef]
- Devamani, R.H.P.; Alagar, M. Synthesis and Characterisation of Copper II Hydroxide Nano Particles. Nano Biomed. Eng. 2013, 5, 116–120. [Google Scholar] [CrossRef]
- Shinde, S.K.; Dubal, D.P.; Ghodake, G.S.; Gomez-Romero, P.; Kim, S.; Fulari, V.J. Influence of Mn Incorporation on the Supercapacitive Properties of Hybrid CuO/Cu(OH)2 Electrodes. RSC Adv. 2015, 5, 30478–30484. [Google Scholar] [CrossRef]
- Noda, T.; Loo, S.M.L.; Noda, Y.; Akai, D.; Hizawa, T.; Choi, Y.J.; Takahashi, K.; Sawada, K. A Multimodal Sensing Device for Simultaneous Measurement of Dissolved Oxygen and Hydrogen Ions by Monolithic Integration of FET-Based Sensors. Sensors 2022, 22, 6669. [Google Scholar] [CrossRef]
- Hamilton. Available online: https://www.hamiltoncompany.com/process-analytics/sensors/dissolved-oxygen/single-use-dissolved-oxygen (accessed on 17 October 2024).
- Dincer, C.; Bruch, R.; Costa-Rama, E.; Fernández-Abedul, M.T.; Merkoçi, A.; Manz, A.; Urban, G.A.; Güder, F. Disposable Sensors in Diagnostics, Food, and Environmental Monitoring. Adv. Mater. 2019, 31, 1806739. [Google Scholar] [CrossRef]
- Zou, Z.; Jang, A.; MacKnight, E.; Wu, P.M.; Do, J.; Bishop, P.L.; Ahn, C.H. Environmentally Friendly Disposable Sensors with Microfabricated On-Chip Planar Bismuth Electrode for in Situ Heavy Metal Ions Measurement. Sens. Actuators B Chem. 2008, 134, 18–24. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wijesooriya, H.E.; Seneviratne, J.A.; Jayathilaka, K.M.D.C.; Fernando, W.T.R.S.; Piyumal, P.L.A.K.; Ranaweera, A.L.A.K.; Kalingamudali, S.R.D.; Kumara, L.S.R.; Seo, O.; Sakata, O.; et al. Cost-Effective Method for Dissolved Oxygen Sensing with Electrodeposited n-Cu2O Thin-Film Semiconductors. Physchem 2025, 5, 6. https://doi.org/10.3390/physchem5010006
Wijesooriya HE, Seneviratne JA, Jayathilaka KMDC, Fernando WTRS, Piyumal PLAK, Ranaweera ALAK, Kalingamudali SRD, Kumara LSR, Seo O, Sakata O, et al. Cost-Effective Method for Dissolved Oxygen Sensing with Electrodeposited n-Cu2O Thin-Film Semiconductors. Physchem. 2025; 5(1):6. https://doi.org/10.3390/physchem5010006
Chicago/Turabian StyleWijesooriya, H. E., J. A. Seneviratne, K. M. D. C. Jayathilaka, W. T. R. S. Fernando, P. L. A. K. Piyumal, A. L. A. K. Ranaweera, S. R. D. Kalingamudali, L. S. R. Kumara, O. Seo, O. Sakata, and et al. 2025. "Cost-Effective Method for Dissolved Oxygen Sensing with Electrodeposited n-Cu2O Thin-Film Semiconductors" Physchem 5, no. 1: 6. https://doi.org/10.3390/physchem5010006
APA StyleWijesooriya, H. E., Seneviratne, J. A., Jayathilaka, K. M. D. C., Fernando, W. T. R. S., Piyumal, P. L. A. K., Ranaweera, A. L. A. K., Kalingamudali, S. R. D., Kumara, L. S. R., Seo, O., Sakata, O., & Wijesundera, R. P. (2025). Cost-Effective Method for Dissolved Oxygen Sensing with Electrodeposited n-Cu2O Thin-Film Semiconductors. Physchem, 5(1), 6. https://doi.org/10.3390/physchem5010006