Sensory and Tactile Comfort Assessment of Sub-Clinical and Clinical Compression Socks on Individuals with Ankle Instability
Abstract
:1. Introduction
1.1. Compression Socks
1.2. Comfort Assessment
1.3. Wear Trials
2. Materials and Methods
2.1. Samples
2.2. Participants
2.3. Comfort Assessment during Different Standing Postural Stability Tasks
2.4. Data Analysis
3. Results
3.1. Sensory/Tactile Comfort
3.2. Comfort Comparison between Sock Types
3.3. Comfort Comparison between Participant Types
4. Discussion
4.1. Sensory/Tactile Comfort
4.2. Comfort Comparison between Sock Types
4.3. Comfort Comparison between Participant Types
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Fong, D.T.-P.; Hong, Y.; Chan, L.-K.; Yung, P.S.-H.; Chan, K.-M. A systematic review on ankle injury and ankle sprain in sports. Sports Med. 2007, 37, 73–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerber, J.P.; Williams, G.N.; Scoville, C.R.; Arciero, R.A.; Taylor, D.C. Persistent disability associated with ankle sprains: A prospective examination of an athletic population. Foot Ankle Int. 1998, 19, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Bilge, O.; Doral, M.N.; Karalezli, N.; Yel, M. Tendon and ligament pathologies around the foot and ankle: Types of braces. In Sports Injuries: Prevention, Diagnosis, Treatment and Rehabilitation; Doral, M.N., Karlsson, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–11. [Google Scholar] [CrossRef]
- Mickel, T.J.; Bottoni, C.R.; Tsuji, G.; Chang, K.; Baum, L.; Tokushige, K.A.S. Prophylactic bracing versus taping for the prevention of ankle sprains in high school athletes: A prospective, randomized trial. J. Foot Ankle Surg. 2006, 45, 360–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waterman, B.R.; Belmont, P.J.; Cameron, K.L.; DeBerardino, T.M.; Owens, B.D. Epidemiology of ankle sprain at the United States military academy. Am. J. Sports Med. 2010, 38, 797–803. [Google Scholar] [CrossRef] [Green Version]
- Wikstrom, E.A.; Brown, C.N. Minimum reporting standards for copers in chronic ankle instability research. Sports Med. 2014, 44, 251–268. [Google Scholar] [CrossRef]
- Attenborough, A.S.; Hiller, C.E.; Smith, R.M.; Stuelcken, M.; Greene, A.; Sinclair, P.J. Chronic ankle instability in sporting populations. Sports Med. 2014, 44, 1545–1556. [Google Scholar] [CrossRef]
- Donovan, L.; Hertel, J. A new paradigm for rehabilitation of patients with chronic ankle instability. Physician Sportsmed. 2012, 40, 41–51. [Google Scholar] [CrossRef]
- American College of Foot and Ankle Surgeons (ACFAS). Chronic Ankle Instability. 2022. Available online: https://www.acfas.org/footankleinfo/chronic-ankle-instability.htm (accessed on 3 February 2022).
- Hurd, W.J.; Axe, M.J.; Snyder-Mackler, L. Influence of age, gender, and injury mechanism on the development of dynamic knee stability after acute ACL rupture. J. Orthop. Sports Phys. Ther. 2008, 38, 36–41. [Google Scholar] [CrossRef]
- Gianesini, S.; Tessari, M.; Menegatti, E.; Spath, P.; Vannini, M.E.; Occhionorelli, S.; Zamboni, P. Comparison between the effects of 18- and 23-mmHg elastic stockings on leg volume and fatigue in golfers. Int. Angiol. 2017, 36, 129–135. [Google Scholar] [CrossRef]
- Gianesini, S.; Mosti, G.; Sibilla, M.G.; Maietti, E.; Diaz, J.A.; Raffetto, J.D.; Zamboni, P.; Menegatti, E. Lower limb volume in healthy individuals after walking with compression stockings. J. Vasc. Surg. Venous Lymphat. Disord. 2019, 7, 557–561. [Google Scholar] [CrossRef]
- Flaud, P.; Bassez, S.; Counord, J.-L. Comparative in vitro study of three interface pressure sensors used to evaluate medical compression hosiery. Dermatol. Surg. 2010, 36, 1930–1940. [Google Scholar] [CrossRef]
- Nédélec, M.; McCall, A.; Carling, C.; Legall, F.; Berthoin, S.; Dupont, G. Recovery in soccer: Part I—Post-Match fatigue and time course of recovery. Sports Med. 2012, 42, 997–1015. [Google Scholar] [CrossRef]
- Valle, X.; Til, L.; Drobnic, F.; Turmo, A.; Montoro, J.B.; Valero, O.; Artells, R. Compression garments to prevent delayed onset muscle soreness in soccer players. Muscle Ligaments Tendons J. 2019, 3, 295. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Kwok, Y.L.; Li, Y.; Lao, T.T.H.; Zhang, X.; Dai, X.Q. Objective evaluation of skin pressure distribution of graduated elastic compression stockings. Dermatol. Surg. 2005, 31, 615–624. [Google Scholar] [CrossRef]
- Partsch, H. The use of pressure change on standing as a surrogate measure of the stiffness of a compression bandage. Eur. J. Vasc. Endovasc. Surg. 2005, 30, 415–421. [Google Scholar] [CrossRef] [Green Version]
- Woollacott, M.; Shumway-Cook, A. Attention and the control of posture and gait: A review of an emerging area of research. Gait Posture 2002, 16, 1–14. [Google Scholar] [CrossRef]
- Edwards, R.H.T. Hypotheses of peripheral and central mechanisms underlying occupational muscle pain and injury. Eur. J. Appl. Physiol. 1988, 57, 275–281. [Google Scholar] [CrossRef]
- Hansen, L.; Winkel, J.; Jørgensen, K. Significance of mat and shoe softness during prolonged work in upright position: Based on measurements of low back muscle EMG, foot volume changes, discomfort and ground force reactions. Appl. Ergon. 1998, 29, 217–224. [Google Scholar] [CrossRef]
- Jaakkola, T.; Linnamo, V.; Woo, M.T.; Davids, K.; Piirainen, J.M.; Gråstén, A. Effects of training on postural control and agility when wearing socks of different compression levels. Biomed. Hum. Kinet. 2017, 9, 107–114. [Google Scholar] [CrossRef] [Green Version]
- Siddique, H.; Mazari, A.; Havelka, A.; Kus, Z. Performance characterization of compression socks at ankle portion under multiple mechanical impacts. Fibers Polym. 2019, 20, 1092–1107. [Google Scholar] [CrossRef]
- Hecke, A.V.; Grypdonck, M.; Defloor, T. Interventions to enhance patient compliance with leg ulcer treatment: A review of the literature. J. Clin. Nurs. 2008, 17, 29–39. [Google Scholar] [CrossRef]
- Ayala, A.; Guerra, J.; Ulloa, J.; Kabnick, L. Compliance with compression therapy in primary chronic venous disease: Results from a tropical country. Phlebol. J. Venous Dis. 2018, 34, 272–277. [Google Scholar] [CrossRef]
- Ke, W.; Rotaru, G.-M.; Hu, J.Y.; Rossi, R.M.; Ding, X.; Derler, S. In vivo measurement of the friction between human skin and different medical compression stockings. Tribol. Lett. 2015, 60, 4. [Google Scholar] [CrossRef]
- Li, W.; Liu, X.D.; Cai, Z.B.; Zheng, J.; Zhou, Z.R. Effect of prosthetic socks on the frictional properties of residual limb skin. Wear 2011, 271, 2804–2811. [Google Scholar] [CrossRef]
- Siddique, H.F.; Mazari, A.A.; Havelka, A.; Laurinová, R. Analysis of thermal properties affected by different extension levels of compression socks. Fibres Text. 2019, 64–69. [Google Scholar]
- Gupta, D.; Chattopadhyay, R.; Bera, M. Comfort properties of pressure garments in extended state. Indian J. Fiber Text. Res. 2011, 36, 415–421. [Google Scholar]
- Carpentier, P.; Becker, F.; Thiney, G.; Poensin, D.; Satger, B. Acceptability and practicability of elastic compression stockings in the elderly: A randomized controlled evaluation. Phlebol. Venous Forum R. Soc. Med. 2011, 26, 107–113. [Google Scholar] [CrossRef]
- Treseler, C.; Bixby, W.R.; Nepocatych, S. The effect of compression stockings on physiological and psychological responses after 5-km performance in recreationally active females. J. Strength Cond. Res. 2016, 30, 1985–1991. [Google Scholar] [CrossRef]
- Su, J. Compression Guide—Varcoh® Compression Socks—Varcoh® Compression Socks. 2022. Available online: https://www.varcoh.com/compression-guide (accessed on 16 February 2022).
- Chander, H.; Turner, A.J.; Swain, J.C.; Sutton, P.E.; McWhirter, K.L.; Morris, C.E.; Knight, A.C.; Carruth, D.W. Impact of occupational footwear and workload on postural stability in work safety. Work 2019, 64, 817–824. [Google Scholar] [CrossRef]
- Goble, D.J.; Brar, H.; Brown, E.C.; Marks, C.R.; Baweja, H.S. Normative data for the Balance Tracking System modified clinical test of sensory integration and balance protocol. Med. Devices 2019, 12, 183–191. [Google Scholar] [CrossRef] [Green Version]
- Bartels, V.T. Physiological comfort of biofunctional textiles. In Biofunctional Textiles and the Skin; Hipler, U.-C., Elsner, P., Eds.; Karger: Basel, Switzerland, 2006; Volume 33, pp. 51–66. [Google Scholar] [CrossRef]
- Saville, B.P. Physical Testing of Textiles; Woodhead Publishing Limited: Cambridge, UK, 1999. [Google Scholar]
- Baige, K.; Noé, F.; Paillard, T. Wearing compression garments differently affects monopodal postural balance in high-level athletes. Sci. Rep. 2020, 10, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Smalley, A.; White, S.C.; Burkard, R. The effect of augmented somatosensory feedback on standing postural sway. Gait Posture 2018, 60, 76–80. [Google Scholar] [CrossRef] [PubMed]
Before Wearing | After Wearing | |||
---|---|---|---|---|
Sock Types | Materials | Hand Feel | Non-Itchiness | No Red Marks |
SC | 6.65 (2.32) | 6.85 (2.13) | 8.25 (2.45) | 7.80 (3.02) |
CL | 7.15 (1.84) | 7.35 (1.63) | 8.35 (3.10) | 8.25 (3.27) |
Before Wearing | After Wearing | |||
---|---|---|---|---|
Participant Types | Materials | Hand Feel | Non-Itchiness | No Red Marks |
COP | 7 (1.67) | 6.94 (1.81) | 8.44 (2.5) | 8.88 (2.45) |
CAI | 6.5 (3.06) | 6.92 (2.61) | 8 (3.84) | 6.92 (4.01) |
CON | 7.17 (1.4) | 7.5 (1.09) | 8.42 (1.88) | 8 (2.8) |
Material | Hand Feel | Non-Itchiness | No Red Marks | |
---|---|---|---|---|
Material | ||||
Hand feel | 0.84 ** | |||
Non-itchiness | 0.51 ** | 0.38 * | ||
No red marks | 0.55 ** | 0.45 ** | 0.72 ** |
Df | SS | MS | F | p | ||
---|---|---|---|---|---|---|
Before wearing | Material | 1 | 2.5 | 2.5 | 0.57 | 0.455 |
Hand feel | 1 | 2.5 | 2.5 | 0.69 | 0.410 | |
After wearing | Non-itchiness | 1 | 0.1 | 0.1 | 0.01 | 0.910 |
No red marks | 1 | 2.03 | 2.03 | 0.20 | 0.654 | |
Activities | Postural activity tasks | 1 | 4.9 | 4.9 | 2.70 | 0.109 |
Donning | 1 | 2.03 | 2.03 | 0.44 | 0.510 | |
Doffing | 1 | 5.63 | 5.63 | 2.28 | 0.139 | |
Overall comfort | Comfort adoption | 1 | 0.9 | 0.9 | 0.63 | 0.434 |
Df | SS | MS | F | p | ||
---|---|---|---|---|---|---|
Before wearing | Material | 2 | 2.9 | 1.47 | 0.32 | 0.724 |
Hand feel | 2 | 2.75 | 1.37 | 0.37 | 0.692 | |
After wearing | Non-itchiness | 2 | 1.55 | 0.77 | 0.1 | 0.908 |
No red marks | 2 | 26.31 | 13.15 | 1.38 | 0.264 | |
Activities | Postural activity tasks | 2 | 7.92 | 3.96 | 2.22 | 0.123 |
Donning | 2 | 8.39 | 4.20 | 0.93 | 0.405 | |
Doffing | 2 | 2.71 | 1.35 | 0.52 | 0.600 | |
Overall comfort | Comfort adoption | 2 | 2.15 | 1.07 | 0.74 | 0.482 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Talukder, A.; Derby, H.; Freeman, C.; Burch, R.; Knight, A.; Chander, H. Sensory and Tactile Comfort Assessment of Sub-Clinical and Clinical Compression Socks on Individuals with Ankle Instability. Textiles 2022, 2, 307-317. https://doi.org/10.3390/textiles2020017
Talukder A, Derby H, Freeman C, Burch R, Knight A, Chander H. Sensory and Tactile Comfort Assessment of Sub-Clinical and Clinical Compression Socks on Individuals with Ankle Instability. Textiles. 2022; 2(2):307-317. https://doi.org/10.3390/textiles2020017
Chicago/Turabian StyleTalukder, Amit, Hunter Derby, Charles Freeman, Reuben Burch, Adam Knight, and Harish Chander. 2022. "Sensory and Tactile Comfort Assessment of Sub-Clinical and Clinical Compression Socks on Individuals with Ankle Instability" Textiles 2, no. 2: 307-317. https://doi.org/10.3390/textiles2020017
APA StyleTalukder, A., Derby, H., Freeman, C., Burch, R., Knight, A., & Chander, H. (2022). Sensory and Tactile Comfort Assessment of Sub-Clinical and Clinical Compression Socks on Individuals with Ankle Instability. Textiles, 2(2), 307-317. https://doi.org/10.3390/textiles2020017