Supply Chain Cost Analysis for Interior Lighting Systems Based on Polymer Optical Fibres Compared to Optical Injection Moulding
Abstract
1. Introduction
2. Theory
2.1. Case Study
2.2. Light Guides
2.3. Activity-Based Costing (ABC)
- Determination of processes and activities;
- Selection of cost drivers for each activity;
- Assignment of general costs to processes via resource drivers;
- Cost rate determination;
2.4. Supply Chain (SC) Uncertainty and Monte Carlo Simulations (MCS)
- Equal distribution: the same probability of occurrence is assigned to any value between a maximum value and a minimum value.
- Triangular distribution: the probability density function is a triangle defined by a minimum, a maximum and a most probable value [43].
2.5. Literature Review and Gap Analysis
3. Methodology
3.1. Calculation of Self-Costs
3.2. Data Collection from Documents and Expert Interviews
3.3. Monte Carlo Simulations
4. Results
4.1. Derivation and Delimitation of the Supply Chains Under Consideration
4.2. Overall Parameters of ABC
4.3. Process Cost and Cost Driver Analysis for the Fibre-Based Supply Chain
4.4. Process Cost and Cost Driver Analysis for the Injection-Moulded Chain
4.5. Comparison of the Cost Structures of the Two Competing Lighting Systems
4.5.1. Breakdown by Direct and Indirect Costs
4.5.2. Breakdown by Hierarchy Level
4.5.3. Breakdown by Process Step
- Higher forecast accuracy through aggregated planning for all activities prior to product differentiation, thereby reducing inventory levels and consequently holding and stockout costs;
- A risk-diversifying gain in information through disaggregated forecasts that are closer to the point of sale (later customer order decoupling point);
- Economies of scale for intermediate products (in this case: fibres and fabrics), whose demand is aggregated;
- A reduction in development costs, as the same parts or components are used.
5. Discussion of Future Scenarios
5.1. Scenario of a Low-Cost POF
- Higher production speed for monofilament melt-spinning compared to a continuous extrusion process with in situ polymerisation [75] (70–150 m/min instead of 50–70 m/min);
- Greater competition on the monofilament melt-spinning market with more resilience for the automotive supply chain with multiple suppliers;
- Economies of scale in the polymer supplier’s supply chain.
5.2. Scenario of a Large-Scale Production
- Flexibility: textile drapability allows for other applications, reduces space restrictions;
- Installation situation: makes mounting concepts more flexible and simplifies bonding;
- Dynamics: enables brightness and colour dynamics by controlling individual fibre bundles;
- Less restrictions: also enables very large light guides (injection moulds become disproportionately expensive and the light guides become too thick);
- Component thickness: reduces installation space requirements.
- Higher brightness: tends to reduce the required number of LEDs;
- Single-material purity: increases recyclability, reduces disposal costs.
6. Conclusions
- -
- Cost transparency for investment decision: companies at the end of the automotive supply chain can consider the costing differences when deciding for a lighting technology route.
- -
- Strategic sourcing decisions for increased flexibility in production: maximum exploitation of advantages of the respective technology from a supply chain point of view.
- -
- Future scenario planning in the form of innovation opportunities: identification of potential future technological advancements to further reduce costs or improve functionalities.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Description and Selection of Scenarios
References
- Global Market Insights Inc. Cars Market Size—By Vehicle, By Propulsion, By End Use, By Sales Channel, Analysis, Share, Growth Forecast, 2025–2034. Available online: https://www.gminsights.com/industry-analysis/cars-market (accessed on 26 May 2025).
- Pischinger, S.; Seiffert, U. Ausblick. In Vieweg Handbuch Kraftfahrzeugtechnik; Pischinger, S., Seiffert, U., Eds.; Springer Fachmedien: Wiesbaden, Germany, 2021; pp. 1383–1386. ISBN 978-3-658-25556-5. [Google Scholar]
- Golowko, K.; Mugele, P.; Zimmer, D. Neue Möglichkeiten der Innenraumgestaltung. ATZ Extra 2017, 22, 42–45. [Google Scholar] [CrossRef]
- Lemmer, K.; Jipp, M.; Bubb, H.; Vögel, H.-J.; Jung, M.; Laukart, G.; Vorberg, T. Mensch-Technik-Kooperation und Fahrzeuginnenraum. In Vieweg Handbuch Kraftfahrzeugtechnik; Pischinger, S., Seiffert, U., Eds.; Springer Fachmedien: Wiesbaden, Germany, 2021; pp. 1161–1249. ISBN 978-3-658-25556-5. [Google Scholar]
- Wördenweber, B.; Wallaschek, J.; Boyce, P.; Hoffman, D.D. Automotive Lighting and Human Vision; Springer: Berlin/Heidelberg, Germany, 2007; ISBN 978-3-540-36696-6. [Google Scholar]
- Weirich, C.; Lin, Y.; Khanh, T.Q. Evidence for Human-Centric In-Vehicle Lighting: Part 1. Appl. Sci. 2022, 12, 552. [Google Scholar] [CrossRef]
- Hopmann, C.; Weber, M.; Schöngart, M.; Schäfer, C.; Bobzin, K.; Bagcivan, N.; Brögelmann, T.; Theiß, S.; Münstermann, T.; Steger, M. Injection moulding of optical functional micro structures using laser structured, PVD-coated mould inserts. In PPS-30, Proceedings of the 30th International Conference of the Polymer Processing Society—Conference Papers, Cleveland, OH, USA, 6–12 June 2014; Jana, S.C., Ed.; AIP Publishing LLC: Melville, NY, USA, 2015; p. 110003. [Google Scholar]
- Thomas, L.; Gries, T.; Boich, R.T.; Oppitz, S.; Pursche, F.; Kallweit, J.; Krooß, F.; Ortega, J.; Seidenberg, M. Woven structures and their impact on the function and performance of smart clothing. In Smart Clothes and Wearable Technology; McCann, J., Bryson, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 97–124. ISBN 9780128195260. [Google Scholar]
- Yin, R.K. Case Study Research and Applications: Design and Methods, 6th ed.; SAGE: Los Angeles, CA, USA; London, UK; New Delhi, India; Singapore; Washington, DC, USA; Melbourne, Australia, 2018; ISBN 978-1-5063-3616-9. [Google Scholar]
- Eisenhardt, K.M. Building Theories from Case Study Research. AMR 1989, 14, 532–550. [Google Scholar] [CrossRef]
- Bruns, W.J. A review of Robert K. Yin’s Case Study Research: Design and Methods. J. Manag. Account. Res. 1989, 1, 157–163. [Google Scholar]
- Bloomfield, R. Discussion of “Annual report readability, current earnings, and earnings persistence”. J. Account. Econ. 2008, 45, 248–252. [Google Scholar] [CrossRef]
- Carr, C.; Tomkins, C. Strategic investment decisions: The importance of SCM. A comparative analysis of 51 case studies in U.K., U.S. and German companies. Manag. Account. Res. 1996, 7, 199–217. [Google Scholar] [CrossRef]
- Chen, J.V.; Li, F. Discussion of “Textual analysis and international financial reporting: Large sample evidence”. J. Account. Econ. 2015, 60, 181–186. [Google Scholar] [CrossRef]
- Chong, A.Y.L.; Lim, E.T.K.; Hua, X.; Zheng, S.; Tan, C.-W. Business on Chain: A Comparative Case Study of Five Blockchain-Inspired Business Models. JAIS 2019, 1308–1337. [Google Scholar] [CrossRef]
- Li, F. Annual report readability, current earnings, and earnings persistence. J. Account. Econ. 2008, 45, 221–247. [Google Scholar] [CrossRef]
- Wimmer, M.; Lippmann, J.; Rauchensteiner, O. Ambient Lighting between Illumination and Communication. ATZ Worldw. 2017, 119, 26–31. [Google Scholar] [CrossRef]
- Whitehead, L.A.; Nodwell, R.A.; Curzon, F.L. New efficient light guide for interior illumination. Appl. Opt. 1982, 21, 2755–2757. [Google Scholar] [CrossRef] [PubMed]
- Kröplin, P.; Dieling, C.; Beckers, M.; Schrank, V.; Beer, M.; Gries, T.; Seide, G.; Bunge, C.-A. Overview of the POF market. In Polymer Optical Fibres: Fibre Types, Materials, Fabrication, Characterization, and Applications; Bunge, C.-A., Gries, T., Beckers, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 349–400. ISBN 9780081000397. [Google Scholar]
- Bliedtner, J. Optische Werkstoffe und Herstellungsverfahren von optischen Bauelementen. In Handbuch Bauelemente der Optik; Naumann, H., Schröder, G., Löffler-Mang, M., Eds.; Carl Hanser Verlag GmbH & Co. KG: München, Germany, 2014; pp. 45–88. ISBN 978-3-446-42625-2. [Google Scholar]
- Dislich, H. Plastics as Optical Materials. Angew. Chem. Int. Ed. Engl. 1979, 18, 49–59. [Google Scholar] [CrossRef]
- Kallweit, J.; Pätzel, M.; Pursche, F.; Jabban, J.; Morobeid, M.; Gries, T. An Overview on Methods for Producing Side-Emitting Polymer Optical Fibers. Textiles 2021, 1, 337–360. [Google Scholar] [CrossRef]
- Lüder, C.; Eichhorn, K. Lichtleittechnik in Kfz-Applikationen. VDI-Berichte 2003, 1789, 97–107. [Google Scholar]
- Slade, M.E. Sticky prices in a dynamic oligopoly: An investigation of (s,S) thresholds. Int. J. Ind. Organ. 1999, 17, 477–511. [Google Scholar] [CrossRef]
- Cooper, R.; Kaplan, R.S. Measure costs right: Make the right decisions. Harv. Bus. Rev. 1988, 66, 96–103. [Google Scholar]
- Drake, A.R.; Haka, S.F. Does ABC Information Exacerbate Hold-Up Problems in Buyer-Supplier Negotiations? Account. Rev. 2008, 83, 29–60. [Google Scholar] [CrossRef]
- Maiga, A.S.; Jacobs, F.A. Extent of ABC use and its consequences. Contemp. Account. Res. 2005, 25, 533–566. [Google Scholar] [CrossRef]
- Remer, D. Einführen der Prozesskostenrechnung: Grundlagen, Methodik, Einführung und Anwendung der Verursachungsgerechten Gemeinkostenzurechnung, 2nd ed.; Schäffer-Poeschel Verlag für Wirtschaft Steuern Recht GmbH: Stuttgart, Germany, 2005; ISBN 3791024272. [Google Scholar]
- Cooper, R.; Kaplan, R.S. Profit priorities from activity-based costing. Harv. Bus. Rev. 1991, 69, 130–135. [Google Scholar]
- Everaert, P.; Bruggeman, W.; Sarens, G.; Anderson, S.R.; Levant, Y. Cost modeling in logistics using time-driven ABC. Int. J. Phys. Distrib. Logist. Manag. 2008, 38, 172–191. [Google Scholar] [CrossRef]
- Ben-Arieh, D.; Qian, L. Activity-based cost management for design and development stage. Int. J. Prod. Econ. 2003, 83, 169–183. [Google Scholar] [CrossRef]
- Becker, J.; Beverungen, D.; Knackstedt, R.; Müller, O. Pricing of Value Bundles—A Multi-Perspective Decision Support Approach. Enterp. Model. Inf. Syst. Archit. 2011, 6, 54–69. [Google Scholar] [CrossRef]
- Mentzer, J.T.; DeWitt, W.; Keebler, J.S.; Min, S.; Nix, N.W.; Smith, C.D.; Zacharia, Z.G. Defining Supply Chain Management. J. Bus. Logist. 2001, 22, 1–25. [Google Scholar] [CrossRef]
- Min, S.; Mentzer, J.T. The role of marketing in supply chain management. Int. J. Phys. Distrib. Logist. Manag. 2000, 30, 765–787. [Google Scholar] [CrossRef]
- Brabazon, P.G.; MacCarthy, B.; Woodcock, A.; Hawkins, R.W. Mass Customization in the Automotive Industry: Comparing Interdealer Trading and Reconfiguration Flexibilities in Order Fulfillment. Prod. Oper. Manag. 2010, 19, 489–502. [Google Scholar] [CrossRef]
- Pavlínek, P.; Ženka, J. Value creation and value capture in the automotive industry: Empirical evidence from Czechia. Environ. Plan A 2016, 48, 937–959. [Google Scholar] [CrossRef]
- Ellram, L.M. A Framework for Total Cost of Ownership. Int. J. Logist. Manag. 1993, 4, 49–60. [Google Scholar] [CrossRef]
- LaLonde, B.J.; Pohlen, T.L. Issues in supply chain costing. Int. J. Logist. Manag. 1996, 7, 1–12. [Google Scholar] [CrossRef]
- Schönsleben, P. Integrales Logistikmanagement, 6th ed.; Springer: Berlin/Heidelberg, Germany, 2011; ISBN 978-3-642-20380-0. [Google Scholar]
- Schulze, M.; Seuring, S.; Ewering, C. Applying activity-based costing in a supply chain environment. Int. J. Prod. Econ. 2012, 135, 716–725. [Google Scholar] [CrossRef]
- Raun, D.L. The Application of Monte Carlo Analysis to an Inventory Problem. Account. Rev. 1963, 38, 754–758. [Google Scholar]
- Nachtmann, H.; Needy, K.L. Methods for handling uncertainty in activity based costing systems. Eng. Econ. 2003, 48, 259–282. [Google Scholar] [CrossRef]
- Cassettari, L.; Mosca, M.; Mosca, R.; Rolando, F.; Costa, M.; Pisaturo, V. IVF cycle cost estimation using Activity Based Costing and Monte Carlo simulation. Health Care Manag. Sci. 2016, 19, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Emblemsvåg, J. Life-Cycle Costing: Using Activity-Based Costing and Monte Carlo Methods to Manage Future Costs and Risks; Wiley: Hoboken, NJ, USA, 2003; ISBN 0-471-35885-1. [Google Scholar]
- Karania, R.; Kazmer, D.; Roser, C. Plastics Product and Process Design Strategies. In Volume 3d: 8th Design for Manufacturing Conference. ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Salt Lake City, UT, USA, 28 September–2 October 2004; ASMEDC: New York, NY, USA, 2004; pp. 703–712. ISBN 0-7918-4696-2. [Google Scholar]
- Liebig, G.; Mehler, C. Moderne Technologie ist wirtschaftlicher als low-spec. Kunststoffe 2004, 94, 155–162. [Google Scholar]
- Burgdorf, V. Precision optics for light emitting diodes (LED) Temperature stable with high temperature (HT) plastics. VDI Berichte 2008, 2059, 107–111. [Google Scholar]
- Chiu, C.H.; Lu, J.R.; Su, W.Y.; Chen, C.C. Micro-injection molding applied to production of optical products-example of lens. J. Phys. Conf. Ser. 2024, 2878, 12017. [Google Scholar] [CrossRef]
- Kazmer, D.; Peterson, A.M.; Masato, D.; Colon, A.R.; Krantz, J. Strategic cost and sustainability analyses of injection molding and material extrusion additive manufacturing. Polym. Eng. Sci 2023, 63, 943–958. [Google Scholar] [CrossRef]
- Ze, C.; Precision Mold Co. Ltd. Injection Molding Mold Cost: Understanding the Investment Behind Your Plastic Parts. Available online: https://zcsmould.com/injection-molding-mold-cost/ (accessed on 21 July 2025).
- Fagade, A.; Kazmer, D. Economic design of injection molded parts using DFM guidelines-a review of two methods for tooling cost estimation. In Technical Papers of the Annual Technical Conference-Society of Plastics Engineers Incorporated; Society of Plastic Engineers Inc., Ed.; Society of Plastics Engineers: Danbury, CT, USA, 1998; pp. 869–873. [Google Scholar]
- Turc, C.G.; Cărăuşu, C.; Belgiu, G. Cost analysis in injection moulded plastic parts designing. IOP Conf. Ser. Mater. Sci. Eng. 2017, 227, 12132. [Google Scholar] [CrossRef]
- Klocker, F.; Bernsteiner, R.; Ploder, C.; Nocker, M. A Machine Learning Approach for Automated Cost Estimation of Plastic Injection Molding Parts. Cloud Comput. Data Sci. 2023, 87–111. [Google Scholar] [CrossRef]
- Wang, H.; Ruan, X.-Y.; Zhou, X.H. Research on Injection Mould Intelligent Cost Estimation System and Key Technologies. Int. J. Adv. Manuf. Technol. 2002, 21, 215–222. [Google Scholar] [CrossRef]
- Wang, H.S.; Wang, Y.N.; Wang, Y.C. Cost estimation of plastic injection molding parts through integration of PSO and BP neural network. Expert Syst. Appl. 2013, 40, 418–428. [Google Scholar] [CrossRef]
- Ruiz de Arbulo, P.; Fortuny, J.; García, J.; Díaz de Basurto, P.; Zarrabeitia, E. Innovation in Cost Management. A Comparison Between Time-Driven Activity-Based Costing (TDABC) and Value Stream Costing (VSC) in an Auto-Parts Factory. In Industrial Engineering: Innovative Networks; Sethi, S.P., Bogataj, M., Ros-McDonnell, L., Eds.; Springer: London, UK, 2012; pp. 121–128. ISBN 978-1-4471-2320-0. [Google Scholar]
- Park, J.; Simpson, T.W. Toward an activity-based costing system for product families and product platforms in the early stages of development. Int. J. Prod. Res. 2008, 46, 99–130. [Google Scholar] [CrossRef]
- Canciglieri, O.J.; Young, R. Information mapping across injection moulding design and manufacture domains. Int. J. Prod. Res. 2010, 48, 4437–4462. [Google Scholar] [CrossRef]
- Lou, Y.-I.; Wang, H.C.; Lan, J.-S. Design and Implement the Activity-Based Costing in Taiwan Firm. IOSR JBM 2017, 19, 41–46. [Google Scholar] [CrossRef]
- Alaoui, L.H.; Baumüller, J.; Schwaiger, W.S.A. 3-Levers of Emission Control-Modeling Framework: Modeling GHG Emissions When Direct Measurement is not Possible. Int. Sustain. Ener. Conf. Proc. 2024, 1, 1–15. [Google Scholar] [CrossRef]
- Tekin, İ.; Gözlü, S. Determination of costs resulting from manufacturing losses: An investigation in white durables industry. In Proceedings of the 2012 International Conference on Industrial Engineering and Operations Management, Istanbul, Türkiye, 3–6 July 2012; pp. 352–361. [Google Scholar]
- Camargo, M.; Rabenasolo, B.; Jolly-Desodt, A.M.; Castelain, J.M. Application of the parametric cost estimation in the textile supply chain. J. Text. Appar. Technol. Manag. 2003, 3, 1–12. [Google Scholar]
- Clarke, J.; McIlhagger, A.; Dixon, D.; Archer, E.; Stewart, G.; Brelsford, R.; Summerscales, J. A Cost Model for 3D Woven Preforms. J. Compos. Sci. 2022, 6, 18. [Google Scholar] [CrossRef]
- Textile School. Textile Product Costing. Available online: https://www.textileschool.com/393/textile-product-costing/?utm_source=chatgpt.com (accessed on 21 July 2025).
- Rendall, C.; Hergeth, H.; Chen, A.; Zuckerman, G. Product Cost Management Practices in Textiles. J. Text. Inst. 1999, 90, 27–37. [Google Scholar] [CrossRef]
- Klimaitienė, R.; Kundzelevičius, R. Implementationof time-driven activity-based costing in weaving servicecompany. Sci. Stud. Account. Financ. Probl. Perspect. 2020, 14, 24–34. [Google Scholar] [CrossRef]
- Al-Eas, S.W.I.; Al-Ghabban, T.S.M. The use of activity based cost time drivine (TDABC) and its role in implementing the cost leadership strategy: An applied research in wasit textile and knitting factory. Spec. Educ. 2022, 1, 1–16. [Google Scholar]
- Todingbua, M.A. Production Cost Treatment and Contribution Margin in Mamasa Weaving. Account. Prof. J. (APAJI) 2023, 5, 68–79. [Google Scholar]
- Tsai, W.-H.; Chen, H.-C.; Chang, S.-C.; Chan, K.-C. Revolutionizing Textile Manufacturing: Sustainable and Profitable Production by Integrating Industry 4.0, Activity-Based Costing, and the Theory of Constraints. Processes 2024, 12, 2311. [Google Scholar] [CrossRef]
- Meuser, M.; Nagel, U. Expertlnneninterviews—Vielfach erprobt, wenig bedacht. In Qualitativ-Empirische Sozialforschung; Garz, D., Kraimer, K., Eds.; VS Verlag für Sozialwissenschaften: Wiesbaden, Germany, 1991; pp. 441–471. ISBN 978-3-531-12289-2. [Google Scholar]
- Mayring, P. Qualitative Inhaltsanalyse. In Handbuch Qualitative Forschung in der Psychologie; Mey, G., Mruck, K., Eds.; VS Verlag für Sozialwissenschaften: Wiesbaden, Germany, 2010; pp. 601–613. ISBN 978-3-531-16726-8. [Google Scholar]
- Cassettari, L.; Mosca, R.; Revetria, R. Monte Carlo Simulation Models Evolving in Replicated Runs: A Methodology to Choose the Optimal Experimental Sample Size. Math. Probl. Eng. 2012, 2012, 73–76. [Google Scholar] [CrossRef]
- Widmann, U.; Weissinger, J.; Breitling, T.; Hackenberg, U.; Wundram, K.; Goß, S. Produktentstehungsprozess. In Vieweg Handbuch Kraftfahrzeugtechnik; Pischinger, S., Seiffert, U., Eds.; Springer Fachmedien: Wiesbaden, Germany, 2021; pp. 1271–1382. ISBN 978-3-658-25556-5. [Google Scholar]
- Horváth, P.; Mayer, R. Konzeption und Entwicklungen der Prozeßkostenrechnung. In Prozeßkostenrechnung; Männel, W., Ed.; Gabler Verlag: Wiesbaden, Germany, 1995; pp. 59–86. ISBN 978-3-409-12146-0. [Google Scholar]
- Beckers, M.; Schlüter, T.; Vad, T.; Gries, T.; Bunge, C.-A. An overview on fabrication methods for polymer optical fibers. Polym. Int. 2015, 64, 25–36. [Google Scholar] [CrossRef]
- Koike, Y. Fundamentals of Plastic Optical Fibers; Wiley: Hoboken, NJ, USA, 2014; ISBN 978-3-527-41006-4. [Google Scholar]
- Kraftfahrt-Bundesamt. Neuzulassungen von Kraftfahrzeugen und Kraftfahrzeuganhängern nach Herstellern und Handelsnamen: 1999–2020. Available online: https://www.kba.de/SharedDocs/Downloads/DE/Statistik/Fahrzeuge/FZ4/fz4_2020.xlsx?__blob=publicationFile&v=2 (accessed on 25 June 2025).
- ACEA. Nzahl der Neuzulassungen von Personenkraftwagen in Europa nach Ländern von Januar bis April 2025 und Vergleich zum Vorjahreszeitraum. Available online: https://de.statista.com/statistik/daten/studie/260825/umfrage/monatliche-pkw-neuzulassungen-in-den-laendern-europas/ (accessed on 25 June 2025).
- Anderson, S.W. Measuring the Impact of Product Mix Heterogeneity on Manufacturing Overhead Cost. Account. Rev. 1995, 70, 363–387. [Google Scholar]
- Montag, T. Personalkosten Berechnen. Available online: https://www.gruenderlexikon.de/checkliste/informieren/personalkosten-kalkulieren/ (accessed on 27 May 2025).
- Schneider, R. Standort Deutschland: Grundlagen des Wohlstands, 1st ed.; Monsenstein und Vannerdat: Münster, Germany, 2006; ISBN 978-3-86582-383-0. [Google Scholar]
- Schröder, C. Industrielle Arbeitskosten im Internationalen Vergleich. Available online: https://www.iwkoeln.de/fileadmin/user_upload/Studien/IW-Trends/PDF/2019/IW-Trends_2019-02-05_Industrielle_Arbeitskosten.pdf (accessed on 13 May 2025).
- Mogge, F.; Daniel, F.; Söndermann, C.; Fritz, K.O. Global Automotive Supplier Study 2020: COVID-19 Crisis as a Window of Opportunity? Available online: https://www.lazard.com/media/xb1d3jjs/global-automotive-supplier-study-2020.pdf (accessed on 27 May 2025).
- Li, X.; Wang, Q. Coordination mechanisms of supply chain systems. Eur. J. Oper. Res. 2007, 179, 1–16. [Google Scholar] [CrossRef]
- Altan, T.; Lilly, B.; Yen, Y.C. Manufacturing of Dies and Molds. CIRP Ann. 2001, 50, 404–422. [Google Scholar] [CrossRef]
- Jiran, N.S.; Gholami, H.; Mahmood, S.; Mat Saman, M.Z.; Yusof, N.M.; Draskovic, V.; Jovovic, R. Application of Activity-Based Costing in Estimating the Costs of Manufacturing Process. Transform. Bus. Econ. 2019, 18, 839–860. [Google Scholar]
- Van Hoek, R. The rediscovery of postponement a literature review and directions for research. J. Oper. Manag. 2001, 19, 161–184. [Google Scholar] [CrossRef]
- Linneman, R.E.; Klein, H.E. The use of multiple scenarios by U.S. industrial companies. Long Range Plan. 1979, 12, 83–90. [Google Scholar] [CrossRef]
- Konno, N.; Nonaka, I.; Ogilvy, J. Scenario Planning: The Basics. World Futures 2014, 70, 28–43. [Google Scholar] [CrossRef]
- Ratcliffe, J. Scenario planning: Strategic interviews and conversations. Foresight 2002, 4, 19–30. [Google Scholar] [CrossRef]
- Schoemaker, P.J.H. Multiple scenario development: Its conceptual and behavioral foundation. Strateg. Manag. J. 1993, 14, 193–213. [Google Scholar] [CrossRef]
- Kube, R.; Schaefer, T. Entwicklung der Stromkosten im Internationalen Vergleich: Auswirkungen der Deutschen Energiewende auf die Internationale Wettbewerbsfähigkeit. Gutachten im Auftrag der RWE Power AG, Köln. 2020. Available online: https://www.iwkoeln.de/fileadmin/user_upload/Studien/Gutachten/PDF/2020/IW-Gutachten_Stromkosten.pdf (accessed on 2 June 2025).
- Day, G.S.; Montgomery, D.B. Diagnosing the Experience Curve. J. Mark. 1983, 47, 44–58. [Google Scholar] [CrossRef]
- Hall, G.; Howell, S. The experience curve from the economist’s perspective. Strateg. Manag. J. 1985, 6, 197–212. [Google Scholar] [CrossRef]
- Automotive World Ltd. Europe Outperforms Global Market in 2019—Posting the Highest Registrations of the Last Twelve Years. Available online: https://www.automotiveworld.com/news-releases/europe-outperforms-global-market-in-2019-posting-the-highest-registrations-of-the-last-twelve-years/ (accessed on 25 June 2025).
- Eisenhardt, K.M.; Graebner, M.E. Theory Building from Cases: Opportunities and Challenges. AMJ 2007, 50, 25–32. [Google Scholar] [CrossRef]
- European Commission. EU Strategy for Sustainable and Circular Textiles: Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Available online: https://environment.ec.europa.eu/document/download/74126c90-5cbf-46d0-ab6b-60878644b395_en?filename=COM_2022_141_1_EN_ACT_part1_v8.pdf (accessed on 28 May 2025).
- European Commission. A European Strategy for Plastics in a Circular Economy: Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:2df5d1d2-fac7-11e7-b8f5-01aa75ed71a1.0001.02/DOC_1&format=PDF (accessed on 28 May 2025).
Reference | Contributions | Limitations |
---|---|---|
Ruiz de Arbulo et al. [56] |
|
|
Park and Simpson [57] |
|
|
Canciglieri and Young [58] |
|
|
Lou et al. [59] |
|
|
Alaoui et al. [60] |
|
|
Tekin and Gözlü [61] |
|
|
Reference | Contributions | Limitations |
---|---|---|
Klimaitienė and Kundzelevičius [66] |
|
|
Al-Eas and Al-Ghabban [67] |
|
|
Rendall et al. [65] |
|
|
Todingbua [68] |
|
|
Tsai et al. [69] |
|
|
Parameter | Value | ||
---|---|---|---|
Illuminated visible area | 5 cm × 20 cm | ||
Total number of units | 60,000 units | ||
Number of units for the order under consideration | 4000 units | ||
Annual production for the year under consideration | 8000 units | ||
Overhead factor for non-wage labour costs | 1.7 | ||
Spinning | Weaving | Injection moulding | |
Additional length due to coupling | – | 10 cm | 5 cm |
Number of employees | 50 | 100 | 100 |
Turnover | EUR 160 million | EUR 220 million | EUR 140 million |
Production lines | 4 | 50 | 30 |
Shift operation | 4 shifts | 3 shifts | 3 shifts |
Production days | 351 d/a | 256 d/a | 256 d/a |
Change | Consequence in Cost Accounting | Effect on Average Self-Costs for POF | |
---|---|---|---|
Production location Germany instead of Japan | Labour costs on average 1.7-times higher | 6.3357 EUR/km | +7.2% |
No customs costs | 5.7442 EUR/km | –2.9% | |
Shipping costs decrease from 0.8768 EUR/km to 0.0261 EUR/km | 4.8536 EUR/km | –17.9% | |
Melt-spinning with polymer pellets instead of continuous extrusion with in situ polymerisation | Increase in production speed to 70–150 m/min | 5.3184 EUR/km | –10.0% |
More competition and efficiency in PMMA production | PMMA price falls by 2% (conservative estimate) | 5.9073 EUR/km | −0.04% |
More competition in POF production | Reduction in profit margin to 10% | No effect on self-costs |
Large-Scale Production | Small-Scale Production | |
---|---|---|
Lighting modules per vehicle | 4 units/vehicle | 2 units/vehicle |
Equipment rate | 50% | 25% |
Total number of parts | 3,600,000 units | 60,000 units |
Part number for single order | 37,500 units/order | 4000 units/order |
Annual production | 450,000 units/a | 8000 units/a |
Number of cavities in the injection mould | 4 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kallweit, J.; Köntges, F.; Gries, T. Supply Chain Cost Analysis for Interior Lighting Systems Based on Polymer Optical Fibres Compared to Optical Injection Moulding. Textiles 2025, 5, 29. https://doi.org/10.3390/textiles5030029
Kallweit J, Köntges F, Gries T. Supply Chain Cost Analysis for Interior Lighting Systems Based on Polymer Optical Fibres Compared to Optical Injection Moulding. Textiles. 2025; 5(3):29. https://doi.org/10.3390/textiles5030029
Chicago/Turabian StyleKallweit, Jan, Fabian Köntges, and Thomas Gries. 2025. "Supply Chain Cost Analysis for Interior Lighting Systems Based on Polymer Optical Fibres Compared to Optical Injection Moulding" Textiles 5, no. 3: 29. https://doi.org/10.3390/textiles5030029
APA StyleKallweit, J., Köntges, F., & Gries, T. (2025). Supply Chain Cost Analysis for Interior Lighting Systems Based on Polymer Optical Fibres Compared to Optical Injection Moulding. Textiles, 5(3), 29. https://doi.org/10.3390/textiles5030029