Green Synthesis of Heterogeneous Visible-Light-Active Photocatalysts: Recent Advances
Abstract
:1. Introduction
2. A Green Synthetic Approach
2.1. Silver-Based Photocatalsyts
2.2. Iron-Based Photocatalsyts
2.3. Zinc-Based Photocatalsyts
2.4. Titanium Dioxide-Based Photocatalsyts
2.5. Miscellaneous
3. A Focus on Materials: Waste and Bioderived Materials
3.1. Biomass and Waste as Sources of Carbon
3.2. Biomass and Waste as Sources of (Carbon) and Chemicals
4. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Skjaerseth, J.B. Towards a European Green Deal: The evolution of EU climate and energy policy mixes. Int. Environ. Agreem. Politics Law Econ. 2021, 21, 25–41. [Google Scholar] [CrossRef]
- Ohnesorge, L.; Rogge, E. Europe’s Green Policy: Towards a Climate Neutral Economy by Way of Investors’ Choice. Eur. Co. Law 2021, 18, 34–39. [Google Scholar]
- Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278. [Google Scholar] [CrossRef] [PubMed]
- Chiarello, G.L.; Zuliani, A.; Ceresoli, D.; Martinazzo, R.; Selli, E. Exploiting the Photonic Crystal Properties of TiO2 Nanotube Arrays To Enhance Photocatalytic Hydrogen Production. Acs Catal. 2016, 6, 1345–1353. [Google Scholar] [CrossRef]
- Dozzi, M.V.; Chiarello, G.L.; Pedroni, M.; Livraghi, S.; Giamello, E.; Selli, E. High photocatalytic hydrogen production on Cu(II) pre-grafted Pt/TiO2. Appl. Catal. B Environ. 2017, 209, 417–428. [Google Scholar] [CrossRef]
- Dutta, S.; Biswas, S.; Maji, R.C.; Saha, R. Environmentally Sustainable Fabrication of Cu1.94S-rGO Composite for Dual Environmental Application: Visible-Light-Active Photocatalyst and Room-Temperature Phenol Sensor. ACS Sustain. Chem. Eng. 2018, 6, 835–845. [Google Scholar] [CrossRef]
- Lu, N.; Zhang, Z.; Wang, Y.; Liu, B.; Guo, L.; Wang, L.; Huang, J.; Liu, K.; Dong, B. Direct evidence of IR-driven hot electron transfer in metal-free plasmonic W18O49/Carbon heterostructures for enhanced catalytic H2 production. Appl. Catal. B Environ. 2018, 233, 19–25. [Google Scholar] [CrossRef]
- Lucena, R.; Conesa, J.C. V-Substituted ZnIn2S4: A (Visible+NIR) Light-Active Photocatalyst. Photochem 2021, 1, 1–9. [Google Scholar] [CrossRef]
- Gratzel, M. Recent Advances in Sensitized Mesoscopic Solar Cells. Acc. Chem. Res. 2009, 42, 1788–1798. [Google Scholar] [CrossRef]
- Zuliani, A.; Ivars, F.; Luque, R. Advances in Nanocatalyst Design for Biofuel Production. Chemcatchem 2018, 10, 1968–1981. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.C.; Caldeira, K. Time scales and ratios of climate forcing due to thermal versus carbon dioxide emissions from fossil fuels. Geophys. Res. Lett. 2015, 42, 4548–4555. [Google Scholar] [CrossRef]
- Fargione, J.; Hill, J.; Tilman, D.; Polasky, S.; Hawthorne, P. Land clearing and the biofuel carbon debt. Science 2008, 319, 1235–1238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Held, I.M.; Soden, B.J. Robust responses of the hydrological cycle to global warming. J. Clim. 2006, 19, 5686–5699. [Google Scholar] [CrossRef]
- Harley, C.D.G.; Hughes, A.R.; Hultgren, K.M.; Miner, B.G.; Sorte, C.J.B.; Thornber, C.S.; Rodriguez, L.F.; Tomanek, L.; Williams, S.L. The impacts of climate change in coastal marine systems. Ecol. Lett. 2006, 9, 228–241. [Google Scholar] [CrossRef] [Green Version]
- Al-Ghussain, L. Global warming: Review on driving forces and mitigation. Environ. Prog. Sustain. Energy 2019, 38, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Okkerse, C.; van Bekkum, H. From fossil to green. Green Chem. 1999, 1, 107–114. [Google Scholar] [CrossRef]
- Gao, M.M.; Zhu, L.L.; Peh, C.K.; Ho, G.W. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ. Sci. 2019, 12, 841–864. [Google Scholar] [CrossRef]
- Zhu, L.; Cheung, C.S.; Zhang, W.G.; Huang, Z. Effect of charge dilution on gaseous and particulate emissions from a diesel engine fueled with biodiesel and biodiesel blended with methanol and ethanol. Appl. Therm. Eng. 2011, 31, 2271–2278. [Google Scholar] [CrossRef]
- Shukla, P.C.; Gupta, T.; Labhsetwar, N.K.; Agarwal, A.K. Trace metals and ions in particulates emitted by biodiesel fuelled engine. Fuel 2017, 188, 603–609. [Google Scholar] [CrossRef]
- Balzani, V.; Credi, A.; Venturi, M. Photochemical conversion of solar energy. Chemsuschem 2008, 1, 26–58. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, G.; Naushad, M.; Al-Muhtaseb, A.H.; Garcia-Penas, A.; Mola, G.T.; Si, C.L.; Stadler, F.J. Bio-inspired and biomaterials-based hybrid photocatalysts for environmental detoxification: A review. Chem. Eng. J. 2020, 382. [Google Scholar] [CrossRef]
- Nagajyothi, P.C.; Vattikuti, S.V.P.; Devarayapalli, K.C.; Yoo, K.; Shim, J.; Sreekanth, T.V.M. Green synthesis: Photocatalytic degradation of textile dyes using metal and metal oxide nanoparticles-latest trends and advancements. Crit. Rev. Environ. Sci. Technol. 2020, 50, 2617–2723. [Google Scholar] [CrossRef]
- Shi, Z.J.; Ma, M.G.; Zhu, J.F. Recent Development of Photocatalysts Containing Carbon Species: A Review. Catalysts 2019, 9, 20. [Google Scholar] [CrossRef] [Green Version]
- Albero, J.; Mateo, D.; Garcia, H. Graphene-Based Materials as Efficient Photocatalysts for Water Splitting. Molecules 2019, 24, 906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, A.; Nair, V.; Colmenares, J.C.; Glaser, R. Lignin-Based Composite Materials for Photocatalysis and Photovoltaics. Top. Curr. Chem. 2018, 376, 1–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anastas, P.T.; Bartlett, L.B.; Kirchhoff, M.M.; Williamson, T.C. The role of catalysis in the design, development, and implementation of green chemistry. Catal. Today 2000, 55, 11–22. [Google Scholar] [CrossRef]
- Anastas, P.; Eghbali, N. Green Chemistry: Principles and Practice. Chem. Soc. Rev. 2010, 39, 301–312. [Google Scholar] [CrossRef]
- Zuliani, A.; Cano, M.; Calsolaro, F.; Puente Santiago, A.R.; Giner-Casares, J.J.; Rodríguez-Castellón, E.; Berlier, G.; Cravotto, G.; Martina, K.; Luque, R. Improving the electrocatalytic performance of sustainable Co/carbon materials for the oxygen evolution reaction by ultrasound and microwave assisted synthesis. Sustain. Energy Fuels 2021, 5, 720–731. [Google Scholar] [CrossRef]
- Jia, X.M.; Han, Q.F.; Zheng, M.Y.; Bi, H.P. One pot milling route to fabricate step-scheme AgI/I-BiOAc photocatalyst: Energy band structure optimized by the formation of solid solution. Appl. Surf. Sci. 2019, 489, 409–419. [Google Scholar] [CrossRef]
- Hariharan, D.; Thangamuniyandi, P.; Christy, A.J.; Vasantharaja, R.; Selvakumar, P.; Sagadevan, S.; Pugazhendhi, A.; Nehru, L.C. Enhanced photocatalysis and anticancer activity of green hydrothermal synthesized Ag@TiO2 nanoparticles. J. Photochem. Photobiol. B Biol. 2020, 202, 111636. [Google Scholar] [CrossRef] [PubMed]
- Aravind, M.; Ahmad, A.; Ahmad, I.; Amalanathan, M.; Naseem, K.; Mary, S.M.M.; Parvathiraja, C.; Hussain, S.; Algarni, T.S.; Pervaiz, M.; et al. Critical green routing synthesis of silver NPs using jasmine flower extract for biological activities and photocatalytical degradation of methylene blue. J. Environ. Chem. Eng. 2021, 9, 104877. [Google Scholar] [CrossRef]
- Panchal, P.; Meena, P.; Nehra, S.P. A rapid green synthesis of Ag/AgCl-NC photocatalyst for environmental applications. Environ. Sci. Pollut. Res. 2021, 28, 3972–3982. [Google Scholar] [CrossRef]
- Mani, M.; Chang, J.H.; Gandhi, A.D.; Vizhi, D.K.; Pavithra, S.; Mohanraj, K.; Mohanbabu, B.; Babu, B.; Balachandran, S.; Kumaresan, S. Environmental and biomedical applications of AgNPs synthesized using the aqueous extract of Solanum surattense leaf. Inorg. Chem. Commun. 2020, 121, 108228. [Google Scholar] [CrossRef]
- El-Shabasy, R.; Yosri, N.; El-Seedi, H.; Shoueir, K.; El-Kemary, M. A green synthetic approach using chili plant supported Ag/Ag2O@P25 heterostructure with enhanced photocatalytic properties under solar irradiation. Optik 2019, 192, 162943. [Google Scholar] [CrossRef]
- Parthibavarman, M.; Bhuvaneshwari, S.; Jayashree, M.; BoopathiRaja, R. Green Synthesis of Silver (Ag) Nanoparticles Using Extract of Apple and Grape and with Enhanced Visible Light Photocatalytic Activity. Bionanoscience 2019, 9, 423–432. [Google Scholar] [CrossRef]
- Ayodhya, D.; Veerabhadram, G. Green synthesis of garlic extract stabilized Ag@CeO2 composites for photocatalytic and sonocatalytic degradation of mixed dyes and antimicrobial studies. J. Mol. Struct. 2020, 1205, 127611. [Google Scholar] [CrossRef]
- Vinay, S.P.; Udayabhanu; Nagarju, G.; Chandrappa, C.P.; Chandrasekhar, N. Enhanced photocatalysis, photoluminescence, and anti-bacterial activities of nanosize Ag: Green synthesized via Rauvolfia tetraphylla (devil pepper). Sn Appl. Sci. 2019, 1, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimzadeh, M.A.; Mortazavi-Derazkola, S.; Zazouli, M.A. Eco-friendly green synthesis and characterization of novel Fe3O4/SiO2/Cu2O-Ag nanocomposites using Crataegus pentagyna fruit extract for photocatalytic degradation of organic contaminants. J. Mater. Sci. Mater. Electron. 2019, 30, 10994–11004. [Google Scholar] [CrossRef]
- Parvathiraja, C.; Shailajha, S. Bioproduction of CuO and Ag/CuO heterogeneous photocatalysis-photocatalytic dye degradation and biological activities. Appl. Nanosci. 2021, 11, 1411–1425. [Google Scholar] [CrossRef]
- Ju, P.; Wang, Y.; Sun, Y.; Zhang, D. In-situ green topotactic synthesis of a novel Z-scheme Ag@AgVO3/BiVO4 heterostructure with highly enhanced visible-light photocatalytic activity. J. Colloid Interface Sci. 2020, 579, 431–447. [Google Scholar] [CrossRef]
- Shen, Z.; Liu, B.; Pareek, V.; Wang, S.; Li, X.; Liu, L.; Liu, S. Sustainable synthesis of highly efficient sunlight-driven Ag embedded AgCl photocatalysts. Rsc Adv. 2015, 5, 80488–80495. [Google Scholar] [CrossRef]
- Ramar, K.; Ahamed, A.J.; Muralidharan, K. Robust green synthetic approach for the production of iron oxide nanorods and its potential environmental and cytotoxicity applications. Adv. Powder Technol. 2019, 30, 2636–2648. [Google Scholar] [CrossRef]
- Kamaraj, M.; Kidane, T.; Muluken, K.U.; Aravind, J. Biofabrication of iron oxide nanoparticles as a potential photocatalyst for dye degradation with antimicrobial activity. Int. J. Environ. Sci. Technol. 2019, 16, 8305–8314. [Google Scholar] [CrossRef]
- Kaur, N.; Singh, J.; Kumar, S.; Singh, P.; Al-Rashed, S.; Kaur, H.; Rawat, M. An efficient and viable photodegradation of a textile Reactive yellow-86 dye under direct sunlight by multi-structured Fe2O3 encapsulated with phytochemicals of R. Indica. J. Mater. Sci. Mater. Electron. 2020, 31, 21233–21247. [Google Scholar] [CrossRef]
- Madivoli, E.S.; Kareru, P.G.; Maina, E.G.; Nyabola, A.O.; Wanakai, S.I.; Nyang’au, J.O. Biosynthesis of iron nanoparticles using Ageratum conyzoides extracts, their antimicrobial and photocatalytic activity. Sn Appl. Sci. 2019, 1, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Alshehri, A.; Malik, M.A.; Khan, Z.; Al-Thabaiti, S.A.; Hasan, N. Biofabrication of Fe nanoparticles in aqueous extract of Hibiscus sabdariffa with enhanced photocatalytic activities. RSC Adv. 2017, 7, 25149–25159. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.R.A.; Ravikumar, C.R.; Nagaswarupa, H.P.; Purshotam, B.; Gonfa, B.; Murthy, H.C.A.; Sabir, F.K.; Tadesse, S. Evaluation of bi-functional applications of ZnO nanoparticles prepared by green and chemical methods. J. Environ. Chem. Eng. 2019, 7. [Google Scholar] [CrossRef]
- Kaliraj, L.; Ahn, J.C.; Rupa, E.J.; Abid, S.; Lu, J.; Yang, D.C. Synthesis of panos extract mediated ZnO nano-flowers as photocatalyst for industrial dye degradation by UV illumination. J. Photochem. Photobiol. B Biol. 2019, 199, 111588. [Google Scholar] [CrossRef]
- Lau, G.E.; Abdullah, C.A.C.; Ahmad, W.; Assaw, S.; Zheng, A.L.T. Eco-Friendly Photocatalysts for Degradation of Dyes. Catalysts 2020, 10, 1129. [Google Scholar] [CrossRef]
- Kahsay, M.H. Synthesis and characterization of ZnO nanoparticles using aqueous extract of Becium grandiflorum for antimicrobial activity and adsorption of methylene blue. Appl. Water Sci. 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Rupa, E.J.; Kaliraj, L.; Abid, S.; Yang, D.C.; Jung, S.K. Synthesis of a Zinc Oxide Nanoflower Photocatalyst from Sea Buckthorn Fruit for Degradation of Industrial Dyes in Wastewater Treatment. Nanomaterials 2019, 9, 1692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, K.H.; Markus, J.; Soshnikova, V.; Oh, K.H.; Anandapadmanaban, G.; Perez, Z.E.J.; Mathiyalagan, R.; Kim, Y.J.; Yang, D.C. Facile and green synthesis of zinc oxide particles by Stevia Rebaudiana and its in vitro photocatalytic activity. Inorg. Nano-Met. Chem. 2019, 49, 1–6. [Google Scholar] [CrossRef]
- Tavakoli, F.; Badiei, A. Facile Synthesis of Zn-TiO2 Nanostructure, Using Green Tea as an Eco-Friendly Reducing Agent for Photodegradation of Organic Pollutants in Water. Pollution 2018, 4, 687–696. [Google Scholar] [CrossRef]
- Aragaw, S.G.; Sabir, F.K.; Andoshe, D.M.; Zelekew, O.A. Green synthesis of p-Co3O4/n-ZnO composite catalyst withEichhornia Crassipesplant extract mediated for methylene blue degradation under visible light irradiation. Mater. Res. Express 2020, 7, 095508. [Google Scholar] [CrossRef]
- Fouda, A.; Salem, S.S.; Wassel, A.R.; Hamza, M.F.; Shaheen, T.I. Optimization of green biosynthesized visible light active CuO/ZnO nano-photocatalysts for the degradation of organic methylene blue dye. Heliyon 2020, 6, e04896. [Google Scholar] [CrossRef]
- Alharthi, F.A.; Alghamdi, A.A.; Al-Zaqri, N.; Alanazi, H.S.; Alsyahi, A.A.; El Marghany, A.; Ahmad, N. Facile one-pot green synthesis of Ag-ZnO Nanocomposites using potato peeland their Ag concentration dependent photocatalytic properties. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef]
- Khan, M.S.; Dhavan, P.P.; Jadhav, B.L.; Shimpi, N.G. Ultrasound-Assisted Green Synthesis of Ag-Decorated ZnO Nanoparticles UsingExcoecaria agallochaLeaf Extract and Evaluation of Their Photocatalytic and Biological Activity. Chemistryselect 2020, 5, 12660–12671. [Google Scholar] [CrossRef]
- Yulizar, Y.; Eprasatya, A.; Apriandanu, D.O.B.; Yunarti, R.T. Facile synthesis of ZnO/GdCoO3 nanocomposites, characterization and their photocatalytic activity under visible light illumination. Vacuum 2021, 183, 109821. [Google Scholar] [CrossRef]
- Ahmad, M.; Rehman, W.; Khan, M.M.; Qureshi, M.T.; Gul, A.; Haq, S.; Ullah, R.; Rab, A.; Menaa, F. Phytogenic fabrication of ZnO and gold decorated ZnO nanoparticles for photocatalytic degradation of Rhodamine B. J. Environ. Chem. Eng. 2021, 9, 104725. [Google Scholar] [CrossRef]
- Zelekew, O.A.; Aragaw, S.G.; Sabir, F.K.; Andoshe, D.M.; Duma, A.D.; Kuo, D.H.; Chen, X.Y.; Desissa, T.D.; Tesfamariam, B.B.; Feyisa, G.B.; et al. Green synthesis of Co-doped ZnO via the accumulation of cobalt ion onto Eichhornia crassipes plant tissue and the photocatalytic degradation efficiency under visible light. Mater. Res. Express 2021, 8, 025010. [Google Scholar] [CrossRef]
- Konstantinou, I.K.; Albanis, T.A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations—A review. Appl. Catal. B Environ. 2004, 49, 1–14. [Google Scholar] [CrossRef]
- Mahshid, S.; Askari, M.; Ghamsari, M.S. Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution. J. Mater. Process. Technol. 2007, 189, 296–300. [Google Scholar] [CrossRef]
- Fujishima, A.; Zhang, X.T.; Tryk, D.A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 2008, 63, 515–582. [Google Scholar] [CrossRef]
- Wen, Z.H.; Ci, S.Q.; Mao, S.; Cui, S.M.; Lu, G.H.; Yu, K.H.; Luo, S.L.; He, Z.; Chen, J.H. TiO2 nanoparticles-decorated carbon nanotubes for significantly improved bioelectricity generation in microbial fuel cells. J. Power Sources 2013, 234, 100–106. [Google Scholar] [CrossRef]
- Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.L.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chem. Rev. 2014, 114, 9919–9986. [Google Scholar] [CrossRef]
- Chiarello, G.L.; Dozzi, M.V.; Selli, E. TiO2-based materials for photocatalytic hydrogen production. J. Energy Chem. 2017, 26, 250–258. [Google Scholar] [CrossRef]
- Binaeian, E.; Seghatoleslami, N.; Chaichi, M.J.; Tayebi, H.A. Preparation of titanium dioxide nanoparticles supported on hexagonal mesoporous silicate (HMS) modified by oak gall tannin and its photocatalytic performance in degradation of azo dye. Adv. Powder Technol. 2016, 27, 1047–1055. [Google Scholar] [CrossRef]
- Nabi, G.; Raza, W.; Tahir, M.B. Green Synthesis of TiO2 Nanoparticle Using Cinnamon Powder Extract and the Study of Optical Properties. J. Inorg. Organomet. Polym. Mater. 2020, 30, 1425–1429. [Google Scholar] [CrossRef]
- Ahmad, W.; Jaiswal, K.K.; Soni, S. Green synthesis of titanium dioxide (TiO2) nanoparticles by using Mentha arvensis leaves extract and its antimicrobial properties. Inorg. Nano Met. Chem. 2020, 50, 1032–1038. [Google Scholar] [CrossRef]
- Sonker, R.K.; Hitkari, G.; Sabhajeet, S.R.; Sikarwar, S.; Rahul; Singh, S. Green synthesis of TiO2 nanosheet by chemical method for the removal of Rhodamin B from industrial waste. Mater. Sci. Eng. B Adv. Funct. Solid-State Mater. 2020, 258, 114577. [Google Scholar] [CrossRef]
- Aslam, M.; Abdullah, A.Z.; Rafatullah, M. Recent development in the green synthesis of titanium dioxide nanoparticles using plant-based biomolecules for environmental and antimicrobial applications. J. Ind. Eng. Chem. 2021, 98, 1–16. [Google Scholar] [CrossRef]
- Goncalves, R.A.; Toledo, R.P.; Joshi, N.; Berengue, O.M. Green Synthesis and Applications of ZnO and TiO2 Nanostructures. Molecules 2021, 26, 2236. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.Y.; Ling, Q.; Liu, Y.F.; Wang, H.; Zhu, Y.F. Photocatalytic H-2 evolution on MoS2-TiO2 catalysts synthesized via mechanochemistry. Phys. Chem. Chem. Phys. 2015, 17, 933–940. [Google Scholar] [CrossRef]
- Sun, S.J.; Ding, H.; Luo, Q.; Chen, S.J. The preparation of silica-TiO2 composite by mechanochemistry method and its properties as a pigment. Mater. Res. Innov. 2015, 19, S269–S272. [Google Scholar] [CrossRef]
- Wang, Y.F.; Saitow, K. Mechanochemical Synthesis of Red-Light-Active Green TiO2 Photocatalysts with Disorder: Defect-Rich, with Polymorphs, and No Metal Loading. Chem. Mater. 2020, 32, 9190–9200. [Google Scholar] [CrossRef]
- Antony, D.; Yadav, R. Facile fabrication of green nano pure CeO2 and Mn-decorated CeO2 with Cassia angustifoliaseed extract in water refinement by optimal photodegradation kinetics of malachite green. Environ. Sci. Pollut. Res. 2021, 28, 18589–18603. [Google Scholar] [CrossRef]
- Rabiee, N.; Bagherzadeh, M.; Kiani, M.; Ghadiri, A.M.; Etessamifar, F.; Jaberizadeh, A.H.; Shakeri, A. Biosynthesis of Copper Oxide Nanoparticles with Potential Biomedical Applications. Int. J. Nanomed. 2020, 15, 3983–3999. [Google Scholar] [CrossRef] [PubMed]
- Alhebshi, N.; Huang, H.; Ghandour, R.; Alghamdi, N.K.; Alharbi, O.; Aljurban, S.; He, J.H.; Al-Jawhari, H. Green synthesized CuxO@Cu nanocomposites on a Cu mesh with dual catalytic functions for dye degradation and hydrogen evaluation. J. Alloy. Compd. 2020, 848, 156284. [Google Scholar] [CrossRef]
- Navada, K.M.; Nagaraja, G.K.; D’Souza, J.N.; Kouser, S.; Ranjitha, R.; Manasa, D.J. Phyto assisted synthesis and characterization of Scoparia dulsisL.leaf extract mediated porous nano CuO photocatalysts and its anticancer behavior. Appl. Nanosci. 2020, 10, 4221–4240. [Google Scholar] [CrossRef]
- Fatimah, I.; Sahroni, I.; Muraza, O.; Doong, R.A. One-pot biosynthesis of SnO2 quantum dots mediated by Clitoria ternatea flower extract for photocatalytic degradation of rhodamine B. J. Environ. Chem. Eng. 2020, 8, 103879. [Google Scholar] [CrossRef]
- Mohamed, H.E.A.; Sone, B.T.; Khamlich, S.; Coetsee-Hugo, E.; Swart, H.C.; Thema, T.; Sbiaa, R.; Dhlamini, M.S. Biosynthesis of BiVO4 nanorods using Callistemon viminalis extracts: Photocatalytic degradation of methylene blue. Mater. Today Proc. 2021, 36, 328–335. [Google Scholar] [CrossRef]
- Munoz-Batista, M.J.; Kubacka, A.; Fernandez-Garcia, M. Effect of g-C3N4 loading on TiO2-based photocatalysts: UV and visible degradation of toluene. Catal. Sci. Technol. 2014, 4, 2006–2015. [Google Scholar] [CrossRef]
- Shi, M.J.; Wei, W.; Jiang, Z.F.; Han, H.K.; Gao, J.R.; Xie, J.M. Biomass-derived multifunctional TiO2/carbonaceous aerogel composite as a highly efficient photocatalyst. RSC Adv. 2016, 6, 25255–25266. [Google Scholar] [CrossRef]
- Wei, W.; Hu, H.H.; Huang, Z.Y.; Jiang, Z.F.; Lv, X.M.; Xie, J.M.; Kong, L.R. BiPO4 nanorods anchored in biomass-based carbonaceous aerogel skeleton: A 2D–3D heterojunction composite as an energy-efficient photocatalyst. J. Supercrit. Fluids 2019, 147, 33–41. [Google Scholar] [CrossRef]
- Djellabi, R.; Zhao, X.; Bianchi, C.L.; Su, P.D.; Ali, J.; Yang, B. Visible light responsive photoactive polymer supported on carbonaceous biomass for photocatalytic water remediation. J. Clean. Prod. 2020, 269, 122286. [Google Scholar] [CrossRef]
- Yu, X.N.; Liu, Z.X.; Wang, Y.M.; Luo, H.Y.; Tang, X. Fabrication of corncob-derived biomass charcoal decorated g-C3N4 photocatalysts for removing 2-mercaptobenzothiazole. New J. Chem. 2020, 44, 15908–15918. [Google Scholar] [CrossRef]
- Zhu, Z.; Ma, C.C.; Yu, K.S.; Lu, Z.Y.; Liu, Z.; Huo, P.W.; Tang, X.; Yan, Y.S. Synthesis Ce-doped biomass carbon-based g-C3N4 via plant growing guide and temperature-programmed technique for degrading 2-Mercaptobenzothiazole. Appl. Catal. B Environ. 2020, 268, 118432. [Google Scholar] [CrossRef]
- Liang, W.; Pan, J.H.; Duan, X.J.; Tang, H.; Xu, J.; Tang, G.G. Biomass carbon modified flower-like Bi2WO6 hierarchical architecture with improved photocatalytic performance. Ceram. Int. 2020, 46, 3623–3630. [Google Scholar] [CrossRef]
- Wang, T.; Liu, X.Q.; Han, D.L.; Ma, C.C.; Wei, M.B.; Huo, P.W.; Yan, Y.S. Biomass derived the V-doped carbon/Bi2O3 composite for efficient photocatalysts. Environ. Res. 2020, 182, 108998. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Lin, X.M.; Xie, J.; Zhang, Y.Z.; Wang, Q.; Ying, Z.R. Facile synthesis of novel ternary g-C3N4/ferrite/biochar hybrid photocatalyst for efficient degradation of methylene blue under visible-light irradiation. Colloids Surf. A Physicochem. Eng. Asp. 2020, 606, 125556. [Google Scholar] [CrossRef]
- Mondol, B.; Sarker, A.; Shareque, A.M.; Dey, S.C.; Islam, M.T.; Das, A.K.; Shamsuddin, S.M.; Molla, M.A.; Sarker, M. Preparation of Activated Carbon/TiO2 Nanohybrids for Photodegradation of Reactive Red-35 Dye Using Sunlight. Photochem 2021, 1, 54–66. [Google Scholar] [CrossRef]
- Islam, S.E.; Hang, D.R.; Chen, C.H.; Chou, M.M.C.; Liang, C.T.; Sharma, K.H. Rational design of hetero-dimensional C-ZnO/MoS2 nanocomposite anchored on 3D mesoporous carbon framework towards synergistically enhanced stability and efficient visible-light-driven photocatalytic activity. Chemosphere 2021, 266, 129148. [Google Scholar] [CrossRef]
- dos Santos, G.S.; Goes, C.M.; de Sousa, J.G.M.; de Moraes, N.P.; Chaguri, L.; Rodrigues, L.A. Evaluation of ZnO/Carbon Xerogel Composite as a Photocatalyst for Solar and Visible Light Degradation of the Rhodamine B Dye. J. Nanosci. Nanotechnol. 2021, 21, 2292–2301. [Google Scholar] [CrossRef]
- Zhao, C.; Ran, F.L.; Dai, L.; Li, C.Y.; Zheng, C.Y.; Si, C.L. Cellulose-assisted construction of high surface area Z-scheme C-doped g-C3N4/WO3 for improved tetracycline degradation. Carbohydr. Polym. 2021, 255, 117343. [Google Scholar] [CrossRef]
- Duan, L.Y.; Li, G.Q.; Zhang, S.T.; Wang, H.Y.; Zhao, Y.L.; Zhang, Y.F. Preparation of S-doped g-C3N4 with C vacancies using the desulfurized waste liquid extracting salt and its application for NOx removal. Chem. Eng. J. 2021, 411, 128551. [Google Scholar] [CrossRef]
- Donar, Y.O.; Bilge, S.; Sinag, A. Utilisation of lignin as a model biomass component for preparing a highly active photocatalyst under UV and visible light. Mater. Sci. Semicond. Process. 2020, 118, 105151. [Google Scholar] [CrossRef]
- Geng, A.B.; Xu, L.J.; Gan, L.; Mei, C.T.; Wang, L.J.; Fang, X.Y.; Li, M.R.; Pan, M.Z.; Han, S.G.; Cui, J.Q. Using wood flour waste to produce biochar as the support to enhance the visible-light photocatalytic performance of BiOBr for organic and inorganic contaminants removal. Chemosphere 2020, 250, 126291. [Google Scholar] [CrossRef]
- Mushtaq, F.; Zahid, M.; Mansha, A.; Bhatti, I.A.; Mustafa, G.; Nasir, S.; Yaseen, M. MnFe2O4/coal fly ash nanocomposite: A novel sunlight-active magnetic photocatalyst for dye degradation. Int. J. Environ. Sci. Technol. 2020, 17, 4233–4248. [Google Scholar] [CrossRef]
- Shen, X.L.; Zhu, Z.L.; Zhang, H.; Di, G.L.; Chen, T.; Qiu, Y.L.; Yin, D.Q. Carbonaceous composite materials from calcination of azo dye-adsorbed layered double hydroxide with enhanced photocatalytic efficiency for removal of Ibuprofen in water. Environ. Sci. Eur. 2020, 32, 1–15. [Google Scholar] [CrossRef]
- Kumar, A.; Choudhary, P.; Kumar, K.; Krishnan, V. Plasmon induced hot electron generation in two dimensional carbonaceous nanosheets decorated with Au nanostars: Enhanced photocatalytic activity under visible light. Mater. Chem. Front. 2021, 5, 1448–1467. [Google Scholar] [CrossRef]
- Daulbayev, C.; Sultanov, F.; Korobeinyk, A.V.; Yeleuov, M.; Azat, S.; Bakbolat, B.; Umirzakov, A.; Mansurov, Z. Bio-waste-derived few-layered graphene/SrTiO3/PAN as efficient photocatalytic system for water splitting. Appl. Surf. Sci. 2021, 549, 149176. [Google Scholar] [CrossRef]
- Leary, R.; Westwood, A. Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon 2011, 49, 741–772. [Google Scholar] [CrossRef]
- Ong, W.J.; Tan, L.L.; Ng, Y.H.; Yong, S.T.; Chai, S.P. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability? Chem. Rev. 2016, 116, 7159–7329. [Google Scholar] [CrossRef] [PubMed]
- Nalid, N.R.; Majid, A.; Tahir, M.B.; Niaz, N.A.; Khalid, S. Carbonaceous-TiO2 nanomaterials for photocatalytic degradation of pollutants: A review. Ceram. Int. 2017, 43, 14552–14571. [Google Scholar] [CrossRef]
- Ge, J.; Zhang, Y.; Park, S.J. Recent Advances in Carbonaceous Photocatalysts with Enhanced Photocatalytic Performances: A Mini Review. Materials 2019, 12, 1916. [Google Scholar] [CrossRef] [Green Version]
- Zuliani, A.; Munoz-Batista, M.J.; Luque, R. Microwave-assisted valorization of pig bristles: Towards visible light photocatalytic chalcocite composites. Green Chem. 2018, 20, 3001–3007. [Google Scholar] [CrossRef] [Green Version]
- Cova, C.M.; Zuliani, A.; Santiago, A.R.P.; Caballero, A.; Munoz-Batista, M.J.; Luque, R. Microwave-assisted preparation of Ag/Ag2S carbon hybrid structures from pig bristles as efficient HER catalysts. J. Mater. Chem. A 2018, 6, 21516–21523. [Google Scholar] [CrossRef]
- Cova, C.M.; Zuliani, A.; Munoz-Batista, M.J.; Luque, R. A Sustainable Approach for the Synthesis of Catalytically Active Peroxidase-Mimic ZnS Catalysts. ACS Sustain. Chem. Eng. 2019, 7, 1300–1307. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.L.; Chang, C.J. Recent Progress on Metal Sulfide Composite Nanomaterials for Photocatalytic Hydrogen Production. Catalysts 2019, 9, 457. [Google Scholar] [CrossRef] [Green Version]
- Nawaukkaratharnant, N.; Sujaridworakun, P.; Mongkolkachit, C.; Wasanapiarnpong, T. Possible use of waste from marcasite jewelry industry as iron pyrite source incorporated with titanium dioxide for photodegradation of lignin under a halogen tungsten lamp. Mater. Lett. 2020, 271, 127778. [Google Scholar] [CrossRef]
- Mosaddegh, E. Ultrasonic-assisted preparation of nano eggshell powder: A novel catalyst in green and high efficient synthesis of 2-aminochromenes. Ultrason. Sonochemistry 2013, 20, 1436–1441. [Google Scholar] [CrossRef]
- Rahman, M.M.; Netravali, A.N.; Tiimob, B.J.; Rangari, V.K. Bioderived “Green” Composite from Soy Protein and Eggshell Nanopowder. ACS Sustain. Chem. Eng. 2014, 2, 2329–2337. [Google Scholar] [CrossRef]
- Ferro, A.C.; Guedes, M. Mechanochemical synthesis of hydroxyapatite using cuttlefish bone and chicken eggshell as calcium precursors. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 97, 124–140. [Google Scholar] [CrossRef]
- Zhang, X.Y.; He, X.S.; Kang, Z.W.; Cui, M.L.; Yang, D.P.; Luque, R. Waste Eggshell-Derived Dual-Functional CuO/ZnO/Eggshell Nanocomposites: (Photo)catalytic Reduction and Bacterial Inactivation. Acs Sustain. Chem. Eng. 2019, 7, 15762–15771. [Google Scholar] [CrossRef]
- Li, Z.H.; Yang, D.P.; Chen, Y.S.; Du, Z.Y.; Guo, Y.L.; Huang, J.L.; Li, Q.B. Waste eggshells to valuable Co3O4/CaCO3 materials as efficient catalysts for VOCs oxidation. Mol. Catal. 2020, 483, 110766. [Google Scholar] [CrossRef]
- Luo, W.Q.; Ji, Y.P.; Qu, L.; Dang, Z.; Xie, Y.Y.; Yang, C.F.; Tao, X.Q.; Zhou, J.M.; Lu, G.N. Effects of eggshell addition on calcium-deficient acid soils contaminated with heavy metals. Front. Environ. Sci. Eng. 2018, 12, 4. [Google Scholar] [CrossRef]
- Sree, G.V.; Nagaraaj, P.; Kalanidhi, K.; Aswathy, C.A.; Rajasekaran, P. Calcium oxide a sustainable photocatalyst derived from eggshell for efficient photo-degradation of organic pollutants. J. Clean. Prod. 2020, 270, 122294. [Google Scholar] [CrossRef]
- Gil, A.; Korili, S.A. Management and valorization of aluminum saline slags: Current status and future trends. Chem. Eng. J. 2016, 289, 74–84. [Google Scholar] [CrossRef]
- Santamaria, L.; Vicente, M.A.; Korili, S.A.; Gil, A. Saline slag waste as an aluminum source for the synthesis of Zn-Al-Fe-Ti layered double-hydroxides as catalysts for the photodegradation of emerging contaminants. J. Alloys Compd. 2020, 843, 156007. [Google Scholar] [CrossRef]
- Alberti, S.; Caratto, V.; Peddis, D.; Belviso, C.; Ferretti, M. Synthesis and characterization of a new photocatalyst based on TiO2 nanoparticles supported on a magnetic zeolite obtained from iron and steel industrial waste. J. Alloys Compd. 2019, 797, 820–825. [Google Scholar] [CrossRef]
- Huang, K.; Guo, J.; Xu, Z.M. Recycling of waste printed circuit boards: A review of current technologies and treatment status in China. J. Hazard. Mater. 2009, 164, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.; Xia, B.; Li, H.H.; Ma, Y.; Qian, G.R. Visible-Light-Driven Photoreduction of Cr(VI) by Waste-Based Cu2O Photocatalyst from Waste Printed Circuit Boards. Environ. Eng. Sci. 2021, 38, 565–574. [Google Scholar] [CrossRef]
- Niu, B.; Chen, Z.Y.; Xu, Z.M. Recycling waste tantalum capacitors to synthesize high value-added Ta2O5 and polyaniline-decorated Ta2O5 photocatalyst by an integrated chlorination-sintering-chemisorption process. J. Clean. Prod. 2020, 252, 117206. [Google Scholar] [CrossRef]
- Cao, Y.L.; Niu, B.; Sun, H.H.; Xu, Z.M. Synthesizing a high value-added composite photocatalyst using waste capacitors combined with PANI by a mechanical chemistry method. Sustain. Energy Fuels 2021, 5, 2916–2926. [Google Scholar] [CrossRef]
- Montoya-Bautista, C.V.; Acevedo-Pena, P.; Zanella, R.; Ramirez-Zamora, R.M. Characterization and Evaluation of Copper Slag as a Bifunctional Photocatalyst for Alcohols Degradation and Hydrogen Production. Top. Catal. 2021, 64, 131–141. [Google Scholar] [CrossRef]
- Sheldon, R.A. The E factor 25 years on: The rise of green chemistry and sustainability. Green Chem. 2017, 19, 18–43. [Google Scholar] [CrossRef]
- Kleinekorte, J.; Fleitmann, L.; Bachmann, M.; Katelhon, A.; Barbosa-Povoa, A.; von der Assen, N.; Bardow, A. Life Cycle Assessment for the Design of Chemical Processes, Products, and Supply Chains. Annu. Rev. Chem. Biomol. Eng. 2020, 11, 203–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Title | Ref. |
---|---|
Bio-inspired and biomaterials-based hybrid photocatalysts for environmental detoxification: A review | [21] |
Green synthesis: Photocatalytic degradation of textile dyes using metal and metal oxide nanoparticles-latest trends and advancements | [22] |
Recent Development of Photocatalysts Containing Carbon Species: A Review | [23] |
Graphene-Based Materials as Efficient Photocatalysts for Water Splitting | [24] |
Lignin-Based Composite Materials for Photocatalysis and Photovoltaics | [25] |
Photocatalyst | Green Synthetic Approach | Application | Ref. |
---|---|---|---|
AgI/BiOAc | One-pot solventless milling approach | Dye degradation | [29] |
Ag/TiO2 | Use of plant extract gel (Aloe perfoliata) as a capping and reducing agent | Picric acid degradation; anticancer activity | [30] |
Ag nanoparticles | Use of leaves extract (Jasminum officinale) as a capping and stabilizing agent | Dye degradation; antimicrobial activity | [31] |
Ag/AgCl nanocomposites | Use of fruit extract (Azadirachta indica) as a capping and stabilizing agent | Dye degradation; antimicrobial activity | [32] |
Ag nanoparticles | Use of leaves extract (Solanum virginianum) as a stabilizing and reducing agent | Dye degradation; antibacterial activity | [33] |
Ag/Ag2O nanoparticles | Use of fruit extract (Capsicum annuum) as a stabilizing and reducing agent | Dye degradation | [34] |
Ag/CuO | Use of leaves extract (Cyperus pangorei) as a stabilizing and reducing agent | Dye degradation; antibacterial activity | [39] |
Ag nanoparticles | Use of fruit extracts (Malus domestica and Vitis vinifera) as stabilizing and reducing agents | Dye degradation; antibacterial activity | [35] |
Ag/CeO2 | Use of plant extract (Allium sativum) as a stabilizing agent | Dye degradation; antibacterial activity | [36] |
Ag nanoparticles | Use of leaves extract (Rauvolfia tetraphylla) as a stabilizing agent | Dye degradation; antibacterial activity, LED preparation | [37] |
Fe3O4/SiO2/Cu2O-Ag nanocomposites | Use of fruit extract (Crataegus pentagyna) as a capping and reducing agent | Magnetically recoverable photocatalyst for dye degradation | [38] |
Ag@AgVO3/BiVO4 heterostructure | Recycling of Ag during the synthetic step and introduction of the surface plasmon resonance effect | Dye degradation; antibacterial activity | [40] |
Ag@AgCl | Use of microbial culture broths (tryptic soy broth (TSB) and Lysogeny broth (LB)) for enhancing the photoreduction of silver precursor | Dye degradation | [41] |
Photocatalyst | Green Synthetic Approach | Application | Ref. |
---|---|---|---|
Fe2O3 nanorods | Use of a natural resin (Musa Paradisiaca Linn) as an oxygen source and stabilizing agent | Dye degradation; photoelectrochemical water splitting; antibacterial activity | [42] |
Iron oxide nanoparticles | Use of food waste (Persea americana) as a stabilizing and reducing agent | Dye degradation; antibacterial activity | [43] |
Fe3O4 multistructured nanoparticles | Use of leaves extract (Rhaphiolepis indicia) as a capping and reducing agent | Dye degradation | [44] |
Iron oxide nanoparticles | Use of plant extract (Ageratum conyzoides) as a stabilizing and reducing agent | Dye degradation, antibacterial activity | [45] |
Iron oxide nanoparticles | Use of leaves extract (Hibiscus sabdariffa) as a stabilizing and reducing agent | Dye degradation | [46] |
Photocatalyst | Green Synthetic Approach | Application | Ref. |
---|---|---|---|
ZnO nanoparticles | Use of leaves extract (Ruta chalepensis) as a stabilizing agent | Dye degradation (UV irradiation) | [47] |
ZnO nano-flowers | Use of roots extract (Araliaceae family) as a stabilizing agent | Dye degradation (UV irradiation) | [48] |
ZnO nanoparticles | Use of leaves extract (Hibiscus sabdariffa and Elaeis guineensis) as stabilizing agents | Dye degradation (UV irradiation) | [49] |
ZnO nanoparticles | Use of leaves extract (Becium grandiflorum) as a stabilizing agent | Dye degradation (UV irradiation); antimicrobial activity | [50] |
ZnO nanoparticles | Use of fruit extract (Hippophae) as a stabilizing agent | Dye degradation (UV irradiation) | [51] |
ZnO nanoparticles | Use of leaves extract (Stevia rebaudiana) as a stabilizing agent | Dye degradation (UV irradiation) | [52] |
Zn-TiO2 | Use of plant extract (Green Tea) as a reducing agent | Dye degradation (UV irradiation) | [53] |
p-Co3O4/n-ZnO | Use of plant extract (Eichhornia Crassipes) as a stabilizing and oxygen source agent | Dye degradation | [54] |
CuO/ZnO nanoparticles | Use of fungi extract (Penicillium corylophilum As-1) as a stabilizing and reducing agent | Dye degradation | [55] |
Ag-ZnO nanocomposites | Use of plant extract (Solanum tuberosum) as a stabilizing and reducing agent | Dye degradation | [56] |
Ag-ZnO nanoparticles | Use of leaves extract (Excoecaria agallocha) as a stabilizing agent | Dye degradation; antibacterial activity | [57] |
ZnO/GdCoO3 nanocomposites | Use of leaves extract (Myristica fragrans) as a stabilizing agent | Dye degradation | [58] |
Au-ZnO hetero-nanostructures | Use of leaves extract (Carya illinoinensis) as a stabilizing agent | Dye degradation | [59] |
Co/ZnO | Use of Eichhornia crassipes plant tissue for the accumulation of Co and sequential combination with ZnO | Dye degradation | [60] |
Photocatalyst | Green Synthetic Approach | Application | Ref. |
---|---|---|---|
Cu2S | Microwave assisted valorization of waste pig bristles as a sulfur and carbon source | Dye degradation | [106] |
FeS2/titanium dioxide | Marcasite waste from jewelry industry as a source of FeS2 | Lignin degradation | [110] |
CaO | Solvent free valorization of waste eggshells as a calcium source | Dye degradation | [117] |
ZnTiFeAl-hydrotalcites | Use of saline slags, generated during Al processing, as an Al source | Diclofenac and salicylic acid degradation | [119] |
Cu2O | Waste printed circuit boards (PCBs) as sources of copper | Reduction of Cr(VI) | [122] |
Ta2O5-based photocatalyst | Waste capacitors as sources of Ta | Hydrogen production | [123] |
Nb-Pb co-doped and Ag-Pd-Sn-Ni loaded BaTiO3 | Milling of waste capacitors (as sources of BaTiO3, Ag, Pd, Sn, Ni, Nb, and Pb) | Hydrogen production | [124] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuliani, A.; Cova, C.M. Green Synthesis of Heterogeneous Visible-Light-Active Photocatalysts: Recent Advances. Photochem 2021, 1, 147-166. https://doi.org/10.3390/photochem1020009
Zuliani A, Cova CM. Green Synthesis of Heterogeneous Visible-Light-Active Photocatalysts: Recent Advances. Photochem. 2021; 1(2):147-166. https://doi.org/10.3390/photochem1020009
Chicago/Turabian StyleZuliani, Alessio, and Camilla Maria Cova. 2021. "Green Synthesis of Heterogeneous Visible-Light-Active Photocatalysts: Recent Advances" Photochem 1, no. 2: 147-166. https://doi.org/10.3390/photochem1020009
APA StyleZuliani, A., & Cova, C. M. (2021). Green Synthesis of Heterogeneous Visible-Light-Active Photocatalysts: Recent Advances. Photochem, 1(2), 147-166. https://doi.org/10.3390/photochem1020009