- Article
Gold Nanoparticle-Mediated Delivery of Methylene Blue and INF: A Dual-Action Strategy Against Bacterial Resistance
- Begench Gurbandurdyyev,
- Berdimyrat Annamuradov and
- Justice ben Yosef
- + 3 authors
Gold nanoparticles (AuNPs) synthesized via picosecond pulsed laser ablation were investigated as enhancers of methylene blue (MB)-mediated photodynamic therapy (PDT) against Escherichia coli. AuNPs produced at 532 and 1064 nm with frequencies of 20–50 kHz showed frequency- and size-dependent effects, with 50 kHz yielding the highest particle concentrations and smaller particles enhancing reactive oxygen species (ROS) generation. UV-Vis and fluorescence spectroscopy confirmed nanoparticle formation and plasmonic properties consistent with TEM measurements. Photobleaching assays demonstrated that AuNPs significantly increased MB singlet oxygen generation, while the efflux pump inhibitor INF-55 further amplified bacterial killing without altering net ROS yield. In vitro assays revealed that INF-55 combined with MB/AuNPs achieved ~59% higher bacterial deactivation compared to MB/AuNPs alone. Molecular docking confirmed stronger binding of INF-55 to the AcrB efflux pump (−9.1 kcal/mol) than MB, supporting its role as a competitive inhibitor that promotes intracellular MB retention. These findings establish a dual-action PDT strategy in which AuNPs enhance ROS production and INF-55 augments antibacterial efficacy via efflux pump inhibition. Together, this platform provides a proof of concept for future translation to biofilm- and tissue-based infection models, and potentially to localized clinical applications such as prosthetic joint, catheter-associated, or chronic wound infections where conventional sterilization or systemic antibiotics are insufficient.
8 December 2025





