Corium Experimental Thermodynamics: A Review and Some Perspectives
Abstract
:1. Introduction
- The first regime is characterised by the melting of the absorber rods and the eutectic reaction between some metallic components in the core. The upper temperature of this regime approximately corresponds to the melting point of stainless steel (around 1450 °C) while the lower temperature around 800 °C is linked to the liquefaction of the Ag-Cd-In absorber alloy.
- In the so-called intermediate regime, which extends to 2300 °C, the fuel liquefaction due to its interaction with molten Zircaloy takes place and constitutes the main degradation process occurring in the core. Formation of local pools may form in the core.
- At temperature above 2300 °C (some papers mentioned temperatures slightly below 2300 °C [19,20]), a (partial) relocation of the fuel rod materials occurs resulting in the formation of a more or less large molten pool. This is the third regime. It is usually characterised by an evolution of the corium composition from the metal-oxide region of the U-O-Zr-stainless steel system towards the fully oxide one, depending on available water and the oxidation process.
- The vessel rupture and the ex-vessel progression of a severe accident in a PWR involve the relocation of molten core debris into the reactor cavity. The molten materials are able to interact with the concrete of the basemat resulting in ablation and release of species by vaporisation. The composition of the melt changes progressively as the basemat decomposition products are incorporated into the melt during the molten core–concrete interaction.
2. Low Temperature Regime (below 1450 °C)
3. Intermediate Temperature Regime (1450–2200 °C)
4. High Temperature Regime (above 2200 °C)
- -
- -
- the miscibility gap in the liquid state is also present in the U-O-Zr system (Figure 6a). For a long time, there was a controversy about this extent into the ternary phase diagram since some authors mentioned its existence on the UO2-Zr section [108], while others [109,110], as Politis, extended it to the α-Zr(O) section whereas finally other authors, as Hayward et al. [72,73], did not report it. This extension is modelled in [62,63] mainly by considering the experimental data related to the tie-line orientation at very high temperature (2950 °C) [79] and the measurement of oxygen solubility limit in U-Zr liquid at 2000 °C [105]. More data have been recently reported on the tie-line orientation in the miscibility gap [63,77]. They disagree with some experiments performed in the framework of the ISTC CORPHAD Project [78]. Even if this disagreement is not fully understood at this stage, different assumptions can be invoked to explain it, as a possible redistribution of some mobile species between the phases in case of insufficiently quick quenching or accuracy of the oxygen composition measurements. Regarding this latter item, the oxygen concentration measurement in the uranium–zirconium metallic alloys is a difficult task and a key point to determine the extension of the miscibility gap. It must be pointed out that more accurate techniques of oxygen measurement in metallic phases were tested during the ISTC CORPHAD Project [70] (as the carbon thermal reduction).
- -
- the ternary phase diagrams (Fe-O-Zr and Fe-O-U, Figure 6b,c, respectively) have been poorly investigated at high temperature in reducing conditions. Some data have been recently produced on the Fe-O-Zr system but remain preliminary or need to be confirmed [77,78]. For this system, the modelling is rather tricky in absence of data since on the one hand, metallic zirconium is known to dissolve zirconia [111] and on the other hand, iron is weakly miscible with zirconia [105]. The oxygen solubility in Fe-Zr liquids results from the competition between these two tendencies. For the Fe-O-U system, taking into account the experimentally proved immiscibility between UO2 and U, and between UO2 and Fe, a low oxygen solubility in Fe-U liquids until high temperature (>2500 °C) may be assumed.
5. Ex-Vessel Corium Progression
- when the CaO/(CaO + SiO2) ratio is low (case of siliceous concrete), the thermodynamics of the corium–concrete mixtures mainly depends on the UO2-ZrO2-SiO2 ternary phase diagram. At high temperature, this chemical system presents a tendency to immiscibility which results from the thermodynamic behaviours observed in the UO2-SiO2 [145,146] and ZrO2-SiO2 [147,148] systems in which immiscibility at the liquid state was also observed. In the UO2-SiO2 system, the miscibility gap which is today rather well established (even if it is in contradiction with previous data published by [149] or rejected in [150]) is positioned by Lungu et al. [145,146] at the monotectic temperature of 2090 °C between 29 and 70 wt.% UO2. New experimental results have been produced within the Severe Accident NETwork (SARNET) of the European Commission [151] and within the ISTC CORPHAD Project [152], confirming the existence of the two-phase liquid region in this system. Positive deviations to the ideal behaviour were also measured in the UO2-ZrO2 phase diagram at high temperature [153]. Considering the repulsive interaction between both UO2 and ZrO2 and SiO2, the miscibility gap between a urania-zirconia corium and a silica enriched liquid should be approximately located at 2150 °C between 30 and 70 wt.% of corium. As a consequence, the liquidus temperatures of the siliceous concrete-corium melts should not vary with the amount of concrete in the mixture for quantities of concrete between 30% and 80% wt. The liquidus temperatures measured by Roche et al. [143] are consistent with this description (Table 4).
- when the ratio CaO/(CaO + SiO2) tends to 1 (case of limestone concrete), the UO2-ZrO2-CaO-SiO2 phase diagram is expected to tend to an eutectic behaviour which results from the eutectic thermodynamic behaviours observed in the UO2-CaO [154,155] and ZrO2-CaO [156,157] systems. This behaviour should induce variations of liquidus temperatures with the amount of concrete in the mixture. The liquidus temperatures measured by Roche et al. [143] are not in agreement with this description since they are practically constant between 27.5% and 60% wt. of concrete. In the framework of the EC ENTHALPY Project, Hellmann et al. [144] determined, in inert atmosphere, liquidus and solidus temperatures by applying two methods of visual polythermal analysis (VPA) and of more classical differential thermal analysis. The composition Enthalpy n°8 (Table 5) can be compared to the Roche’s one with 27.5% limestone concrete and 72.5% corium. The liquidus temperature (Table 5) consistently measured by using the different techniques, around 2200 K, is about 600 K lower than the Roche’s data which appears as doubtful for these compositions.
- finally, when the CaO/(CaO + SiO2) is between 0 and 1 (case of the limestone-sand concrete–corium mixtures), the prediction of the thermodynamic behaviour is more complex since there is a competition between the eutectic phase diagrams, CaO-UO2 and CaO-ZrO2, and the immiscible chemical systems, SiO2-UO2 and SiO2-ZrO2. Some data obtained by Roche et al. [143] and Hellmann et al. [144] reported in Table 6 allow to validate the thermodynamic modelling of the databases.
6. Conclusions and Perspectives
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adroguer, B.; Barrachin, M.; Coquerelle, M.; Bottomley, P.D.; Hofmann, P.; Steinbruck, M.; Chevalier, P.Y.; Cheynet, B.; Fischer, M.; Hellmann, S.; et al. FISA-1997, EURATOM, EUR 18258; Office for Official Publications of the European Communities: Luxembourg, 1998; pp. 103–112. [Google Scholar]
- Adroguer, B.; Barrachin, M.; Bottomley, D.; Hofmann, P.; Miassoedov, A.; Stuckert, J.; Chevalier, P.Y.; Cheynet, B.; Fischer, M.; Hellmann, S.; et al. FISA-1999, EURATOM, EUR 19532; Office for Official Publications of the European Communities: Luxembourg, 2000; pp. 202–210. [Google Scholar]
- De Bremaecker, A.; Barrachin, M.; Jacq, F.; Defoort, F.; Mignanelli, M.; Chevalier, P.Y.; Cheynet, B.; Hellmann, S.; Funke, F.; Journeau, C.; et al. FISA-2003, EURATOM, EUR 21026; Office for Official Publications of the European Communities: Luxembourg, 2004; pp. 348–353. [Google Scholar]
- Adroguer, B.; Chatelard, P.; Van Dorsselaere, J.; Duriez, C.; Cocuaud, N.; Bellenfant, L.; Bottomley, D.; Vrtilkova, V.; Mueller, K.; Hering, W.; et al. Core loss during a severe accident (COLOSS). Nucl. Eng. Des. 2003, 221, 55–76. [Google Scholar] [CrossRef]
- Adroguer, B.; Bertrand, F.; Chatelard, P.; Cocuaud, N.; Van Dorsselaere, J.; Bellenfant, L.; Knocke, D.; Bottomley, D.; Vrtilkova, V.; Belovsky, L.; et al. Core loss during a severe accident (COLOSS). Nucl. Eng. Des. 2005, 235, 173–198. [Google Scholar] [CrossRef]
- Micaelli, J.-C.; Van Dorsselaere, J.P.; Chaumont, B.; Haste, T.; Meyer, L.; Bonnet, J.-M.; Trambauer, K.; Beraha, D.; Annunziato, A.; Sehgal, B.R. FISA-2006, EURATOM, EUR 21231; Office for Official Publications of the European Communities: Luxembourg, 2006; pp. 144–156. [Google Scholar]
- Van Dorsselaere, J.-P. FISA-2009, EURATOM, EUR 24048; Office for Official Publications of the European Communities: Luxembourg, 2009; pp. 190–206. [Google Scholar]
- Bechta, S.V.; Khabensky, V.; Granvosky, V.S.; Krushinov, E.V.; Almjashev, V.I.; Menzentseva, L.P.; Petrov, Y.B.; Lopukh, D.B.; Fischer, M.; Bottomley, D.; et al. CORPHAD and METCOR ISTC Projects. In Proceedings of the 1st European Review Meeting on Severe Accident Research (ERMSAR-2005), Aix en Provence, France, 14–16 November 2005. [Google Scholar]
- Bottomley, D.; Stuckert, J.; Hofmann, P.; Tocheny, L.; Hugon, M.; Journeau, C.; Clément, B.; Weber, S.; Guentay, S.; Hózer, Z.; et al. Severe accident research in the core degradation area: An example of effective international cooperation between the European Union (EU) and the Commonwealth of Independent States (CIS) by the International Science and Technology Center. Nucl. Eng. Des. 2012, 252, 226–241. [Google Scholar] [CrossRef]
- Bakardjieva, S.; Barrachin, M.; Bechta, S.; Bottomley, D.; Brissoneau, L.; Cheynet, B.; Fischer, E.; Journeau, C.; Kiselova, M.; Mezentseva, L.; et al. Improvement of the European thermodynamic database NUCLEA. Prog. Nucl. Energy 2010, 52, 84–96. [Google Scholar] [CrossRef]
- Bakardjieva, S.; Barrachin, M.; Bechta, S.; Bezdicka, P.; Bottomley, D.; Brissoneau, L.; Cheynet, B.; Dugne, O.; Fischer, E.; Fischer, M.; et al. Quality Improvements of Thermodynamic Data Applied to Corium Interactions for Severe Accident Modelling in SARNET 2. Ann. Nucl. Energy 2014, 74, 110–124. [Google Scholar] [CrossRef]
- OECD. MASCA Project (2000–2003). In Proceedings of the MASCA Seminar 2004, Aix-en Provence, France, 10–11 June 2004; Volumes 1 and 2. [Google Scholar]
- OECD. MASCA2 Project (2003–2006). In Proceedings of the MASCA2 Seminar 2007, Cadarache, France, 11–12 October 2007. [Google Scholar]
- Fischer, E. NUCLEA Thermodynamic Database for Corium, and Mephista Thermodynamic Database for Fuel Applications; Institut de Radioprotection et Sûreté Nucléaire: St Paul lez Durance, France, 2021. [Google Scholar]
- Fischer, E. Mephista Thermodynamic Database for Fuel Applications; Institut de Radioprotection et Sûreté Nucléaire: St Paul lez Durance, France, 2021. [Google Scholar]
- Guéneau, C.; Dupin, N.; Kjellqvist, L.; Geiger, E.; Kurata, M.; Gossé, S.; Corcoran, E.; Quaini, A.; Hania, R.; Smith, A.; et al. TAF-ID: An International Thermodynamic Database for Nuclear Fuels Applications. Calphad 2021, 72, 102212. [Google Scholar] [CrossRef]
- Mignanelli, M.-A.; Mason, P.-K.; Turland, B.-D. Melt Stratification for In-Vessel and Ex-Vessel Events, Final Summary Report, Fourth Framework Programme on Nuclear Fission Safety; STRATIEX(00)-P008; Commission of the European Communities: Luxembourg, 2000. [Google Scholar]
- Hofmann, P. Current Knowledge on Core Degradation Phenomena, a Review. J. Nucl. Mater. 1999, 270, 194. [Google Scholar] [CrossRef]
- Barrachin, M.; Chevalier, P.-Y.; Cheynet, B.; Fischer, E. New Modelling of the U-O-Zr Phase diagram in the Hy-per-Stoichiometric Region and Consequences for the Fuel rod Liquefaction in Oxidising Conditions. J. Nucl. Mater. 2008, 375, 397. [Google Scholar] [CrossRef]
- Pontillon, Y.; Malgouyres, P.; Ducros, G.; Nicaise, G.; Dubourg, R.; Kissane, M.; Baichi, M. Lessons learnt from VERCORS tests.: Study of the active role played by UO2–ZrO2–FP interactions on irradiated fuel collapse temperature. J. Nucl. Mater. 2005, 344, 265–273. [Google Scholar] [CrossRef]
- Steinbrueck, M.; Stegmaier, U.; Grosse, M. Experiments on Silver-Indium–Cadmium Control Rod Failure during Severe Nuclear Accidents. Ann. Nucl. Energy 2017, 101, 347–358. [Google Scholar] [CrossRef]
- Swartzendruber, L.-J. The Ag-Fe (Silver-Iron) System. Bull. Alloy. Phase Diagr. 1984, 5, 560–564. [Google Scholar] [CrossRef]
- Venkatraman, M.; Neumann, J.P. The Ag-Cr (Silver-Chromium) system. Bull. Alloy. Phase Diagr. 1990, 11, 263–265. [Google Scholar] [CrossRef]
- Singleton, M.; Nash, P. The Ag-Ni (Silver-Nickel) System. Bull. Alloy. Phase Diagr. 1987, 8, 119–121. [Google Scholar] [CrossRef]
- Okamoto, H. The Fe-ln (Iron-Indium) System. Bull. Alloy. Phase Diagr. 1990, 11, 143–146. [Google Scholar] [CrossRef]
- Dasarathy, C. Immiscible behaviour in the chromium-indium system. Naturwissenschaften 1968, 55, 179. [Google Scholar] [CrossRef]
- Okamoto, H. Fe-Zr. J. Phase Equilib. 1997, 18, 361. [Google Scholar] [CrossRef]
- Okamoto, H. Cr-Zr (chromium-zirconium). J. Phase Equilibria Diffus. 1993, 14, 768. [Google Scholar] [CrossRef]
- Okamoto, H. Ni-Zr (Nickel-Zirconium). J. Phase Equilibria Diffus. 2007, 28, 409. [Google Scholar] [CrossRef]
- Hofmann, P.; Markiewicz, M. Liquefaction of Zircaloy-4 by molten (Ag, In, Cd) absorber alloy. J. Nucl. Mater. 1994, 209, 92–106. [Google Scholar] [CrossRef]
- Belovsky, L.; Valach, M.; Vrtilkova, V.; Gonzalez, R. Chemical Interactions in B4C-filled Control Rod Segments above 1000 °C under Transient Conditions. In Proceedings of the 5th International Conference on Nuclear Engineering (ICONE5), Nice, France, 26–30 May 1997. ICONE5-2184 ASME. [Google Scholar]
- Hofmann, P.; Markiewics, M.; Spino, J. Reaction Behaviour of B4C Absorber Material with Stainless Steel and Zircaloy in LWR Severe Accident; Technical Report KfK 4598; Kernforschungszentrum Karlsruhe: Karlsruhe, Germany, 1989. [Google Scholar]
- Okamoto, H. B-Zr (Boron-Zirconium). J. Phase Equilib. 1993, 14, 261–262. [Google Scholar] [CrossRef]
- Dominguez, C.; Cocuaud, N.; Drouan, D.; Constant, A.; Jacquemain, D. Investigation on boron carbide oxidation for nuclear reactor safety: Experiments in highly oxidising conditions. J. Nucl. Mater. 2008, 374, 473–481. [Google Scholar] [CrossRef]
- Steinbruck, M. Oxidation of Boron Carbide at High Temperatures. J. Nucl. Mater. 2005, 336, 185–193. [Google Scholar] [CrossRef]
- Haste, T.; Clément, B.; Biard, B.; Manenc, C.; Payot, F.; March, P.; Simondi-Teisseire, B.; Zeyen, R. Phebus FPT3: Over-view of Main Results Concerning Core Degradation and Fission Product Behaviour. In Proceedings of the International Congress on the Advances in Nuclear Power Plants (ICAPP), Société Française d’Energie Nucléaire, Nice, France, 2–6 May 2011; pp. 1093–1102. [Google Scholar]
- De Bremaecker, A.; Barrachin, M.; Jacq, F.; Defoort, F.; Mignanelli, M.; Chevalier, P.Y.; Cheynet, B.; Hellmann, S.; Funke, F.; Journeau, C.; et al. European Nuclear Thermodynamic database for In- & Ex-vessel applications (ENTHALPY). In Proceedings of the FISA-2003, Luxembourg, 10–13 November 2003. [Google Scholar]
- Vasaros, L.; Jakli, G.; Hozer, Z. Phase Transition Investigation in the UO2-B2O3 System; Technical Report SAM-ENTHALPY(01)-D010; KFKI Atomic Energy Research Institute: Budapest, Hungary, 2001. [Google Scholar]
- Vasaros, L.; Jakli, G.; Windberg, L.; Matus, L.; Nagy, I.; Pinter, A.; Hozer, Z. Phase Transition Investigation in the ZrO2-B2O3 System; Technical Report SAM-ENTHALPY(01)-D009; KFKI Atomic Energy Research Institute: Budapest, Hungary, 2001. [Google Scholar]
- Gouëllo, M.; Hokkinen, J.; Suzuki, E.; Horiguchi, N.; Barrachin, M.; Cousin, F. Interaction between caesium iodide particles and gaseous boric acid in a flowing system through a thermal gradient tube (1030 K–450 K) and analysis with ASTEC/SOPHAEROS. Prog. Nucl. Energy 2021, 138, 103818. [Google Scholar] [CrossRef]
- Gouëllo, M.; Kalilainen, J.; Kärkelä, T.; Auvinen, A. Contribution to the understanding of iodine transport under primary circuit conditions: Csi/Cd and Csi/Ag interactions in condensed phase. Nucl. Mater. Energy 2018, 17, 259–268. [Google Scholar] [CrossRef]
- Benigni, P.; Hassam, S.; Decreton, A.; Mikaelian, G.; Gajavalli, K.; Barrachin, M.; Fischer, E.; Rogez, J. Enthalpy of mixing in the Ag-Cd-In ternary liquid phase. J. Chem. Thermodyn. 2017, 107, 207–215. [Google Scholar] [CrossRef]
- Decreton, A. Contribution Expérimentale à l’Etude Thermodynamique des Systèmes Ag-Zr et Ag-Cd-In. Ph.D. Thesis, Université d’Aix Marseille, Marseille, France, 2016. [Google Scholar]
- Gajavalli, K.; Mikaelian, G.; Barrachin, M.; Decreton, A.; Fischer, E.; Rogez, J.; Benigni, P. Interrupted heating DTA for liquidus temperature determination of Ag–Cd–In alloys. J. Therm. Anal. Calorim. 2018, 135, 2209–2219. [Google Scholar] [CrossRef]
- Fischer, E.; Gajavalli, K.; Mikaelian, G.; Benigni, P.; Rogez, J.; Decreton, A.; Barrachin, M. Experimental study and thermodynamic modelling of the Ag-Cd-In system. Calphad 2019, 64, 292–305. [Google Scholar] [CrossRef]
- Horrocks, P.-J. Phase Diagram and Thermodynamics of the Ag–Cd–In Ternary Alloy Systems. Ph.D. Thesis, Manchester University, Manchester, UK, 1991. [Google Scholar]
- Bowsher, B.R.; Jenkins, R.-A.; Nichols, A.-L.; Rowe, N.-A.; Simpson, A.-H.J. Silver–Indium–Cadmium Control Rod Behaviour during a Severe Reactor Accident; Rep AEEW-R 1991; United Kingdom Atomic Energy Authority: Winfrith, UK, 1991. [Google Scholar]
- Snyder, H.-J. Primary Solid-Solution Phase Boundary in Silver Corner of Silver-Cadmium-Indium Ternary System. Trans. Metall. Soc. AIME 1967, 239, 1385–1391. [Google Scholar]
- Desgranges, C. Compréhension et Prédiction du Comportement sous Irradiation Neutronique des Alliages Absorb-ants à Base d’Argent. Ph.D. Thesis, Université Paris XI, Orsay, France, 1998. [Google Scholar]
- Karakaya, I.; Thompson, W.T. The Ag-Zr (silver-zirconium) system. J. Phase Equilibria 1992, 13, 143–146. [Google Scholar] [CrossRef]
- Okamoto, H. The In-Zr (Indium-Zirconium) system. Bull. Alloy. Phase Diagr. 1990, 11, 150–152. [Google Scholar] [CrossRef]
- Gulay, L.; Zaremba, V. Investigation of the interaction between the components in the Zr–Mn–In system at 870 K. J. Alloys Compd. 2002, 347, 184–187. [Google Scholar] [CrossRef]
- Sasaki, K.; Bohac, P.; Gauckler, L.J. Phase Equilibria in the System ZrO2-InO1.5. J. Am. Ceram. Soc. 1993, 76, 689–698. [Google Scholar] [CrossRef]
- Decreton, A.; Benigni, P.; Rogez, J.; Mikaelian, G.; Barrachin, M.; Lomello-Tafin, M.; Antion, C.; Janghorban, A.; Fischer, E. Contribution to the description of the absorber rod behavior in severe accident conditions: An experimental investigation of the Ag–Zr phase diagram. J. Nucl. Mater. 2015, 465, 849–856. [Google Scholar] [CrossRef]
- Fitzner, K.; Kleppa, O.J. Thermochemistry of binary alloys of transition metals: The Me-Ti, Me-Zr, and Me-Hf(Me = Ag, Au) systems. Met. Mater. Trans. A 1992, 23, 997–1003. [Google Scholar] [CrossRef]
- Guo, Q.; Kleppa, O.-J. The Standard Enthalpies of Formation of the Compounds of Early Transition Metals with Late Transition Metals and with Noble Metals as Determined by Kleppa and co-Workers at the University of Chicago—A review. J. Alloys Compd. 2001, 321, 169. [Google Scholar] [CrossRef]
- Meschel, S.; Kleppa, O. Standard enthalpies of formation of some transition metal indium compounds by high temperature direct synthesis calorimetry. J. Alloys Compd. 2002, 333, 91–98. [Google Scholar] [CrossRef]
- Gajavalli, K. Experimental Contribution to Thermodynamics of the Ag-Cd-In, In-Zr and In2O3-ZrO2 Systems. Ph.D. Thesis, Université d’Aix-Marseille, Marseille, France, 2019. [Google Scholar]
- Veshchunov, M.; Boldyrev, A.; Toth, B. Application of mechanistic criteria of cladding oxide shell failure to the analysis of core degradation simulated in bundle meltdown tests. Nucl. Eng. Des. 2008, 238, 2219–2229. [Google Scholar] [CrossRef]
- Veshchunov, M.; Hofmann, P. Dissolution of solid UO2 by molten Zircaloy. J. Nucl. Mater. 1994, 209, 27–40. [Google Scholar] [CrossRef]
- Veshchunov, M.; Hofmann, P.; Berdyshev, A. Critical evaluation of uranium oxide dissolution by molten Zircaloy in different crucible tests. J. Nucl. Mater. 1996, 231, 1–19. [Google Scholar] [CrossRef]
- Chevalier, P.-Y.; Fischer, E.; Cheynet, B. Progress in the Thermodynamic Modelling of the O-U-Zr Ternary System. Calphad 2004, 28, 15. [Google Scholar] [CrossRef]
- Quaini, A.; Guéneau, C.; Gossé, S.; Dupin, N.; Sundman, B.; Brackx, E.; Domenger, R.; Kurata, M.; Hodaj, F. Contribution to the thermodynamic description of the corium—The U-Zr-O system. J. Nucl. Mater. 2018, 501, 104–131. [Google Scholar] [CrossRef]
- Farmer, M.; Aeschlimann, R.; Spencer, B. Final Report on Severe Accident Material Property Measurements; Technical Report ANL-NT-98; Argonne National Laboratory: Chicago, IL, USA, 1998. [Google Scholar]
- Farmer, M.; McUmber, L.; Aeschlimann, R.; Spencer, B. Liquidus/Solidus and Zr Solubility Measurements for PWR and BWR Core Melt Compositions. In Proceedings of the OECD Workshop on Ex-Vessel Debris Coolability, Karlsruhe, Germany, 15–18 November 2003; pp. 380–392. [Google Scholar]
- Asmolov, V. MA-1 Experiment, Post-Test Analysis Results; Report MP-TR-1, OECD MASCA Project; Kurchatov Institute: Moscow, Russia, 2001. [Google Scholar]
- Asmolov, V. Zirconium and Uranium Partioning Between Oxide and Metallic Phases of Molten Corium; Re-port MP-TR-6; Kurchatov Institute: Moscow, Russia, 2001. [Google Scholar]
- Asmolov, V.; Abalin, S.S.; Merzlyakov, A.V. Physical Properties Measurements within MASCA Project. MASCA Project (2000–2003). In Proceedings of the OECD MASCA Seminar, Aix-en-Provence, France, 10–11 June 2004; Volume 1, pp. 153–175. [Google Scholar]
- Asmolov, V.G.; Zagryazkin, V.N.; Astakhova, E.V.; Vishnevskii, V.Y.; D’Yakov, E.K. The Existence of an Immiscibility Region in the U-Zr-O System. High Temp. 2004, 42, 242–251. [Google Scholar] [CrossRef]
- Khabensky, V. Phase Diagram for Multicomponent Systems Containing Corium and Products of Its Interaction with NP Materials, Study of Ternary Oxidic Systems: System U-Zr-O, Technical Report ISTC CORPHAD Progress Report; Alexandrov Research Institute of Technology: St Petersburg, Russia, 2006. [Google Scholar]
- Bottomley, P.D.W. EDS Analyses at ITU of UO2-Zr Corium Samples in Support of ECONET. In Proceedings of the 14th QUENCH Workshop, Karlsruhe, Germany, 4–6 November 2008. [Google Scholar]
- Hayward, P.; George, I. Dissolution of UO2 in molten Zircaloy-4 Part 3: Solubility from 2000 to 2500 °C. J. Nucl. Mater. 1996, 232, 1–12. [Google Scholar] [CrossRef]
- Hayward, P.; George, I. Dissolution of UO2 in molten Zircaloy-4 Part 4: Phase evolution during dissolution and cooling of 2000 to 2500 °C specimens. J. Nucl. Mater. 1996, 232, 13–22. [Google Scholar] [CrossRef]
- Hofmann, P. CIT Programme, Task 2.3: Solubility Limits to UO2 Dissolution by Molten Zircaloy, 2nd Interim Report; Report INV-CIT(97)-P006; Atomic Energy of Canada Limited; European Commission: Bruxelles, Belgium, 1997. [Google Scholar]
- Hofmann, P. CIT Programme, Task 2.3: Solubility Limits to UO2 Dissolution by Molten Zircaloy, Interim Report; Report INV-CIT(97)-P005; Atomic Energy of Canada Limited; European Commission: Bruxelles, Belgium, 1997. [Google Scholar]
- Hofmann, P. CIT Programme, Task 2.3: Solubility Limits to UO2 Dissolution by Molten Zircaloy, 3rd Interim Report; Report INVCIT(98)-P013; Atomic Energy of Canada Limited; European Commission: Bruxelles, Belgium, 1997. [Google Scholar]
- Almjashev, V. OECD TCOFF Report, to be published. 2021.
- Bechta, S.V.; Granovsky, V.S.; Khabensky, V.B.; Gusarov, V.V.; Almiashev, V.I.; Mezentseva, L.P.; Krushinov, E.V.; Kotova, S.Y.; Kosarevsky, R.A.; Barrachin, M.; et al. Corium Phase Equilibria Based on MASCA, METCOR and CORPHAD Results. Nucl. Eng. Des. 2008, 238, 2761–2771. [Google Scholar] [CrossRef]
- Guéneau, C.; Dauvois, V.; Pérodeaud, P.; Gonella, C.; Dugne, O. Liquid immiscibility in a (O,U,Zr) model corium. J. Nucl. Mater. 1998, 254, 158–174. [Google Scholar] [CrossRef]
- Ronchi, C.; Sheindlin, M. Laser-Pulse Melting of Nuclear Refractory Ceramics. Int. J. Thermophys. 2002, 23, 293–305. [Google Scholar] [CrossRef]
- Punni, J.-S.; Mignanelli, M.-A. Determination of the Solidus and Liquidus Temperatures of Uranium-Zirconium Oxides; AEA-T, Report EC ENTHALPY SAM-ENTH(01)-D004, AEAT/R/NS/0428. 2001. [Google Scholar]
- Manara, D.; Sheindlin, M.; Heinz, W.; Ronchi, C. New techniques for high-temperature melting measurements in volatile refractory materials via laser surface heating. Rev. Sci. Instrum. 2008, 79, 113901. [Google Scholar] [CrossRef]
- Mastromarino, S.; Seibert, A.; Hashem, E.; Ciccioli, A.; Prieur, D.; Scheinost, A.; Stohr, S.; Lajarge, P.; Boshoven, J.; Robba, D.; et al. Assessment of solid/liquid equilibria in the (U,Zr)O2+y system. J. Nucl. Mater. 2017, 494, 368–379. [Google Scholar] [CrossRef]
- Bellon, M. Equilibres de Phases dans le Corium. Premiers Essais dans les Systèmes (U,O,Zr) et (U,O, Zr, Fe); CEA Internal Technical Report LPCA 62; CEA: Cadarache, France, 1997. [Google Scholar]
- Palinski, R. Core Melts-Measurement of Some Thermophysical Properties of Liquid Reactor Materials at High Temperatures. Eur. Appl. Res. Rep. 1981, 2, 1380–1486. [Google Scholar]
- Chatain, S.; Guéneau, C.; Chatillon, C. High temperature mass spectrometry: Application to the thermodynamic study of the Fe–Zr system. J. Nucl. Mater. 2005, 344, 281–284. [Google Scholar] [CrossRef]
- McDeavitt, S.M.; Billings, G.-W.; Indacochea, J.E. High Temperature Interaction Behavior at Liquid Metal-Ceramic Interfaces. J. Mater. Eng. Perform. 2002, 11, 392–401. [Google Scholar] [CrossRef]
- Baichi, M.; Chatillon, C.; Ducros, G.; Froment, K. Thermodynamics of the O–U system. IV—Critical assessment of chemical potentials in the U–UO2.01 composition range. J. Nucl. Mater. 2006, 349, 17–56. [Google Scholar] [CrossRef]
- Baichi, M.; Chatillon, C.; Ducros, G.; Froment, K. Thermodynamics of the O-U System: III -Critical Assessment of Phase Diagram Data in the U-UO2+x Composition Range. J. Nucl. Mater. 2006, 349, 57. [Google Scholar] [CrossRef]
- Barrachin, M.; de Luze, O.; Haste, T.; Repetto, G. Late phase fuel degradation in the Phébus FP tests. Ann. Nucl. Energy 2013, 61, 36–53. [Google Scholar] [CrossRef]
- Hanniet-Girault, N.; Repetto, G. FPT0 Final Report, IPSN Report PH-PF IP/99/423; Institut de Radioprotection et Sûreté Nucléaire: St Paul lez Durance, France, 1999. [Google Scholar]
- Jacquemain, D.; Bourdon, S.; De Bremaecker, A.; Barrachin, M. FPT1 Final Report, Final Version, IRSN Report PH-PF IP/00/479; Institut de Radioprotection et Sûreté Nucléaire: St Paul lez Durance, France, 2000. [Google Scholar]
- Lambertson, W.A.; Mueller, M.H. Uranium Oxide Phase Equilibrium Systems: III, UO2-ZrO2. J. Am. Ceram. Soc. 1953, 36, 365–368. [Google Scholar] [CrossRef]
- Uetsuka, H. Thermal Properties Measurement of TMI-2 Debris. In Proceedings of the Workshop on Severe Accident Research in Japan (SARJ-94), Japan Atomic Energy Research Institute, Tokyo, Japan, 31 October–1 November 1994. [Google Scholar]
- Nagase, F.; Uetsuka, H. Thermal properties of Three Mile Island Unit 2 core debris and simulated debris. J. Nucl. Sci. Technol. 2012, 49, 96–102. [Google Scholar] [CrossRef] [Green Version]
- Seiler, J.M.; Tourniaire, B.; Defoort, F.; Froment, K. Consequences of material effects on in-vessel retention. Nucl. Eng. Des. 2007, 237, 1752–1758. [Google Scholar] [CrossRef]
- Fichot, F.; Carénini, L.; Villanueva, W.; Bechta, S. A Revised Methodology to Assess In-Vessel Retention Strategy for High-Power Reactors. In Proceedings of the 26th International Conference on Nuclear Enginnering, London, UK, 22–26 July 2018; Volume 7. [Google Scholar]
- Fichot, F.; Carénini, L.; Sangiorgi, M.; Hermsmeyer, S.; Miassoedov, A.; Bechta, S.; Zdarek, J.; Guenadou, D. Some considerations to improve the methodology to assess In-Vessel Retention strategy for high-power reactors. Ann. Nucl. Energy 2018, 119, 36–45. [Google Scholar] [CrossRef]
- Henry, R.E.; Fauske, H.K. External cooling of a reactor vessel under severe accident conditions. Nucl. Eng. Des. 1993, 139, 31–43. [Google Scholar] [CrossRef]
- Tuomisto, H.; Theofanous, T. A consistent approach to severe accident management. Nucl. Eng. Des. 1994, 148, 171–183. [Google Scholar] [CrossRef]
- Theofanous, T.; Liu, C.; Additon, S.; Angelini, S.; Kymäläinen, O.; Salmassi, T. In-vessel coolability and retention of a core melt. Nucl. Eng. Des. 1997, 169, 1–48. [Google Scholar] [CrossRef]
- Kymäläinen, O.; Tuomisto, H.; Theofanous, T. In-vessel retention of corium at the Loviisa plant. Nucl. Eng. Des. 1997, 169, 109–130. [Google Scholar] [CrossRef]
- Kleykamp, H. Phase equilibria in the UO2-austenitic steel system up to 3000 °C. J. Nucl. Mater. 1997, 247, 103–107. [Google Scholar] [CrossRef]
- Spino, J.; Schulz, B. On the Chemical Interaction Between UO2 and Stainless Steel in the Liquid State. Revue Int. Hautes Temp. Réfract. 1981, 18, 257–262. [Google Scholar]
- Maurizi, A. Réactivité Chimique à Haute Température dans le Système (U,Zr,Fe,O): Contribution à l’Etude de la Zircone comme Récupérateur de Corium. Ph.D. Thesis, Université Pierre et Marie Curie, Paris, France, 1997. [Google Scholar]
- Nandan, S.; Fichot, F.; Piar, B. A simplified model for the quaternary U-Zr-Fe-O system in the miscibility gap. Nucl. Eng. Des. 2020, 364, 110608. [Google Scholar] [CrossRef]
- Edwards, R.-K.; Martin, A.E. Phase Relation in the Uranium–Uranium Dioxide System at High Temperature; Volume 2 Thermodynamics; IAEA: Vienna, Australia, 1966; p. 423. [Google Scholar]
- Juenke, E.-F.; White, J.-F. Physico-Chemical Studies of the Clad UO2 Interaction Under Reactor Accident Conditions; Report GEMP-731; General Electric Company: Cincinnati, OH, USA, 1970. [Google Scholar]
- Politis, C. Untersuchungen im Dreistoffsystem Uran-Zirkon-Sauerstoff; Report KfK-2167; Kernforschungszentrum Karlsruhe: Karlsruhe, Germany, 1975. [Google Scholar]
- Ushakov, S.V.; Burakov, B.-E.; Shabalev, S.-I.; Anderson, E.-B. Interaction of UO2 and Zircaloy during the Chernobyl accident. Mater. Res. Soc. Symp. Proc. 1997, 465, 1313–1318. [Google Scholar] [CrossRef]
- Hayward, P.; George, I. Dissolution of ZrO2 in molten Zircaloy-4. J. Nucl. Mater. 1999, 265, 69–77. [Google Scholar] [CrossRef]
- Fischer, J.; Schilb, J.; Chasanov, M. Investigation of the Distribution of Fission Products among Molten Fuel and Re-actor Phases-I. The Distribution of Fission Products Between Molten Iron and Molten Uranium Dioxide. J. Nucl. Mater. 1973, 48, 233. [Google Scholar] [CrossRef]
- Peehs, M. Investigations of Molten Corium Phases. Thermodynamics of Nuclear Materials. In Proceedings of the Symposium on the Thermodynamics of Nuclear Materials, International Atomic Energy Agency, Vienna, Australia, 21–25 October 1974; Volume 1, pp. 355–368. [Google Scholar]
- Parker, G. Experimental Program in Core Melt Aerosol Release and Transport. Report NUREG/CP−0041; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 1982. [Google Scholar]
- Parker, G.; Ott, L.; Hodge, S. Small scale BWR core debris eutectics formation and melting experiment. Nucl. Eng. Des. 1990, 121, 341–347. [Google Scholar] [CrossRef]
- Hofmann, P. Reaktions- und Schmelzverhalten der LWR-Corekomponenten UO2, Zircaloy and Stahl wahrend der Abschmelzperiode; Report KFK 2220; Kernforschungszentrum Karlsruhe: Karlsruhe, Germany, 1976. [Google Scholar]
- Guéneau, C. Lacune de Miscibilité dans le Système O-U-Zr-Fe; Note Technique CEA/DPE/SPCP/99-042; CEA, Centre de Saclay: Gif/Yvette, France, 1999. [Google Scholar]
- Asmolov, V.G.; Zagryazkin, V.N.; Tsurikov, D.F.; Vishnevskii, V.Y.; D’Yakov, E.K.; Kotov, A.Y.; Repnikov, V.M. Investigation of the effect of B4C on the interaction of oxide melt and steel in a VVER-1000 vessel during a severe accident. At. Energy 2008, 105, 79–83. [Google Scholar] [CrossRef]
- Asmolov, V.G.; Zagryazkin, V.N.; Tsurikov, D.F.; Uglov, V.S.; Vishnevskii, V.Y.; D’Yakov, E.K.; Kotov, A.Y.; Repnikov, V.M. Investigation of the partitioning of fission products between the metallic and oxide phases of melt in a VVER-1000 vessel during a serious accident. At. Energy 2008, 105, 1–7. [Google Scholar] [CrossRef]
- Asmolov, V.G.; Zagryazkin, V.N.; Tsurikov, D.F.; Uglov, V.S.; Vishnevskii, V.Y.; D’Yakov, E.K.; Kotov, A.Y.; Repnikov, V.M. Investigation of the Interaction of Oxide Melt and Steel in a VVER-1000 Vessel during a Serious Accident. Atom. Energy 2008, 104, 273–277. [Google Scholar] [CrossRef]
- Asmolov, V.G.; Zagryazkin, V.N.; Tsurikov, D.F.; Vishnevsky, V.Y.; D’Yakov, Y.K.; Kotov, A.Y.; Repnikov, V.M. Main results of study on the interaction between the corium melt and steel in the VVER-1000 reactor vessel during a severe accident performed under the MASCA project. Phys. At. Nucl. 2010, 73, 2301–2318. [Google Scholar] [CrossRef]
- Asmolov, V.G. MA-2 Experiment: Zirconium and Uranium Partitioning between Oxide and Metallic Phases of Molten Corium; Technical Report MP-TR-6; OECD MASCA Project; Kurchatov Institute: Moscow, Russia, 2001. [Google Scholar]
- Asmolov, V.G. MA-3 and MA-4 Tests: Zirconium and Uranium Partitioning between Oxidic and Metallic Phases of Molten Corium; Technical Report MP-TR-9; OECD MASCA Project; Kurchatov Institute: Moscow, Russia, 2003. [Google Scholar]
- Fischer, M. Impact of B4C on the stratification of molten steel and BWR-type core material under IVR conditions. In Proceedings of the ICAPP-2012, Chicago, IL, USA, 24–28 June 2012. [Google Scholar]
- An, S.M.; Song, J.H.; Kim, J.-Y.; Kim, H.; Naitoh, M. Experimental investigation on molten pool representing corium composition at Fukushima Daiichi nuclear power plant. J. Nucl. Mater. 2016, 478, 164–171. [Google Scholar] [CrossRef]
- Song, J.; An, S.; Kim, J.-Y.; Barrachin, M.; Piar, B.; Michel, B. Morphology and phase distributions of molten core in a reactor vessel. J. Nucl. Mater. 2020, 542, 152471. [Google Scholar] [CrossRef]
- Baichi, M. Contribution à l’Etude du Corium d’un Réacteur Nucléaire Accidenté: Aspects Puissance Résiduelle et Thermodynamique; Institut National Polytechnique de Grenoble: Grenoble, France, 2001. [Google Scholar]
- Foit, J.J.; Cron, T.; Fluhrer, B. Melt/Concrete Interface Temperature Relevant to MCCI Process. In Proceedings of the ERMSAR Conference, Clarion Congress Hotel. Prague, Czech Republic, 18–20 March 2019. [Google Scholar]
- Chevalier, P.-Y. Thermodynamical Calculation of Phase Equilibria in a Quinary Oxide System Al2O3-CaO-SiO2-UO2-ZrO2: Determination of Liquidus and Solidus Temperatures of Some Selected Mixtures. J. Nucl. Mater. 1992, 186, 212. [Google Scholar] [CrossRef]
- Relave, O.; Chevalier, P.-Y.; Cheynet, B.; Cénérino, G. Thermodynamical Calculation of Phase Equilibria in a Quinary Oxide System of First Interest in Nuclear Energy Field UO2-ZrO2-SiO2-CaO-Al2O3. In Proceedings of the International Conference User Aspects of Phase Diagrams, Petten, The Netherlands, 25–27 June 1990. [Google Scholar]
- Gisby, J.-A. Assessment of Thermodynamic Data for the CaO-Al2O3-SiO2 System. NPL Report DMM(D)15 (March 1990); Commercial in Confidence. National Physical Laboratory: Teddington, UK, 1990. [Google Scholar]
- Ball, R.; Mignanelli, M.; Barry, T.; Gisby, J. The calculation of phase equilibria of oxide core-concrete systems. J. Nucl. Mater. 1993, 201, 238–249. [Google Scholar] [CrossRef]
- Cordfunke, E.H.P.; Huntelaar, M.E.; Funke, F.; Koch, M.K.; Kortz, C.; Mason, P.K.; Mignanelli, M.A.; Newland, M.S. Thermochemical Data and Modelling for Ex-vessel Corium Behaviour during a Severe Accident. J. Nucl. Mater. 2001, 294, 18–23. [Google Scholar] [CrossRef]
- Bechta, S.; Krushinov, E.; Almjashev, V.; Vitol, S.; Mezentseva, L.; Petrov, Y.; Lopukh, D.; Khabensky, V.; Barrachin, M.; Hellmann, S.; et al. Phase diagram of the UO2–FeO1+x system. J. Nucl. Mater. 2007, 362, 46–52. [Google Scholar] [CrossRef]
- Petrov, Y.B.; Udalov, Y.P.; Subrt, J.; Bakardjieva, S.; Sazavsky, P.; Kiselova, M.; Selucky, P.; Bezdicka, P.; Journeau, C.; Piluso, P. Phase equilibria during crystallization of melts in the uranium oxide-iron oxide system in air. Glas. Phys. Chem. 2009, 35, 298–307. [Google Scholar] [CrossRef]
- Bechta, S.V.; Krushinova, E.V.; Almjashev, V.I.; Vitol, S.A.; Mezentseva, L.P.; Petrov, Y.B.; Lopukh, D.B.; Khabensky, V.B.; Barrachin, M.; Hellmann, S.; et al. Phase diagram of the ZrO2-FeO system. J. Nucl. Mater. 2006, 348, 114–121. [Google Scholar] [CrossRef]
- Petrov, Y.B.; Udalov, Y.P.; Slovak, J.; Morozov, Y.G. Liquid Immiscibility Phenomena in Melts of the ZrO2-FeO-Fe2O3 system. Glass Phys. Chem. 2002, 28, 139–146. [Google Scholar] [CrossRef]
- Almjashev, V.; Barrachin, M.; Bechta, S.; Bottomley, D.; Defoort, F.; Fischer, M.; Gusarov, V.; Hellmann, S.; Khabensky, V.; Krushinov, E.; et al. Phase equilibria in the FeO1+x–UO2–ZrO2 system in the FeO1+x-enriched domain. J. Nucl. Mater. 2010, 400, 119–126. [Google Scholar] [CrossRef]
- Almjashev, V.; Barrachin, M.; Bechta, S.; Bottomley, D.; Defoort, F.; Fischer, M.; Gusarov, V.; Hellmann, S.; Khabensky, V.; Krushinov, E.; et al. Eutectic crystallization in the FeO1.5–UO2+x–ZrO2 system. J. Nucl. Mater. 2009, 389, 52–56. [Google Scholar] [CrossRef]
- Petrov, Y.B.; Udalov, Y.P.; Subrt, J.; Bakardjieva, S.; Sazavsky, P.; Kiselova, M.; Selucky, P.; Bezdicka, P.; Journeau, C.; Piluso, P. Experimental investigation and thermodynamic simulation of the uranium oxide–zirconium oxide–iron oxide system in air. Glas. Phys. Chem. 2011, 37, 212–229. [Google Scholar] [CrossRef]
- Bottomley, D.; Murray-Farthing, M.; Manara, D.; Wiss, T.; Cremer, B.; Boshoven, C.; Lajarje, P.; Rondinella, V.V. Investigations of the Melting Behaviour of the U–Zr–Fe–O system. J. Nucl. Sci. Technol. 2015, 52, 1217–1225. [Google Scholar] [CrossRef]
- Mezentseva, L.; Popova, V.; Almyashev, V.I.; Lomanova, N.A.; Ugolkov, V.L.; Beshta, S.V.; Khabenskii, V.B.; Gusarov, V. Phase and chemical transformations in the SiO2-Fe2O3(Fe3O4) system at various oxygen partial pressures. Russ. J. Inorg. Chem. 2006, 51, 118–125. [Google Scholar] [CrossRef]
- Roche, M.-F.; Leibowitz, L.; Baker, J.K., Jr. Solidus and Liquidus Temperatures of Core-Concrete Mixtures; NU-REG/CR-6032, ANL-93/9; Argonne National Laboratory: Chicago, IL, USA, 1993. [Google Scholar]
- Hellmann, S. ENTHALPY Project—Liquidus and Solidus Temperatures in the Subsystem UO2–ZrO2 (SiO2–FeOx–CaO–Al2O3–Cr2O3); Report SAM-ENTHALPY(03)-D011; 5th EURATOM Framework Programme 1998–2002; European Commission: Bruxelles, Belgium, 2003. [Google Scholar]
- Lungu, S. Etude des courbes de liquidus et des proprietes thermodynamiques des systemes SiO2-ThO2 et SiO2-ThO2-UO2. J. Nucl. Mater. 1966, 19, 155–159. [Google Scholar] [CrossRef]
- Lungu, S.; Beleuta, I. Some properties of UO2-SiO2 melts. J. Nucl. Mater. 1970, 35, 35–40. [Google Scholar] [CrossRef]
- Barlett, H.-B. X-Ray and Microscopic Studies of Silicate Melts Containing ZrO2. J. Am. Ceram. Soc. 1931, 14, 837. [Google Scholar] [CrossRef]
- Butterman, W.-C.; Foster, W.-R. Zircon Stability and the ZrO2-SiO2 Phase Diagram. Am. Mineral. 1967, 52, 880. [Google Scholar]
- Lang, S.M.; Knudsen, F.P.; Fillmore, C.L.; Roth, R.S. High-Temperature Reactions of Uranium Dioxide with Various Metal Oxides, National Bureau of Standards Circular 568; National Bureau of Standards: Washington, DC, USA, 1956. [Google Scholar]
- Hudon, P.; Baker, D.-R. The Nature of Phase Separation in Binary Oxide Melts and Glasses. I. Silicate systems. J. Non-Cryst. Solids 2002, 303, 299. [Google Scholar] [CrossRef]
- Petrov, Y.B.; Udalov, Y.P.; Šubrt, J.; Bakardjieva, S.; Sazavsky, P.; Kiselova, M.; Selucky, P.; Bezdička, P.; Jorneau, C.; Piluso, P. Behavior of melts in the UO2-SiO2 system in the liquid-liquid phase separation region. Glas. Phys. Chem. 2009, 35, 199–204. [Google Scholar] [CrossRef]
- Bogatov, S.A.; Borovoi, A.A.; Lagunenko, A.S.; Pazukhin, E.M.; Strizhov, V.F.; Khvoshchinskii, V.A. Formation and spread of Chernobyl lavas. Radiochemistry 2008, 50, 650–654. [Google Scholar] [CrossRef]
- BaÏchi, M.; Chatillon, C.; Gueneau, C.; Chatain, S. Mass spectrometric study of UO2–ZrO2 pseudo-binary system. J. Nucl. Mater. 2001, 294, 84–87. [Google Scholar] [CrossRef]
- Holc, J.; Kolar, D. Reinvestigation of Phase Relations in the CaO-UO2 System. J. Solid State Chem. 1986, 61, 260–262. [Google Scholar] [CrossRef]
- Bechta, S.V. Investigation of Binary Oxidic Systems: UO2-CaO System; Technical Report ISTC PRECOS Program; Alexandrov Research Institute of Technology: St Petersburg, Russia, 2011. [Google Scholar]
- Noguchi, T.; Mizuno, M.; Conn, W.M. Fundamental research in Refractory System with a Solar Furnace-ZrO2-CaO System. Solar Energy 1967, 11, 145–162. [Google Scholar] [CrossRef]
- Traverse, J.P.; Foex, M. Etudes des Systèmes Formés par la Zircone avec la Chaux et l’Oxyde de Strontium. High Temp. High Press. 1969, 1, 409–427. [Google Scholar]
- Pshenichnikov, A.; Kurata, M.; Nagae, Y. A BWR Control Blade Degradation Observed in Situ During a CLADS-MADE-02 test Un-der Fukushima Dai-Ichi Unit 3 Postulated Conditions. J. Nucl. Sci. Technol. 2021. [Google Scholar] [CrossRef]
- Pshenichnikov, A.; Nagae, Y.; Kurata, M. Comparison of the observed Fukushima Dai-Ichi Unit 2 debris with simulated debris from the CLADS-MADE-01 control blade degradation test. J. Nucl. Sci. Technol. 2021, 58, 416–425. [Google Scholar] [CrossRef]
- Audubert, F. CEA Contribution to TCOFF Meeting. In Proceedings of the OECD TCOFF Meeting, Paris, France, 17–18 January 2018. [Google Scholar]
- Shibata, H.; Sakamoto, K.; Ouchi, A. Chemical Interaction between Granular B4C and 304L-type Stainless Steel Ma-terials Used in BWRs in Japan. J. Nucl. Sci. Technol. 2015, 52, 1313–1317. [Google Scholar] [CrossRef]
- Di Lemma, F.G.; Miwa, S.; Osaka, M. Boron Release Kinetics for Mixed of Boron Carbide, Stainless Steel and Zircaloy; Report 2016-007; JAEA Japan Atomic Energy Agency: Ibaraki-ken, Japan, 2016. [Google Scholar]
- Zheng, L.; Hosoi, K.; Ueda, S.; Gao, X.; Kitamura, S.-Y.; Kobayashi, Y.; Sudo, A. Chemical interactions between pre-oxidized Zircaloy-4 and 304 stainless steel-B4C melt at 1300 °C. J. Nucl. Mater. 2018, 508, 361–370. [Google Scholar] [CrossRef]
- Takano, M.; Nishi, T.; Shirasu, N. Characterization of solidified melt among materials of UO2 fuel and B4C control blade. J. Nucl. Sci. Technol. 2014, 51, 859–875. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Brusset, M.; Piluso, P.; Balat-Pichelin, M.; Bottomley, P.D.; Wiss, T. Steel oxidation phenomena during Molten Corium siliceous Concrete Interaction (MCCI). J. Alloys Compd. 2015, 622, 1005–1012. [Google Scholar] [CrossRef]
- Kitagaki, T.; Yano, K.; Ogino, H.; Washiya, T. Thermodynamic Evaluation of the Solidification Phase of Molten Core–Concrete Under Estimated Fukushima Daiichi Nuclear Power Plant Accident Conditions. J. Nucl. Mater. 2017, 486, 206–215. [Google Scholar] [CrossRef] [Green Version]
- Rhee, S.-K.; Hoch, M. The System Chromium-Zirconium-Oxygen at 1200 °C, 1500 °C, and 1700 °C. Trans. Metall. Soc. AIME 1964, 230, 1687–1690. [Google Scholar]
- Jerebtsov, D.-A.; Mikhailov, G.-G.; Sverdina, S.V. Phase Diagram of the System ZrO2-Cr2O3. Ceram. Int. 2001, 27, 247–250. [Google Scholar] [CrossRef]
- Lipkina, K.; Hallatt, D.; Geiger, E.; Fitzpatrick, W.-N.B.; Sakamoto, K.; Shibata, H.; Piro, M.H.A. A Study of the Oxida-tion Behaviour of FeCrAlODS in Air and Steam Environments up to 1400 °C. J. Nucl. Mater. 2020, 541, 152305. [Google Scholar] [CrossRef]
- Wang, J.; Mccabe, M.; Haskin, T.-C.; Wu, Y.; Su, G.; Corradini, M.L. Iron-Chromium-Aluminum (FeCrAl) Cladding Oxidation Kinetics and Auxiliary Feedwater Sensitivity Analysis-Short Term Station Blackout Simulation of Surry Nu-clear Power Plant. J. Nucl. Eng. Radiat. Sci. 2018, 4, 041002-1. [Google Scholar] [CrossRef]
- McMurray, J.; Hu, R.; Ushakov, S.; Shin, D.; Pint, B.; Terrani, K.; Navrotsky, A. Solid-liquid Phase Equilibria of Fe-Cr-Al Alloys and Spinels. J. Nucl. Mater. 2017, 492, 128–133. [Google Scholar] [CrossRef]
- Strain, R.-V.; Neimark, L.A.; Sanecki, J.-E. Fuel Relocation Mechanisms Based on Microstructures of Debris. Nucl. Technol. 1989, 87, 187–190. [Google Scholar] [CrossRef]
- Sakamoto, K.; Ouchi, A.; Yamashita, S. Preliminary Study on Behavior of FeCrAl-ODS/UO2 Fuels under Severe Ac-cident Conditions. In Proceedings of the Fukushima Research Conference, Fukushima, Japan, 10–12 July 2019. [Google Scholar]
- Bottomley, D.; Papaioannou, D.; Pellottiero, D.; Knoche, D.; Rondinella, V.V. Investigation of High Temperature Irradiated Fuel-Liquefied Zircaloy Interactions in Support of Severe Accident Safety Studies. IOP Conf. Ser. Mater. Sci. Eng. 2010, 7, 012006. [Google Scholar] [CrossRef]
- Bottomley, P.D.W.; Walker, C.T.; Papaioannou, D.; Bremier, S.; Pöml, P.; Glatz, J.-P.; van Winckel, S.; van Uffelen, P.; Manara, D.; Rondinella, V.V. Severe Accident Research at the Transuranium Institute Karlsruhe: A Review of Past Experi-ence and its Application to Future Challenges. Ann. Nucl. Energy 2014, 65, 345–356. [Google Scholar] [CrossRef]
- Cranga, M.; Fabianelli, R.; Jacq, F.; Barrachin, M.; Duval, F. The MEDICIS Code, a Versatile Tool for MCCI Modelling; Paper 5416, CAPP05; Korean Nuclear Society: Seoul, Korea, 2005. [Google Scholar]
Authors | Compositions and Temperatures | Data | Technique |
---|---|---|---|
Experimental Data | |||
Snyder [48] | Rich-silver corner at 20 °C and 315 °C | Stability of the fcc solid solution | XRD (3) and metallography |
Horrocks [46] Bowsher et al. [47] Steinbruck et al. [21] | SIC nominal composition | Melting range Liquidus temperature Melting range | DSC (2) Not reported DSC (2) |
Horrocks [46] | Isopleth sections xIn = 0.6 and xIn/xCd = 3 | Liquidus temperature | Smith analysis technique |
Bénigni et al. [42] | Isopleth sections xCd/xIn = 1, ¼, 1/9 and xAg/xIn = 1/4, 1/19 at 450 °C | Enthalpy of mixing of liquid | Drop calorimetry |
Decreton [43] Gajavalli et al. [44] Fischer et al. [45] | Different compositions | Liquidus temperature | DTA (4) |
Phase diagram modelling | |||
Horrocks [46] Desgranges [49] Fischer et al. [45] | All temperatures and compositions | Gibbs energy of all phases (1) | Modelling |
Authors | Year | Compositions and Temperatures | Data | Technique |
---|---|---|---|---|
Experimental data related to the UO2-ZrO2-Zr composition domain | ||||
Farmer et al. [64,65] | 1998 | UO2-ZrO2-Zr compositions with x(O) > 50 mol% | Solidus/liquidus temperatures | DTA (2) |
Asmolov et al. [66,67,68,69] | 2001–2004 | UO2-ZrO2-Zr compositions with x(O) > 50 mol% | Liquidus temperatures | Visual technique |
Khabensky et al. [70] | 2006 | UO2-ZrO2-Zr compositions | Solidus/liquidus temperatures | VPA (1) and DTA (2) |
Bottomley et al. [71] | 2008 | UO2-ZrO2-Zr compositions | Liquidus temperatures | Thermal arrest |
Quaini et al. [63] | 2018 | Miscibility gap at liquid state, 2294 °C | Tie-lines | Equilibrium + quenching |
Hayward et al. [72,73] | 1996 | UO2-ZrO2-Zr compositions, 2000–2500 °C | Liquidus | Indirect determination based on dissolution kinetics change |
Hofmann et al. [74,75,76] | 1997 | UO2-ZrO2-Zr compositions with x(O) > 50 mol% | Liquidus | Indirect determination based on dissolution kinetics change |
Almjashev et al. [77] | 2021 | Miscibility gap at liquid state | Tie-lines | Equilibrium + quenching |
Bechta et al. [78] | 2008 | Miscibility gap at liquid state, 2370 °C, 2480 °C | Tie-lines | Equilibrium + quenching |
Guéneau et al. [79] | 1998 | Miscibility gap at liquid state, 2950 °C | Tie-lines | Equilibrium + quenching |
Experimental data related to the UO2-ZrO2-O2 composition domain | ||||
Ronchi et al. [80] | 2002 | UO2-ZrO2 | Solidus temperatures | Thermal arrest |
Punni et al. [81] | 2001 | UO2-ZrO2-(O2) | Solidus/liquidus temperatures | Thermal arrest |
Manara et al. [82] | 2008 | UO2-ZrO2 | Solidus/liquidus temperatures | Thermal arrest |
Mastromarino et al. [83] | 2017 | UO2-ZrO2-O2 | Solidus/liquidus temperatures | Thermal arrest |
Phase diagram modelling | ||||
P.Y. Chevalier et al. [19,62] A. Quaini et al. [63] | 2004–2008 2018 | All temperatures and compositions | Gibbs energy of all phases (1) | Modelling |
Authors | Compositions and Temperatures | Data | Technique | |
---|---|---|---|---|
MASCA1 and 2 Projects PWR Tests U/Zr = 1.2 | ||||
U-O-Zr-Fe (2500 °C–2600 °C) | ||||
Cn | r (*) | |||
32 | 0–29 | Composition of metal and oxide phases | Equilibrium + quenching in cold crucible | |
50 | 2.0 | |||
70 | 2–10 | |||
100 | 2.0 | |||
U-O-Zr-Steel | ||||
32 | 9.1 | |||
MASCA1 and 2 Projects BWR Tests U/Zr = 0.9 | ||||
U-O-Zr-Fe (2500 °C–2600 °C) | ||||
32 | 0–20 | Composition of metal and oxide phases | Equilibrium + quenching in cold crucible |
Composition (wt. %) | Solidus (°C) | Liquidus (°C) | |||||||
---|---|---|---|---|---|---|---|---|---|
UO2 | ZrO2 | CaO | SiO2 | Al2O3 | MgO | Fe2O3 | |||
Concrete (80%)–Corium (20%) | 15.6 | 4.4 | 12.0 | 62.4 | 4.0 | 0.8 | 0.8 | - | 2170 |
Concrete (27.5%)–Corium (72.5%) | 56.5 | 16.0 | 4.1 | 21.5 | 1.4 | 0.275 | 0.275 | 1134–1322 | 2094/2276 |
Concrete (10%)–Corium (90%) | 70.2 | 19.8 | 1.5 | 7.8 | 0.5 | 0.1 | 0.1 | 1610 | - |
Corium (100%) | 78.0 | 22.0 | - | - | - | - | - | - | - |
Composition (wt. %) | Solidus (°C) | Liquidus (°C) | |||||||
---|---|---|---|---|---|---|---|---|---|
UO2 | ZrO2 | CaO | SiO2 | Al2O3 | MgO | Fe2O3 | |||
Roche et al. [143] | |||||||||
Concrete (60%)–Corium (40%) | 31.2 | 8.8 | 42.6 | 7.2 | 1.8 | 7.8 | 0.6 | 1300 | > 2577 |
Concrete (36.2%)–Corium (63.8%) | 49.8 | 14.0 | 25.7 | 4.3 | 1.1 | 4.7 | 0.4 | - | > 2577 |
Concrete (27.5%)–Corium (72.5%) | 56.6 | 15.9 | 19.5 | 3.3 | 0.8 | 3.6 | 0.3 | 1247 | > 2577 |
Concrete (10%)–Corium (90%) | 70.2 | 19.8 | 7.1 | 1.2 | 0.3 | 1.3 | 0.1 | 1615 | - |
Hellmann et al. [144] | |||||||||
Enthalpy n°8 | 61.9 | 14.9 | 23.2 | - | - | - | - | 1865 ± 5 | 1935 ± 45 |
Enthalpy n°4 | 33.6 | 13.5 | 26.4 | - | 26.5 | - | - | 1340 ± 20 | 1760 ± 20 |
Composition (wt. %) | Solidus (°C) | Liquidus (°C) | |||||||
---|---|---|---|---|---|---|---|---|---|
UO2 | ZrO2 | CaO | SiO2 | Al2O3 | MgO | Fe2O3 | |||
Roche et al. [143] | |||||||||
Corium 1 | 92.0 | 8.0 | - | - | - | - | - | - | - |
Concrete (60.4%)–Corium 1 (39.6%) | 36.4 | 3.2 | 23.0 | 24.8 | 3.0 | 8.4 | 1.2 | - | > 2304 |
Concrete (47%)–Corium 1 (53%) | 48.8 | 4.2 | 17.9 | 19.3 | 2.3 | 6.6 | 0.9 | 1175 | > 2450 |
Corium 2 | 78.0 | 22.0 | - | - | - | - | - | - | - |
Concrete (80%)–Corium 2 (20%) | 15.6 | 4.4 | 30.4 | 32.8 | 4.0 | 11.2 | 1.6 | 1245 | - |
Concrete (27.5%)–Corium 2 (72.5%) | 56.5 | 16.0 | 10.4 | 11.3 | 1.4 | 3.9 | 0.5 | 1087 | 2365/2577 |
Concrete (10%)–Corium 2 (90%) | 70.2 | 19.8 | 3.8 | 4.1 | 0.5 | 1.4 | 0.2 | 1575 | - |
Hellmann et al. [144] | |||||||||
Enthalpy n°9 | 31.5 | 9.5 | 33.5 | 25.5 | - | - | - | 1490 ± 30 | 1630–1830 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barrachin, M. Corium Experimental Thermodynamics: A Review and Some Perspectives. Thermo 2021, 1, 179-204. https://doi.org/10.3390/thermo1020013
Barrachin M. Corium Experimental Thermodynamics: A Review and Some Perspectives. Thermo. 2021; 1(2):179-204. https://doi.org/10.3390/thermo1020013
Chicago/Turabian StyleBarrachin, Marc. 2021. "Corium Experimental Thermodynamics: A Review and Some Perspectives" Thermo 1, no. 2: 179-204. https://doi.org/10.3390/thermo1020013
APA StyleBarrachin, M. (2021). Corium Experimental Thermodynamics: A Review and Some Perspectives. Thermo, 1(2), 179-204. https://doi.org/10.3390/thermo1020013