Improving Bimonthly Landscape Monitoring in Morocco, North Africa, by Integrating Machine Learning with GRASS GIS
Abstract
:1. Introduction
2. Objective and Motivation
3. Study Area
4. Materials and Methods
4.1. Data
4.2. Workflow
4.3. Software
4.4. Data Preprocessing
4.5. Creating Color Composites
# Create the project with new location from raster map (file must contain projection metadata): # grass -c myraster.tif /home/user/grassdata/mynewlocation grass #cd /Users/polinalemenkova/grassdata #grass -c LC09_L2SP_179073_20220419_20230421_02_T1_SR_B1.tif /Users/polinalemenkova/grassdata/Morocco # ----IMPORT AND PREPROCESSING--------------------------> # g.mapset location=Morocco mapset=PERMANENT g.list rast # importing the image subset with 7 Landsat bands and display the raster map r.import input=/Users/polinalemenkova/grassdata/Morocco/ LC09_L2SP_201036_20230126_20230313_02_T1_SR_B1.TIF output=L9_2023_J_01 extent=region resolution=region --overwrite r.import input=/Users/polinalemenkova/grassdata/Morocco/ LC09_L2SP_201036_20230126_20230313_02_T1_SR_B2.TIF output=L9_2023_J_02 extent=region resolution=region r.import input=/Users/polinalemenkova/grassdata/Morocco/ LC09_L2SP_201036_20230126_20230313_02_T1_SR_B3.TIF output=L9_2023_J_03 extent=region resolution=region r.import input=/Users/polinalemenkova/grassdata/Morocco/ LC09_L2SP_201036_20230126_20230313_02_T1_SR_B4.TIF output=L9_2023_J_04 extent=region resolution=region r.import input=/Users/polinalemenkova/grassdata/Morocco/ LC09_L2SP_201036_20230126_20230313_02_T1_SR_B5.TIF output=L9_2023_J_05 extent=region resolution=region r.import input=/Users/polinalemenkova/grassdata/Morocco/ LC09_L2SP_201036_20230126_20230313_02_T1_SR_B6.TIF output=L9_2023_J_06 extent=region resolution=region r.import input=/Users/polinalemenkova/grassdata/Morocco/ LC09_L2SP_201036_20230126_20230313_02_T1_SR_B7.TIF output=L9_2023_J_07 extent=region resolution=region g.list rast
# ----CREATING COLOR COMPOSITES-----> # false color r.composite blue=L9_2023_J_07 green=L9_2023_J_05 red=L9_2023_J_03 output=L9_2023_J_753 --overwrite d.mon wx0 d.rast L9_2023_J_753 d.out.file output=Morocco_753 format=jpg --overwrite # false color: NIR band B05 in the red channel, red band B04 in the green channel and green band B03 in the blue channel r.composite blue=L9_2023_J_03 green=L9_2023_J_04 red=L9_2023_J_05 output=L9_2023_J_345 --overwrite d.mon wx0 d.rast L9_2023_J_345 d.out.file output=Morocco_345 format=jpg --overwrite # true color r.composite blue=L9_2023_J_02 green=L9_2023_J_03 red=L9_2023_J_04 output=L9_2023_J_234 --overwrite d.mon wx0 d.rast L9_2023_J_234 d.out.file output=Morocco_J_234 format=jpg --overwrite
4.6. Image Classification
# ---Clustering and Classification ----> # grouping data by i.group # Set computational region to match the scene g.region raster=L9_2023_J_01 -p i.group group=L9_2023_J subgroup=res_30m \ input=L9_2023_J_01,L9_2023_J_02,L9_2023_J_03,L9_2023_J_04, L9_2023_J_05,L9_2023_J_06,L9_2023_J_07 --overwrite # Clustering: generating signature file and report using k-means clustering algorithm i.cluster group=L9_2023_J subgroup=res_30m \ signaturefile=cluster_L9_2023_J \ classes=10 reportfile=rep_clust_L9_2023_J.txt --overwrite # Classification by i.maxlik module i.maxlik group=L9_2023_J subgroup=res_30m \ signaturefile=cluster_L9_2023_J \ output=L9_2023_J_cluster_classes reject=L9_2023_J_cluster_reject # Mapping d.mon wx0 g.region raster=L9_2023_J_cluster_classes -p r.colors L9_2023_J_cluster_classes color=bcyr d.rast L9_2023_J_cluster_classes d.legend raster=L9_2023_J_cluster_classes title="26 January 2023" title_fontsize=14 font="Helvetica" fontsize=12 bgcolor=white border_color=white d.out.file output=Morocco_2023_Jan format=jpg --overwrite # Mapping rejection probability d.mon wx1 g.region raster=L9_2023_J_cluster_classes -p r.colors L9_2023_J_cluster_reject color=wave -e d.rast L9_2023_J_cluster_reject d.legend raster=L9_2023_J_cluster_reject title="26 January 2023" title_fontsize=14 font="Helvetica" fontsize=12 bgcolor=white border_color=white d.out.file output=Morocco_2023_reject format=jpg --overwrite
# MACHINE LEARNING ------> # g.list rast g.region raster=L9_2023_J_01 -p # First, we are going to generate some training pixels from an older (1996) land cover classification: r.random input=L9_2023_cluster_classes seed=100 npoints=1000 raster=training_pixels --overwrite # Next, we create the imagery group with all Landsat-8 OLI/TIRS 7 (2000) bands: i.group group=L9_2023_J input=L9_2023_J_01,L9_2023_J_02,L9_2023_J_03,L9_2023_J_04, L9_2023_J_05,L9_2023_J_06,L9_2023_J_07 --overwrite # Then use these training pixels to perform a classification on recent Landsat - 2022 image: # # train a decision tree classification model using r.learn.train r.learn.train group=L9_2023_J training_map=training_pixels \ model_name=DecisionTreeClassifier n_estimators=500 save_model=rf_model.gz --overwrite # perform prediction using r.learn.predict r.learn.predict group=L9_2023_J load_model=rf_model.gz output=rf_classification --overwrite # check raster categories - they are automatically applied to the classification output r.category rf_classification # copy color scheme from landclass training map to result r.colors rf_classification raster=training_pixels # display d.mon wx0 d.rast rf_classification r.colors rf_classification color=roygbiv -e d.legend raster=rf_classification title="Decision Tree: 01/2023" title_fontsize=14 font="Helvetica" fontsize=12 bgcolor=white border_color=white d.out.file output=DT_2023_01 format=jpg --overwrite
# train a extra trees classification model using r.learn.train r.learn.train group=L9_2023_J training_map=training_pixels \ model_name=ExtraTreesClassifier n_estimators=500 save_model=rf_model.gz --overwrite # perform prediction using r.learn.predict r.learn.predict group=L9_2023_J load_model=rf_model.gz output=rf_classification --overwrite # check raster categories applied to the classification output r.category rf_classification # copy color scheme from landclass training map to result r.colors rf_classification raster=training_pixels # display d.mon wx0 d.rast rf_classification r.colors rf_classification color=bgyr -e d.legend raster=rf_classification title="Extra Tree: 01/2023" title_fontsize=14 font="Helvetica" fontsize=12 bgcolor=white border_color=white d.out.file output=ET_2023_01 format=jpg --overwrite
5. Results and Discussion
5.1. Analysis of Findings
5.2. Interpretation of Land Cover Types
5.3. Comparison Between Performance of Algorithms
- 1: Bimonthly class separability matrices between 10 classes of land cover types in Rif Mountains, Morocco: January and March 2023 (1).
- 2: Bimonthly class separability matrices between 10 classes of land cover types in Rif Mountains, Morocco: May and July 2023 (2).
- 3: Bimonthly class separability matrices between 10 classes of land cover types in Rif Mountains, Morocco: September and November 2023 (3).
5.4. Bimonthly Evaluation of the Land Cover Types
5.5. Accuracy Assessment
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
API | Application Programming Interface |
DTC | Decision Tree Classifier |
ETC | Extra Trees Classifier |
EO | Earth Observation |
FAO | Food and Agriculture Organization |
GRASS | Geographic Resources Analysis Support System |
GIS | Geographic Information System |
Landsat OLI/TIRS | Landsat Operational Land Imager and Thermal Infrared Sensor |
GEBCO | General Bathymetric Chart of the Oceans |
GMT | Generic Mapping Tools |
QGIS | Quantum Geographic Information System |
ML | Machine Learning |
RS | Remote Sensing |
SWIR | Shortwave Infrared |
NIR | Near Infrared |
USGS | United States Geological Survey |
WGS84 | World Geodetic System 84 |
Appendix A. Initial Means for Classes of Pixels in Each Multispectral Band of the Landsat OLI/TIRS Satellite Images
Class | Band 1 | Band 2 | Band 3 | Band 4 | Band 5 | Band 6 | Band 7 |
---|---|---|---|---|---|---|---|
Class 1 | 7353.24 | 7533.21 | 8177.38 | 7818.66 | 10,987.1 | 10,158.3 | 8739.9 |
Class 2 | 7569.99 | 7774.52 | 8500.84 | 8237.08 | 11,888.8 | 10,959.1 | 9396.37 |
Class 3 | 7786.75 | 8015.83 | 8824.3 | 8655.49 | 12,790.5 | 11,759.9 | 10,052.8 |
Class 4 | 8003.51 | 8257.14 | 9147.76 | 9073.91 | 13,692.2 | 12,560.7 | 10,709.3 |
Class 5 | 8220.27 | 8498.45 | 9471.21 | 9492.32 | 14,593.9 | 13,361.5 | 11,365.8 |
Class 6 | 8437.03 | 8739.76 | 9794.67 | 9910.73 | 15,495.6 | 14,162.3 | 12,022.2 |
Class 7 | 8653.78 | 8981.07 | 10,118.1 | 10,329.1 | 16,397.3 | 14,963.1 | 12,678.7 |
Class 8 | 8870.54 | 9222.38 | 10,441.6 | 10,747.6 | 17,299 | 15,763.9 | 13,335.2 |
Class 9 | 9087.3 | 9463.69 | 10,765 | 11,166 | 18,200.8 | 16,564.7 | 13,991.6 |
Class 10 | 9304.06 | 9705 | 11,088.5 | 11,584.4 | 19,102.5 | 17,365.5 | 14,648.1 |
Class | Band 1 | Band 2 | Band 3 | Band 4 | Band 5 | Band 6 | Band 7 |
---|---|---|---|---|---|---|---|
Class 1 | 8036.12 | 8397.21 | 9295.02 | 9561.14 | 13,138.1 | 12,962.9 | 10,897.1 |
Class 2 | 8246.35 | 8665.51 | 9702.28 | 10,172.8 | 14,019.7 | 13,972.2 | 11,692.2 |
Class 3 | 8456.57 | 8933.81 | 10,109.5 | 10,784.5 | 14,901.3 | 14,981.5 | 12,487.3 |
Class 4 | 8666.8 | 9202.11 | 10,516.8 | 11,396.2 | 15,783 | 15,990.8 | 13,282.5 |
Class 5 | 8877.03 | 9470.41 | 10,924.1 | 12,007.9 | 16,664.6 | 17,000.2 | 14,077.6 |
Class 6 | 9087.26 | 9738.71 | 11,331.3 | 12,619.6 | 17,546.2 | 18,009.5 | 14,872.7 |
Class 7 | 9297.49 | 10,007 | 11,738.6 | 13,231.3 | 18,427.9 | 19,018.8 | 15,667.8 |
Class 8 | 9507.72 | 10,275.3 | 12,145.8 | 13,842.9 | 19,309.5 | 20,028.1 | 16,463 |
Class 9 | 9717.94 | 10,543.6 | 12,553.1 | 14,454.6 | 20,191.1 | 21,037.4 | 17,258.1 |
Class 10 | 9928.17 | 10,811.9 | 12,960.4 | 15,066.3 | 21,072.7 | 22,046.7 | 18,053.2 |
Class | Band 1 | Band 2 | Band 3 | Band 4 | Band 5 | Band 6 | Band 7 |
---|---|---|---|---|---|---|---|
Class 1 | 7598.78 | 7764.07 | 8434.53 | 7941.99 | 12,295.6 | 10,618.7 | 8849.61 |
Class 2 | 7754.07 | 7949.13 | 8718.98 | 8335.56 | 13,270.4 | 11,401 | 9511.46 |
Class 3 | 7909.36 | 8134.19 | 9003.43 | 8729.14 | 14,245.2 | 12,183.3 | 10,173.3 |
Class 4 | 8064.65 | 8319.25 | 9287.89 | 9122.72 | 15,219.9 | 12,965.7 | 10,835.2 |
Class 5 | 8219.95 | 8504.31 | 9572.34 | 9516.29 | 16,194.7 | 13,748 | 11,497 |
Class 6 | 8375.24 | 8689.37 | 9856.79 | 9909.87 | 17,169.5 | 14,530.3 | 12,158.8 |
Class 7 | 8530.53 | 8874.43 | 10,141.2 | 10,303.4 | 18,144.3 | 15,312.6 | 12,820.7 |
Class 8 | 8685.82 | 9059.49 | 10,425.7 | 10,697 | 19,119.1 | 16,095 | 13,482.5 |
Class 9 | 8841.12 | 9244.55 | 10,710.1 | 11,090.6 | 20,093.9 | 16,877.3 | 14,144.4 |
Class 10 | 8996.41 | 9429.61 | 10,994.6 | 11,484.2 | 21,068.7 | 17,659.6 | 14,806.2 |
Class | Band 1 | Band 2 | Band 3 | Band 4 | Band 5 | Band 6 | Band 7 |
---|---|---|---|---|---|---|---|
Class 1 | 8146.96 | 8572.74 | 9528.06 | 9871.64 | 12,802.2 | 13,459.3 | 11,517.8 |
Class 2 | 8370.6 | 8848.08 | 9926.18 | 10,412.8 | 13,530.9 | 14,431.9 | 12,322.4 |
Class 3 | 8594.23 | 9123.41 | 10,324.3 | 10,954 | 14,259.6 | 15,404.5 | 13,127.1 |
Class 4 | 8817.87 | 9398.75 | 10,722.4 | 11,495.2 | 14,988.3 | 16,377.2 | 13,931.7 |
Class 5 | 9041.5 | 9674.09 | 11,120.5 | 12,036.4 | 15,717.1 | 17,349.8 | 14,736.3 |
Class 6 | 9265.14 | 9949.43 | 11,518.6 | 12,577.6 | 16,445.8 | 18,322.4 | 15,541 |
Class 7 | 9488.77 | 10,224.8 | 11,916.7 | 13,118.9 | 17,174.5 | 19,295.1 | 16,345.6 |
Class 8 | 9712.41 | 10,500.1 | 12,314.9 | 13,660.1 | 17,903.2 | 20,267.7 | 17,150.3 |
Class 9 | 9936.04 | 10,775.4 | 12,713 | 14,201.3 | 18,631.9 | 21,240.3 | 17,954.9 |
Class 10 | 10,159.7 | 11,050.8 | 13,111.1 | 14,742.5 | 19,360.6 | 22,212.9 | 18,759.6 |
Class | Band 1 | Band 2 | Band 3 | Band 4 | Band 5 | Band 6 | Band 7 |
---|---|---|---|---|---|---|---|
Class 1 | 8037.45 | 8299.79 | 8964.58 | 9252.55 | 11,892.9 | 12,555.5 | 10,819.7 |
Class 2 | 8252.53 | 8565.39 | 9363.68 | 9802.02 | 12,631.3 | 13,569.5 | 11,680.2 |
Class 3 | 8467.62 | 8830.99 | 9762.77 | 10,351.5 | 13,369.8 | 14,583.6 | 12,540.8 |
Class 4 | 8682.7 | 9096.59 | 10,161.9 | 10,901 | 14,108.2 | 15,597.6 | 13,401.3 |
Class 5 | 8897.79 | 9362.19 | 10,561 | 11,450.4 | 14,846.6 | 16,611.6 | 14,261.9 |
Class 6 | 9112.87 | 9627.78 | 10,960 | 11,999.9 | 15,585.1 | 17,625.6 | 15,122.4 |
Class 7 | 9327.96 | 9893.38 | 11,359.1 | 12,549.4 | 16,323.5 | 18,639.6 | 15,983 |
Class 8 | 9543.04 | 10,159 | 11,758.2 | 13,098.9 | 17,061.9 | 19,653.6 | 16,843.5 |
Class 9 | 9758.13 | 10,424.6 | 12,157.3 | 13,648.3 | 17,800.4 | 20,667.6 | 17,704.1 |
Class 10 | 9973.21 | 10,690.2 | 12,556.4 | 14,197.8 | 18,538.8 | 21,681.7 | 18,564.6 |
Class | Band 1 | Band 2 | Band 3 | Band 4 | Band 5 | Band 6 | Band 7 |
---|---|---|---|---|---|---|---|
Class 1 | 7805.3 | 7978.69 | 8394.85 | 8339.26 | 10,618.8 | 10,876.8 | 9549.69 |
Class 2 | 7994.42 | 8207.25 | 8745.73 | 8818 | 11,398.4 | 11,816.7 | 10,351.8 |
Class 3 | 8183.55 | 8435.81 | 9096.6 | 9296.74 | 12,178 | 12,756.6 | 11,154 |
Class 4 | 8372.67 | 8664.38 | 9447.48 | 9775.48 | 12,957.6 | 13,696.6 | 11,956.1 |
Class 5 | 8561.79 | 8892.94 | 9798.36 | 10,254.2 | 13,737.2 | 14,636.5 | 12,758.2 |
Class 6 | 8750.92 | 9121.5 | 10,149.2 | 10,733 | 14,516.8 | 15,576.5 | 13,560.4 |
Class 7 | 8940.04 | 9350.07 | 10,500.1 | 11,211.7 | 15,296.4 | 16,516.4 | 14,362.5 |
Class 8 | 9129.17 | 9578.63 | 10,851 | 11,690.4 | 16,076 | 17,456.4 | 15,164.7 |
Class 9 | 9318.29 | 9807.2 | 11,201.9 | 12,169.2 | 16,855.6 | 18,396.3 | 15,966.8 |
Class 10 | 9507.41 | 10,035.8 | 11,552.8 | 12,647.9 | 17,635.2 | 19,336.3 | 16,768.9 |
Appendix B. Standard Deviations for DNs of Pixels by 10 Computed Classes
Class | Band 1 | Band 2 | Band 3 | Band 4 | Band 5 | Band 6 | Band 7 |
---|---|---|---|---|---|---|---|
2023: January | |||||||
1 | 520.366 | 535.906 | 762.029 | 534.589 | 458.971 | 261.960 | 185.243 |
2 | 490.239 | 471.037 | 624.903 | 718.469 | 1108.75 | 864.994 | 643.283 |
3 | 469.625 | 475.629 | 523.194 | 551.304 | 924.17 | 813.025 | 684.606 |
4 | 314.352 | 297.355 | 402.396 | 473.559 | 946.247 | 881.536 | 697.401 |
5 | 355.762 | 363.823 | 482.001 | 628.670 | 1123.910 | 809.348 | 943.121 |
6 | 398.402 | 397.373 | 474.544 | 609.048 | 1059.400 | 1019.420 | 849.959 |
7 | 831.164 | 913.648 | 997.848 | 1243.020 | 1609.220 | 1416.340 | 1089.100 |
8 | 602.747 | 649.726 | 694.899 | 843.584 | 1472.750 | 926.428 | 972.410 |
9 | 563.373 | 645.449 | 846.794 | 1005.060 | 1844.240 | 1204.890 | 1309.140 |
10 | 3912.350 | 4022.450 | 3523.310 | 3432.850 | 3098.910 | 2796.470 | 2599.350 |
2023: March | |||||||
1 | 490.469 | 541.212 | 879.207 | 716.637 | 616.488 | 686.935 | 613.483 |
2 | 255.312 | 246.682 | 318.072 | 462.128 | 1664.020 | 929.262 | 719.619 |
3 | 541.560 | 602.780 | 686.249 | 782.835 | 1273.070 | 980.419 | 834.318 |
4 | 344.733 | 387.283 | 524.843 | 812.884 | 1659.040 | 980.065 | 855.260 |
5 | 377.657 | 422.529 | 565.366 | 724.443 | 1044.500 | 753.815 | 856.870 |
6 | 507.082 | 559.630 | 652.069 | 974.570 | 1023.500 | 866.568 | 784.542 |
7 | 449.736 | 488.873 | 597.974 | 692.265 | 1060.560 | 878.137 | 929.794 |
8 | 532.728 | 589.376 | 727.215 | 948.085 | 1317.450 | 934.689 | 1002.260 |
9 | 507.096 | 562.500 | 709.818 | 853.806 | 1051.740 | 1083.610 | 1336.400 |
10 | 753.846 | 857.879 | 1039.350 | 1108.080 | 1502.720 | 1502.480 | 2189.920 |
2023: May | |||||||
1 | 465.095 | 566.529 | 901.861 | 522.758 | 321.154 | 193.603 | 120.269 |
2 | 277.062 | 255.083 | 376.608 | 450.477 | 1258.88 | 804.346 | 710.667 |
3 | 441.646 | 468.557 | 562.157 | 597.613 | 1136.880 | 723.626 | 673.917 |
4 | 378.651 | 385.161 | 519.410 | 649.726 | 1220.780 | 868.215 | 1039.880 |
5 | 258.976 | 264.420 | 393.296 | 494.295 | 1055.540 | 951.268 | 799.838 |
6 | 228.533 | 221.204 | 444.333 | 414.391 | 1722.940 | 994.491 | 630.409 |
7 | 531.397 | 586.941 | 678.976 | 806.428 | 1337.73 | 1061.7 | 936.166 |
8 | 623.942 | 671.415 | 760.778 | 817.799 | 1089.700 | 905.306 | 884.892 |
9 | 528.555 | 602.147 | 767.459 | 860.058 | 1806.600 | 1088.830 | 1165.730 |
10 | 1210.190 | 1398.230 | 1656.380 | 1682.400 | 1778.850 | 1867.540 | 2167.590 |
Class | Band 1 | Band 2 | Band 3 | Band 4 | Band 5 | Band 6 | Band 7 |
---|---|---|---|---|---|---|---|
2023: July | |||||||
1 | 401.603 | 474.680 | 753.823 | 554.671 | 452.066 | 377.558 | 279.117 |
2 | 444.544 | 494.063 | 605.472 | 689.234 | 1469.020 | 1074.000 | 858.682 |
3 | 400.815 | 449.109 | 548.777 | 721.564 | 1773.570 | 1030.710 | 912.245 |
4 | 329.822 | 337.588 | 456.271 | 617.552 | 934.712 | 737.397 | 693.313 |
5 | 383.645 | 392.394 | 484.058 | 558.823 | 955.127 | 757.462 | 640.994 |
6 | 369.823 | 422.794 | 574.353 | 625.855 | 807.736 | 699.93 | 634.601 |
7 | 380.957 | 393.860 | 462.246 | 493.918 | 938.201 | 756.140 | 818.874 |
8 | 389.170 | 433.991 | 512.028 | 543.331 | 810.822 | 715.835 | 672.958 |
9 | 585.918 | 680.160 | 803.684 | 738.175 | 743.199 | 762.175 | 944.871 |
10 | 994.099 | 1126.100 | 1284.760 | 1153.090 | 1115.620 | 1242.490 | 1575.490 |
2023: September | |||||||
1 | 437.651 | 443.108 | 680.601 | 464.861 | 251.267 | 134.622 | 109.822 |
2 | 352.790 | 343.761 | 458.110 | 604.993 | 1647.410 | 1009.150 | 737.153 |
3 | 413.844 | 428.298 | 527.591 | 627.276 | 1270.460 | 820.868 | 669.725 |
4 | 609.427 | 665.603 | 750.628 | 922.569 | 2049.290 | 1237.420 | 1107.210 |
5 | 410.913 | 444.970 | 557.272 | 605.301 | 936.943 | 802.527 | 790.452 |
6 | 412.096 | 463.575 | 605.626 | 711.301 | 1026.750 | 826.580 | 710.861 |
7 | 476.481 | 556.664 | 690.121 | 675.737 | 961.119 | 727.211 | 750.357 |
8 | 560.709 | 661.131 | 788.185 | 748.966 | 878.300 | 826.902 | 929.749 |
9 | 734.715 | 872.060 | 1021.830 | 874.668 | 875.353 | 1032.820 | 1289.020 |
10 | 1228.510 | 1477.600 | 1759.470 | 1582.050 | 1479.630 | 1594.770 | 1825.860 |
2023: November | |||||||
1 | 408.799 | 366.029 | 518.468 | 358.299 | 494.063 | 288.290 | 183.250 |
2 | 337.779 | 313.223 | 378.857 | 471.889 | 1236.690 | 864.664 | 718.244 |
3 | 329.228 | 309.538 | 391.118 | 526.252 | 1133.950 | 971.402 | 842.809 |
4 | 357.573 | 340.276 | 405.652 | 474.368 | 868.293 | 878.208 | 719.913 |
5 | 407.823 | 418.715 | 501.585 | 583.480 | 1177.420 | 746.789 | 760.614 |
6 | 560.647 | 596.644 | 680.376 | 807.904 | 1923.630 | 1063.100 | 992.282 |
7 | 404.268 | 434.357 | 567.739 | 689.356 | 1145.220 | 911.636 | 828.516 |
8 | 502.947 | 558.014 | 686.296 | 677.680 | 976.150 | 885.420 | 857.641 |
9 | 571.593 | 667.463 | 845.177 | 950.398 | 1288.210 | 1164.560 | 1261.840 |
10 | 1130.670 | 1394.490 | 1762.720 | 1842.670 | 1953.210 | 2219.250 | 2058.000 |
References
- Corenblit, D.; Steiger, J. Vegetation as a major conductor of geomorphic changes on the Earth surface: Toward evolutionary geomorphology. Earth Surf. Process. Landforms 2009, 34, 891–896. [Google Scholar] [CrossRef]
- Muir, F.M.E.; Hurst, M.D.; Richardson-Foulger, L.; Rennie, A.F.; Naylor, L.A. VedgeSat: An automated, open-source toolkit for coastal change monitoring using satellite-derived vegetation edges. Earth Surf. Process. Landforms 2024, 49, 2405–2423. [Google Scholar] [CrossRef]
- Pu, G.; Quackenbush, L.J.; Stehman, S.V. Using Google Earth Engine to Assess Temporal and Spatial Changes in River Geomorphology and Riparian Vegetation. JAWRA J. Am. Water Resour. Assoc. 2021, 57, 789–806. [Google Scholar] [CrossRef]
- Cary, T. Landsat Data as a Tool for the Geosciences. J. Geol. Educ. 1990, 38, 318–322. [Google Scholar] [CrossRef]
- Xiong, N.; Chen, H.; Li, R.; Su, H.; Dai, S.; Wang, J. A Method of Chestnut Forest Identification Based on Time Series and Key Phenology from Sentinel-2. Remote Sens. 2023, 15, 5374. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, X.; Zhuang, C.; Hu, X. Detecting the Lake Area Seasonal Variations in the Tibetan Plateau from Multi-Sensor Satellite Data Using Deep Learning. Water 2025, 17, 68. [Google Scholar] [CrossRef]
- Kuta, A.A.; Grebby, S.; Boyd, D.S. Remote Monitoring of the Impact of Oil Spills on Vegetation in the Niger Delta, Nigeria. Appl. Sci. 2025, 15, 338. [Google Scholar] [CrossRef]
- Pan, D.; Li, C.; Yang, G.; Ren, P.; Ma, Y.; Chen, W.; Feng, H.; Chen, R.; Chen, X.; Li, H. Identification of the Initial Anthesis of Soybean Varieties Based on UAV Multispectral Time-Series Images. Remote Sens. 2023, 15, 5413. [Google Scholar] [CrossRef]
- Ding, N.; Li, M. Mapping Forest Abrupt Disturbance Events in Southeastern China—Comparisons and Tradeoffs of Landsat Time Series Analysis Algorithms. Remote Sens. 2023, 15, 5408. [Google Scholar] [CrossRef]
- Yang, J.; Hu, Y.; Ma, Y.; Wang, M.; Zhang, N.; Li, Z.; Zhang, J. Combined Retrieval of Oil Film Thickness Using Hyperspectral and Thermal Infrared Remote Sensing. Remote Sens. 2023, 15, 5415. [Google Scholar] [CrossRef]
- Ahmadian, N.; Ghasemi, S.; Wigneron, J.P.; Zölitz, R. Comprehensive study of the biophysical parameters of agricultural crops based on assessing Landsat 8 OLI and Landsat 7 ETM+ vegetation indices. GIsci. Remote Sens. 2016, 53, 337–359. [Google Scholar] [CrossRef]
- Lemenkova, P. Mapping Woodlands in Angola, Tropical Africa: Calculation of Vegetation Indices From Remote Sensing Data. Agric. For. 2024, 70, 185–202. [Google Scholar] [CrossRef]
- Imtiaz, F.; Farooque, A.A.; Randhawa, G.S.; Wang, X.; Esau, T.J.; Acharya, B.; Hashemi Garmdareh, S.E. An inclusive approach to crop soil moisture estimation: Leveraging satellite thermal infrared bands and vegetation indices on Google Earth engine. Agric. Water Manag. 2024, 306, 109172. [Google Scholar] [CrossRef]
- Johansson, D.; Strömquist, L. Interpretation of geomorphology and vegetation of LANDSAT satellite images from semi-arid central Tanzania. Nor. Geogr. Tidsskr.-Nor. J. Geogr. 1978, 32, 49–54. [Google Scholar] [CrossRef]
- Cooley, S.W.; Smith, L.C.; Stepan, L.; Mascaro, J. Tracking Dynamic Northern Surface Water Changes with High-Frequency Planet CubeSat Imagery. Remote Sens. 2017, 9, 1306. [Google Scholar] [CrossRef]
- Reda Sahrane, Y.E.K.; Bounab, A. Investigating the effects of landscape characteristics on landslide susceptibility and frequency-area distributions: The case of Taounate province, Northern Morocco. Geocarto Int. 2022, 37, 17686–17712. [Google Scholar] [CrossRef]
- Marco, Y.C.; Vidal-Matutano, P.; Morales, J.; Valido, P.H.; Potì, A.; Kehl, M.; Linstädter, J.; Weniger, G.C.; Mikdad, A. Late Glacial Landscape Dynamics Based on Macrobotanical Data: Evidence From Ifri El Baroud (NE Morocco). Environ. Archaeol. 2021, 26, 131–145. [Google Scholar] [CrossRef]
- Aouraghe, H.; Agusti, J.; Ouchaou, B.; Bailon, S.; Lopez-Garcia, J.M.; Haddoumi, H.; Hammouti, K.E.; Oujaa, A.; Bougariane, B. The Holocene vertebrate fauna from Guenfouda site, Eastern Morocco. Hist. Biol. 2010, 22, 320–326. [Google Scholar] [CrossRef]
- Benvenuti, M.; Nesi, J.; Papini, M.; Risaliti, G.; Sani, F.; Moratti, G. Geology of the Toundoute Region (South Morocco): A window on the Early Jurassic-Cretaceous tectono-sedimentary evolution of the Central High Atlas. J. Maps 2024, 20, 2419456. [Google Scholar] [CrossRef]
- Ouallali, A.; Aassoumi, H.; Moukhchane, M.; Moumou, A.; Houssni, M.; Spalevic, V.; Keesstra, S. Sediment mobilization study on Cretaceous, Tertiary and Quaternary lithological formations of an external Rif catchment, Morocco. Hydrol. Sci. J. 2020, 65, 1568–1582. [Google Scholar] [CrossRef]
- Bouziane Khalloufi, D.O.; Lelièvre, H. New paleontological and geological data about Jbel Tselfat (Late Cretaceous of Morocco). Hist. Biol. 2010, 22, 57–70. [Google Scholar] [CrossRef]
- Ali EL-Omairi, M.; El Garouani, A.; Shebl, A. Investigation of lineament extraction: Analysis and comparison of digital elevation models in the Ait Semgane region, Morocco. Remote Sens. Appl. Soc. Environ. 2024, 36, 101321. [Google Scholar] [CrossRef]
- Cai, Y.; Shi, Q.; Xu, X.; Liu, X. A novel approach towards continuous monitoring of forest change dynamics in fragmented landscapes using time series Landsat imagery. Int. J. Appl. Earth Obs. Geoinf. 2023, 118, 103226. [Google Scholar] [CrossRef]
- Lemenkova, P. Exploitation d’images satellitaires Landsat de la région du Cap (Afrique du Sud) pour le calcul et la cartographie d’indices de végétation à l’aide du logiciel GRASS GIS. Physio-Géo 2024, 20, 113–129. [Google Scholar] [CrossRef]
- Xiong, Y.; Kang, Q.; Xu, W.; Huang, S.; Dai, F.; Wang, L.; Lu, N.; Kou, W. The dynamics of tea plantation encroachment into forests and effect on forest landscape pattern during 1991–2021 through time series Landsat images. Ecol. Indic. 2022, 141, 109132. [Google Scholar] [CrossRef]
- Noy, K.; Silver, M.; Pesek, O.; Yizhaq, H.; Marais, E.; Karnieli, A. Spatial and spectral analysis of fairy circles in Namibia on a landscape scale using satellite image processing and machine learning analysis. Int. J. Appl. Earth Obs. Geoinf. 2023, 121, 103377. [Google Scholar] [CrossRef]
- Lemenkova, P. Artificial Neural Networks for Mapping Coastal Lagoon of Chilika Lake, India, Using Earth Observation Data. J. Mar. Sci. Eng. 2024, 12, 709. [Google Scholar] [CrossRef]
- Wei Su, D.S.; Zhang, X. Satellite image analysis using crowdsourcing data for collaborative mapping: Current and opportunities. Int. J. Digit. Earth 2020, 13, 645–660. [Google Scholar] [CrossRef]
- Potter, C. Ten years of forest cover change in the Sierra Nevada detected using Landsat satellite image analysis. Int. J. Remote Sens. 2014, 35, 7136–7153. [Google Scholar] [CrossRef]
- Lemenkova, P. Deep Learning Methods of Satellite Image Processing for Monitoring of Flood Dynamics in the Ganges Delta, Bangladesh. Water 2024, 16, 1141. [Google Scholar] [CrossRef]
- Wang, F.; Han, L.; Liu, L.; Bai, C.; Ao, J.; Hu, H.; Li, R.; Li, X.; Guo, X.; Wei, Y. Advancements and Perspective in the Quantitative Assessment of Soil Salinity Utilizing Remote Sensing and Machine Learning Algorithms: A Review. Remote Sens. 2024, 16, 4812. [Google Scholar] [CrossRef]
- Cui, J.; Zhang, X.; Du, C.; Li, G. Remote Sensing Identification of Harmful Algae in Ulansuhai Lake with Machine Learning. Water 2025, 17, 50. [Google Scholar] [CrossRef]
- Vasconcelos, R.N.; de Santana, M.M.M.; Costa, D.P.; Duverger, S.G.; Ferreira-Ferreira, J.; Oliveira, M.; Barbosa, L.d.S.; Cordeiro, C.L.; Franca Rocha, W.J.S. Machine Learning Model Reveals Land Use and Climate’s Role in Caatinga Wildfires: Present and Future Scenarios. Fire 2025, 8, 8. [Google Scholar] [CrossRef]
- Farah, I.R.; Ahmed, M.B. Towards an intelligent multi-sensor satellite image analysis based on blind source separation using multi-source image fusion. Int. J. Remote Sens. 2010, 31, 13–38. [Google Scholar] [CrossRef]
- Lemenkova, P. Monitoring Seasonal Fluctuations in Saline Lakes of Tunisia Using Earth Observation Data Processed by GRASS GIS. Land 2023, 12, 1995. [Google Scholar] [CrossRef]
- Layati, E.; Ouigmane, A.; de Carvalho Alves, M.; Bagyaraj, M.; Qadem, A.; Ghachi, M.E. Contribution of GIS and Remote Sensing to Study and Analyze the Physiographic Characteristics of the Oued El-Abid Watershed (Central High Atlas, Morocco). Pap. Appl. Geogr. 2022, 8, 146–162. [Google Scholar] [CrossRef]
- Layati, E.; Ghachi, M.E. Oued Lakhdar watershed (Morocco), monitoring land use/cover changes: Remote sensing and GIS approach. Geol. Ecol. Landscapes 2024, 1–13. [Google Scholar] [CrossRef]
- da Paz Gomes Brandão Ferraz, D.; Vicens, R.S. Comparison between machine learning classification and trajectory-based change detection for identifying eucalyptus areas in Landsat time series. Remote Sens. Appl. Soc. Environ. 2024, 101444. [Google Scholar] [CrossRef]
- Lemenkova, P. GRASS GIS for classification of Landsat TM images by maximum likelihood discriminant analysis: Tokyo area, Japan. Geod. Glas. 2020, 51, 5–25. [Google Scholar] [CrossRef]
- Laroche-Pinel, E.; Cianciola, V.; Singh, K.; Vivaldi, G.A.; Brillante, L. Assessing the spatial-temporal performance of machine learning in predicting grapevine water status from Landsat 8 imagery via block-out and date-out cross-validation. Agric. Water Manag. 2024, 306, 109163. [Google Scholar] [CrossRef]
- Nilkamal More, V.B.N.; Banerjee, B. Machine learning on high performance computing for urban greenspace change detection: Satellite image data fusion approach. Int. J. Image Data Fusion 2020, 11, 218–232. [Google Scholar] [CrossRef]
- García-Pedrero, A.; Gonzalo-Martín, C.; Lillo-Saavedra, M. A machine learning approach for agricultural parcel delineation through agglomerative segmentation. Int. J. Remote Sens. 2017, 38, 1809–1819. [Google Scholar] [CrossRef]
- Nasiri, V.; Hawryło, P.; Janiec, P.; Socha, J. Comparing Object-Based and Pixel-Based Machine Learning Models for Tree-Cutting Detection with PlanetScope Satellite Images: Exploring Model Generalization. Int. J. Appl. Earth Obs. Geoinf. 2023, 125, 103555. [Google Scholar] [CrossRef]
- Ebrahimy, H.; Zhang, Z. Per-pixel accuracy as a weighting criterion for combining ensemble of extreme learning machine classifiers for satellite image classification. Int. J. Appl. Earth Obs. Geoinf. 2023, 122, 103390. [Google Scholar] [CrossRef]
- Fu, H.; Li, H.; Fu, A.; Wang, X.; Wang, Q. Transportation emissions monitoring and policy research: Integrating machine learning and satellite imaging. Transp. Res. Part Transp. Environ. 2024, 136, 104421. [Google Scholar] [CrossRef]
- Padhy, R.; Dash, S.K.; Mishra, J. Joint feature selection and classification of low-resolution satellite images using the SAT-6 dataset. High-Confid. Comput. 2024, 100278. [Google Scholar] [CrossRef]
- Lemenkova, P. Random Forest Classifier Algorithm of Geographic Resources Analysis Support System Geographic Information System for Satellite Image Processing: Case Study of Bight of Sofala, Mozambique. Coasts 2024, 4, 127–149. [Google Scholar] [CrossRef]
- Habib, M.; Okayli, M. An Overview of Modern Cartographic Trends Aligned with the ICA’s Perspective. Rev. Int. Geomat. 2023, 32, 1–16. [Google Scholar] [CrossRef]
- Lemenkova, P. Landscape Fragmentation and Deforestation in Sierra Leone, West Africa, Analysed Using Satellite Images. Transylv. Rev. Syst. Ecol. Res. 2024, 26, 13–26. [Google Scholar] [CrossRef]
- Khaldi, R.; Tabik, S.; Puertas-Ruiz, S.; de Giles, J.P.; Correa, J.A.H.; Zamora, R.; Segura, D.A. Individual mapping of large polymorphic shrubs in high mountains using satellite images and deep learning. Int. J. Appl. Earth Obs. Geoinf. 2024, 134, 104191. [Google Scholar] [CrossRef]
- Lemenkova, P.; Debeir, O. Satellite Image Processing by Python and R Using Landsat 9 OLI/TIRS and SRTM DEM Data on Côte d’Ivoire, West Africa. J. Imaging 2022, 8, 317. [Google Scholar] [CrossRef] [PubMed]
- Pereira, J.; Pereira, A.; Gil, A.; Mantas, V.M. Lithology mapping with satellite images, fieldwork-based spectral data, and machine learning algorithms: The case study of Beiras Group (Central Portugal). CATENA 2023, 220, 106653. [Google Scholar] [CrossRef]
- Eskandari, S.; Bordbar, S.K. Provision of land use and forest density maps in semi-arid areas of Iran using Sentinel-2 satellite images and vegetation indices. Adv. Space Res. 2025, 75, 1616–1622. [Google Scholar] [CrossRef]
- Aboutofail, S.; Slimani, H. The Paleocene–Eocene Thermal Maximum (PETM) interval in the southwestern Mediterranean Tethys at Morocco: New data from a high-resolution study of dinoflagellate cysts and palynofacies in the Rif Chain. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2024, 655, 112522. [Google Scholar] [CrossRef]
- McGregor, H.V.; Dupont, L.; Stuut, J.B.W.; Kuhlmann, H. Vegetation change, goats, and religion: A 2000-year history of land use in southern Morocco. Quat. Sci. Rev. 2009, 28, 1434–1448. [Google Scholar] [CrossRef]
- Criniti, S.; Martín-Martín, M.; Hlila, R.; Maaté, A.; Maaté, S. Detrital signatures of the Ghomaride Culm cycle (Rif Cordillera, N Morocco): New constraints for the northern Gondwana plate tectonics. Mar. Pet. Geol. 2024, 165, 106861. [Google Scholar] [CrossRef]
- Parish, R.; Funnell, D. Climate change in mountain regions: Some possible consequences in the Moroccan High Atlas. Glob. Environ. Chang. 1999, 9, 45–58. [Google Scholar] [CrossRef]
- El Talibi, H.; Zaghloul, M.N.; Perri, F.; Aboumaria, K.; Rossi, A.; El Moussaoui, S. Sedimentary evolution of the siliciclastic Aptian–Albian Massylian flysch of the Chouamat Nappe (central Rif, Morocco). J. Afr. Earth Sci. 2014, 100, 554–568. [Google Scholar] [CrossRef]
- Bonardi, G.; de Capoa, P.; Di Staso, A.; Estévez, A.; Martín-Martín, M.; Martín-Rojas, I.; Perrone, V.; Tent-Manclús, J.E. Oligocene-to-Early Miocene depositional and structural evolution of the Calabria–Peloritani Arc southern terrane (Italy) and geodynamic correlations with the Spain Betics and Morocco Rif. Geodin. Acta 2003, 16, 149–169. [Google Scholar] [CrossRef]
- Maaté, A.; Martín-Algarra, A.; Martín-Martín, M.; Serra-Kiel, J. Nouvelles donnéessur le Paléocène-Éocène des zones internes bético-rifaines. Geobios 2000, 33, 409–418. [Google Scholar] [CrossRef]
- Slimani, H.; Mahboub, I.; Toufiq, A.; Jbari, H.; Chakir, S.; Tahiri, A. Bartonian to Priabonian dinoflagellate cyst biostratigraphy and paleoenvironments of the M’karcha section in the Southern Tethys margin (Rif Chain, Northern Morocco). Mar. Micropaleontol. 2019, 153, 101785. [Google Scholar] [CrossRef]
- Martín-Martín, M.; Guerrera, F.; Cañaveras, J.C.; Alcalá, F.J.; Serrano, F.; Maaté, A.; Hlila, R.; Maaté, S.; Tramontana, M.; Sánchez-Navas, A.; et al. Paleogene evolution of the External Rif Zone (Morocco) and comparison with other western Tethyan margins. Sediment. Geol. 2023, 448, 106367. [Google Scholar] [CrossRef]
- Ait Brahim, L.; Chotin, P.; Hinaj, S.; Abdelouafi, A.; El Adraoui, A.; Nakcha, C.; Dhont, D.; Charroud, M.; Sossey Alaoui, F.; Amrhar, M.; et al. Paleostress evolution in the Moroccan African margin from Triassic to Present. Tectonophysics 2002, 357, 187–205. [Google Scholar] [CrossRef]
- Leblanc, D.; Olivier, P. Role of strike-slip faults in the Betic-Rifian orogeny. Tectonophysics 1984, 101, 345–355. [Google Scholar] [CrossRef]
- Araña, V.; Vegas, R. Plate tectonics and volcanism in the gibraltar arc. Tectonophysics 1974, 24, 197–212. [Google Scholar] [CrossRef]
- Perri, F.; Martín-Martín, M.; Maaté, A.; Hlila, R.; Maaté, S.; Criniti, S.; Capobianco, W.; Critelli, S. Provenance and paleogeographic implications for the Cenozoic sedimentary cover of the Ghomaride Complex (Internal Rif Belt), Morocco. Mar. Pet. Geol. 2022, 143, 105811. [Google Scholar] [CrossRef]
- Talmat, S.; Martín-Martín, M.; Benyoucef, M.; Ferré, B.; Belhai, D. The Koudiat El Madene unit (Kabylian “Dorsal”, Algeria) and its correlation with similar units belonging to the Rif-Betic Arc (Morocco and Spain). J. Afr. Earth Sci. 2025, 223, 105515. [Google Scholar] [CrossRef]
- Chakkour, S.; Ennouni, H.; Sahli, A.; Kadaoui, K.; Houssni, M.; Kassout, J.; Ater, M. Vegetation composition and ecological characteristics of the fragmented Alnus glutinosa woodlands of Morocco. Ecol. Front. 2024, 45, 54–67. [Google Scholar] [CrossRef]
- Hamouch, C.; Chaaouan, J.; Bouiss, C.E. Spatial-temporal assessment of soil erosion using the RUSLE model in the upstream Inaouène watershed, Northern Morocco. Nat. Hazards Res. 2025, 5, 1–9. [Google Scholar] [CrossRef]
- Ed-Dakiri, S.; Etebaai, I.; Moussaoui, S.E.; Tawfik, A.; Lamgharbaj, M.; Talibi, H.E.; Dekkaki, H.C.; Taher, M. Assessing soil erosion risk through geospatial analysis and magnetic susceptibility: A study in the Oued Ghiss dam watershed, Central Rif, Morocco. Sci. Afr. 2024, 26, e02401. [Google Scholar] [CrossRef]
- Boubekraoui, H.; Maouni, Y.; Ghallab, A.; Draoui, M.; Maouni, A. Spatio-temporal analysis and identification of deforestation hotspots in the Moroccan western Rif. Trees For. People 2023, 12, 100388. [Google Scholar] [CrossRef]
- Aqil, H.; Khattach, D.; Gout, R.E.; Mandour, A.E.; Kaufmann, O. Contribution de la gravimétrie à l’étude de la structure profonde du bassin de Bou-Houria (Maroc Nord-oriental): Implications hydrogéologiques. Hydrol. Sci. J. 2015, 60, 736–745. [Google Scholar] [CrossRef]
- Zouhri, L.; Gorini, C.; Mania, J.; Deffontaines, B.; Zerouali, A.E.H. Spatial distribution of resistivity in the hydrogeological systems, and identification of the catchment area in the Rharb basin, Morocco/Répartition spatiale de la résistivité dans les systèmes hydrogéologiques et détection des zones de captages dans le bassin du Rharb, Maroc. Hydrol. Sci. J. 2004, 49, 398. [Google Scholar] [CrossRef]
- Al Karkouri, J. Les milieux montagneux marocains à l’épreuve du changement climatique (cas de la montagne rifaine). Hespéris-Tamuda 2017, 52, 237–267. [Google Scholar]
- Duarte, D.; Magalhães, V.H.; Hernández-Molina, F.J.; Roque, C.; Menapace, W. Interaction between active tectonics, bottom-current processes and coral mounds: A unique example in the NW Moroccan Margin, southern Gulf of Cadiz. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2024, 209, 104330. [Google Scholar] [CrossRef]
- Chabli, A.; Chalouan, A.; Akil, M.; Galindo-Zaldívar, J.; Ruano, P.; Sanz de Galdeano, C.; López-Garrido, A.C.; Marín-Lechado, C.; Pedrera, A. Plio-Quaternary paleostresses in the Atlantic passive margin of the Moroccan Meseta: Influence of the Central Rif escape tectonics related to Eurasian-African plate convergence. J. Geodyn. 2014, 77, 123–134, SI: Geodynamic evolution of the Alboran domain. [Google Scholar] [CrossRef]
- Lghamour, M.; Karrat, L.; Picotti, V.; Hajdas, I.; Haghipour, N.; Guidobaldi, G.; Wyss Heeb, K.; Gourari, L. Late Pleistocene to Holocene alluvial deposits of the Inaouène Valley and their paleoenvironmental significance (north Morocco). Quat. Sci. Rev. 2024, 344, 108941. [Google Scholar] [CrossRef]
- Kairouani, H.; Abbassi, A.; Zaghloul, M.N.; El Mourabet, M.; Micheletti, F.; Fornelli, A.; Mongelli, G.; Critelli, S. The Jurassic climate change in the northwest Gondwana (External Rif, Morocco): Evidence from geochemistry and implication for paleoclimate evolution. Mar. Pet. Geol. 2024, 163, 106762. [Google Scholar] [CrossRef]
- Malusà, M.G.; Ellero, A.; Ottria, G. Tectonics of the Mw 6.8 Al Haouz earthquake (Morocco) reveals minor role of asthenospheric upwelling. Tectonophysics 2024, 891, 230533. [Google Scholar] [CrossRef]
- Sadkaoui, D.; Brahim, B.; Kader, S.; Agharroud, K.; Mihraje, A.I.; Aluni, K.; Aassoumi, H.; Sassioui, S.; Spalevic, V.; Sestras, P. Evaluation of tectonic activity using morphometric indices: Study of the case of Taïliloute ridge (middle-Atlas region, Morocco). J. Afr. Earth Sci. 2024, 213, 105219. [Google Scholar] [CrossRef]
- Costa, A.M.; da Conceição Freitas, M.; Teixeira, A.; Costa, P.J.; Santos, R.N.; Cachão, M.; Fatela, F.; Pereira, R.; Tereso, J.P.; Lopes, V.P.; et al. Environmental changes and historical occupation at Oued Laksar (Ksar Seghir), Morocco. Quat. Int. 2024, 712, 109578. [Google Scholar] [CrossRef]
- Boutahar, A.; Gonzalez, P.C.; Picone, R.M.; Crisafulli, A.; Mesa, J.M.; Redouan, F.Z.; El Bakali, I.; Kadiri, M.; Lamrani, Z.; Merzouki, A. Modern pollen–vegetation relationship in the Rif mountains (Northern Morocco). Rev. Palaeobot. Palynol. 2023, 310, 104828. [Google Scholar] [CrossRef]
- Muller, S.D.; Daoud-Bouattour, A.; Fauquette, S.; Bottollier-Curtet, M.; Rifai, N.; Robles, M.; Saber, E.R.; El Madihi, M.; Moukrim, S.; Rhazi, L. Holocene history of peatland communities of central Rif (Northern Morocco). Geobios 2022, 70, 35–53. [Google Scholar] [CrossRef]
- Ajbilou, R.; Marañón, T.; Arroyo, J. Ecological and biogeographical analyses of Mediterranean forests of northern Morocco. Acta Oecologica 2006, 29, 104–113. [Google Scholar] [CrossRef]
- Marañón, T.; Ajbilou, R.; Ojeda, F.; Arroyo, J. Biodiversity of woody species in oak woodlands of southern Spain and northern Morocco. For. Ecol. Manag. 1999, 115, 147–156. [Google Scholar] [CrossRef]
- Salmon, J.; Friedl, M.A.; Frolking, S.; Wisser, D.; Douglas, E.M. Global rain-fed, irrigated, and paddy croplands: A new high resolution map derived from remote sensing, crop inventories and climate data. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 321–334. [Google Scholar] [CrossRef]
- Zayani, I.; Ammari, M.; Ben Allal, L.; Bouhafa, K. Agroforestry olive orchards for soil organic carbon storage: Case of Saiss, Morocco. Heliyon 2023, 9, e22910. [Google Scholar] [CrossRef]
- Lemenkova, P. Evapotranspiration, vapour pressure and climatic water deficit in Ethiopia mapped using GMT and TerraClimate dataset. J. Water Land Dev. 2022, 54, 201–209. [Google Scholar] [CrossRef]
- Becker, N.C. Painting by numbers: A GMT primer for merging swath-mapping sonar data of different types and resolutions. Comput. Geosci. 2005, 31, 1075–1077. [Google Scholar] [CrossRef]
- Lemenkova, P. Mapping Climate Parameters over the Territory of Botswana Using GMT and Gridded Surface Data from TerraClimate. ISPRS Int. J.-Geo-Inf. 2022, 11, 473. [Google Scholar] [CrossRef]
- Bawa, S.; Onotu, A.A.; Akomolafe, E.A.; Sa’i, U.I. Understanding the Topography of the Gulf of Guinea Seabed Using GMT Scripting and GEBCO Gridded Data. In Proceedings of the 2024 IEEE Mediterranean and Middle-East Geoscience and Remote Sensing Symposium (M2GARSS), Oran, Algeria, 15–17 April 2024; pp. 516–520. [Google Scholar] [CrossRef]
- Shi, H.; Du, Z.; Lu, Y.; Hu, X.; Ke, X. Amery Ice Shelf Digital Elevation Model from GLAS and GMT. In Proceedings of the 2009 Third International Symposium on Intelligent Information Technology Application, Nanchang, China, 21–22 November 2009; Volume 2, pp. 129–133. [Google Scholar] [CrossRef]
- Fang, Z.; Jiang, G.; Xu, C.; Wang, S. A tectonic geodesy mapping software based on QGIS. Geod. Geodyn. 2020, 11, 31–39. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, Y.; Hu, X.; Zhang, P. Fine-Resolution Forest Height Estimation by Integrating ICESat-2 and Landsat 8 OLI Data with a Spatial Downscaling Method for Aboveground Biomass Quantification. Forests 2023, 14, 1414. [Google Scholar] [CrossRef]
- Abd El-Rahman Hegab, M.; Abou El Magd, I.; Hamed Abd El Wahid, K. Revealing Potential Mineralization Zones Utilizing Landsat-9, ASTER and Airborne Radiometric Data at Elkharaza-Dara Area, North Eastern Desert, Egypt. Egypt. J. Remote Sens. Space Sci. 2024, 27, 716–733. [Google Scholar] [CrossRef]
- Xu, Y.; Tan, Y.; Abd-Elrahman, A.; Fan, T.; Wang, Q. Incorporation of Fused Remote Sensing Imagery to Enhance Soil Organic Carbon Spatial Prediction in an Agricultural Area in Yellow River Basin, China. Remote Sens. 2023, 15, 2017. [Google Scholar] [CrossRef]
- Aghababaei, M.; Ebrahimi, A.; Naghipour, A.A.; Asadi, E.; Verrelst, J. Classification of Plant Ecological Units in Heterogeneous Semi-Steppe Rangelands: Performance Assessment of Four Classification Algorithms. Remote Sens. 2021, 13, 3433. [Google Scholar] [CrossRef]
- Kusi, K.K.; Khattabi, A.; Mhammdi, N. Integrated assessment of ecosystem services in response to land use change and management activities in Morocco. Arab. J. Geosci. 2021, 14, 418. [Google Scholar] [CrossRef]
- Hamdani, N.; Baali, A. Impact of Land Use/Land Cover (LULC) Changes on the Watersheds of Three Lakes in the Central Middle Atlas, (Morocco). In Advanced Technology for Smart Environment and Energy; Springer Nature: Cham, Switzerland, 2024; pp. 185–196. [Google Scholar] [CrossRef]
- Kusi, K.K.; Khattabi, A.; Mhammdi, N. Analyzing the impact of land use change on ecosystem service value in the main watersheds of Morocco. Environ. Dev. Sustain. 2023, 25, 2688–2715. [Google Scholar] [CrossRef]
- El fallah, K.; El kharrim, K.; Belghyti, D. Land use land cover change detection by using remote sensing in Meknes province, Morocco with an indicator based (DPSIR) approach. Vegetos 2025, 38, 2181–2193. [Google Scholar] [CrossRef]
- Diachronic Analysis of Land Use/Land Cover Impacts on Carbon Storage in Agadir City (Morocco); Springer Nature: Cham, Switzerland, 2024. [CrossRef]
- Zaher, H.; Sabir, M.; Benjelloun, H.; Paul-Igor, H. Effect of forest land use change on carbohydrates, physical soil quality and carbon stocks in Moroccan cedar area. J. Environ. Manag. 2020, 254, 109544. [Google Scholar] [CrossRef] [PubMed]
- Moumane, A.; Al Karkouri, J.; Benmansour, A.; El Ghazali, F.E.; Fico, J.; Karmaoui, A.; Batchi, M. Monitoring long-term land use, land cover change, and desertification in the Ternata oasis, Middle Draa Valley, Morocco. Remote Sens. Appl. Soc. Environ. 2022, 26, 100745. [Google Scholar] [CrossRef]
- Mulas, M.; Bellavite, D.; Lubino, M.; Belkheiri, O.; Enne, G. Participatory Approach for Integrated Development and Management of North African Marginal Zones: Demonstrative Plan to Fight Desertification in Morocco and Tunisia. Ital. J. Agron. 2012, 7, e46. [Google Scholar] [CrossRef]
- Kouba, Y.; Gartzia, M.; El Aich, A.; Alados, C.L. Deserts do not advance, they are created: Land degradation and desertification in semiarid environments in the Middle Atlas, Morocco. J. Arid. Environ. 2018, 158, 1–8. [Google Scholar] [CrossRef]
- Mayaux, P.L.; Fernandez, S. Blinded like a state: Water scarcity and the quantification dilemma in Morocco. Geoforum 2024, 155, 104093. [Google Scholar] [CrossRef]
- Chebli, Y.; Chentouf, M.; Ozer, P.; Hornick, J.L.; Cabaraux, J.F. Forest and silvopastoral cover changes and its drivers in northern Morocco. Appl. Geogr. 2018, 101, 23–35. [Google Scholar] [CrossRef]
- Aouatif Adghir, H.D.J.; Kettani, K. The Tipulidae (Diptera) of northern Morocco with a focus on the Rif region, including the description of a new species of Tipula (Lunatipula) and an updated checklist for Morocco. Ann. SociéTé Entomol. Fr. 2018, 54, 522–538. [Google Scholar] [CrossRef]
- Boutahar, A.; Gonzalez, P.C.; Picone, R.M.; Crisafulli, A.; Mesa, J.M.; Redouan, F.Z.; Bakali, I.E.; Kadiri, M.; Lamrani, Z.; Merzouki, A. The relationships between modern pollen rain assemblages and vegetation from Sougna Mountain (Rif Mountains-Northern Morocco). Palynology 2024, 48, 2358016. [Google Scholar] [CrossRef]
- Jiménez, J.A.; Ros, R.M.; Cano, M.J.; Guerra, J. Contribution to the bryophyte flora of Morocco: Terricolous and saxicolous bryophytes of the Jbel Bouhalla. J. Bryol. 2002, 24, 243–250. [Google Scholar] [CrossRef]
- Dahmani, L.; Laaribya, S.; Naim, H.; Dindaroglu, T. Landslide hazard mapping in Chefchaouen, Morocco: AHP-GIS integration. Int. J. Environ. Stud. 2024, 24, 12483. [Google Scholar] [CrossRef]
- Es-Smairi, A.; Moutchou, B.E.; Touhami, A.E.O.; Namous, M.; Mir, R.A. Landslide susceptibility mapping using GIS-based bivariate models in the Rif chain (northernmost Morocco). Geocarto Int. 2022, 37, 15347–15377. [Google Scholar] [CrossRef]
- Manaouch, M.; Sadiki, M.; Aghad, M.; Pham, Q.B.; Batchi, M.; Karkouri, J.A. Assessment of landslide susceptibility using machine learning classifiers in Ziz upper watershed, SE Morocco. Phys. Geogr. 2024, 45, 203–230. [Google Scholar] [CrossRef]
Class | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
January | 766 | 465 | 554 | 736 | 1031 | 785 | 462 | 1016 | 646 | 149 |
March | 720 | 341 | 696 | 673 | 1060 | 791 | 587 | 821 | 720 | 203 |
May | 742 | 348 | 545 | 449 | 904 | 912 | 905 | 722 | 645 | 501 |
July | 766 | 465 | 554 | 736 | 1031 | 785 | 462 | 1016 | 646 | 149 |
September | 668 | 424 | 674 | 318 | 793 | 791 | 1099 | 1023 | 683 | 222 |
November | 781 | 483 | 701 | 675 | 1097 | 429 | 744 | 833 | 734 | 225 |
Class | Band 1 | Band 2 | Band 3 | Band 4 | Band 5 | Band 6 | Band 7 |
---|---|---|---|---|---|---|---|
2023: January | |||||||
1 | 8053.66 | 8105.74 | 7961.36 | 7451.51 | 7386.15 | 7411.52 | 7385.87 |
2 | 7529.44 | 7754.46 | 8346.18 | 8318.72 | 11,431.1 | 10,065.3 | 8996.52 |
3 | 8054.51 | 8324.72 | 9136.1 | 9317.05 | 12,308.5 | 12,725.3 | 11,052.1 |
4 | 7889.8 | 8102.02 | 8942.29 | 8745.57 | 14,901.1 | 12,282.7 | 10,135 |
5 | 8332 | 8667.33 | 9728.08 | 10061.3 | 14,289.8 | 14,818.8 | 12,637.9 |
6 | 8110.13 | 8324.27 | 9467.21 | 9012.78 | 17,982.6 | 13,440.9 | 10,707.4 |
7 | 8251.2 | 8447.13 | 9831.94 | 9044.77 | 21,802.8 | 13,717.8 | 10,608.9 |
8 | 8640.53 | 9039.94 | 10,407.5 | 10,794.4 | 16,840.5 | 16,286.3 | 13,653.7 |
9 | 9111.71 | 9625.79 | 11,316.9 | 12,294.1 | 17,724.7 | 19,083.2 | 16,430 |
10 | 11,270 | 12,124 | 14,516 | 16,218.7 | 21,505.9 | 23,336.4 | 20,483 |
2023: March | |||||||
1 | 7732.78 | 7928.37 | 7997.69 | 7540.35 | 7530.62 | 7850.57 | 7839.92 |
2 | 7850.68 | 8119.44 | 9096.92 | 8986.22 | 16,313.3 | 12,929.6 | 10,370.1 |
3 | 8406.34 | 8821.78 | 10,011.9 | 10,547.6 | 15,377.5 | 14,966.2 | 12,509.7 |
4 | 8377.33 | 8825.2 | 10,246.8 | 10,459 | 19,450.9 | 15,628.6 | 12,195.9 |
5 | 8777.26 | 9318.35 | 10,778.5 | 11,790.6 | 16,488.5 | 17,202.7 | 14,298.8 |
6 | 9050.82 | 9764.11 | 11,495.9 | 12,894.6 | 18,940.7 | 17,954 | 14,120.4 |
7 | 9129.74 | 9761.09 | 11,407.2 | 12,937.6 | 17,616.1 | 19,787.9 | 16,566.3 |
8 | 9848.06 | 10,823.1 | 12,951.4 | 15,075.9 | 19,854.8 | 20,511.1 | 16,312.7 |
9 | 9570.95 | 10,302.4 | 12,240.4 | 14,420.2 | 19,123.6 | 22,705 | 19,360.4 |
10 | 10,759 | 11,957.4 | 14,571.2 | 17,344.9 | 21,903.1 | 24,000.4 | 19,583.5 |
2023: May | |||||||
1 | 8111.51 | 8199.08 | 8100.88 | 7465.42 | 7287.35 | 7335.55 | 7330.84 |
2 | 7565.9 | 7794.02 | 8480.23 | 8399.37 | 13,105.3 | 11,135.9 | 9540.2 |
3 | 7941.53 | 8209.27 | 9135.12 | 9131.33 | 14,663.5 | 13,138.1 | 10,966.2 |
4 | 8278.6 | 8635.24 | 9757.47 | 10183.6 | 14,710.6 | 15,182 | 12,997.8 |
5 | 8007.61 | 8238.4 | 9379.12 | 9007.12 | 18,137.6 | 13,349.7 | 10,649.6 |
6 | 7959.3 | 8113.15 | 9263.84 | 8488.51 | 22,413.9 | 12,764.6 | 9831.97 |
7 | 8460.35 | 8799.31 | 10,364.7 | 10,092.9 | 20,827.9 | 15,638.7 | 12,351.6 |
8 | 8552.87 | 8939.44 | 10,306.6 | 10,660.9 | 17,349.2 | 16,382.3 | 13,624.4 |
9 | 8999.75 | 9517.87 | 11,173.8 | 12,159.9 | 17,889.8 | 18,838.8 | 16,259.8 |
10 | 10,309.3 | 11,076.4 | 13,413.5 | 15,174.4 | 20,565.5 | 22,691.1 | 20,127.9 |
Class | Band 1 | Band 2 | Band 3 | Band 4 | Band 5 | Band 6 | Band 7 |
---|---|---|---|---|---|---|---|
2023: July | |||||||
1 | 7500.81 | 7646.92 | 7722.75 | 7376.19 | 7464.38 | 7798.77 | 7755.02 |
2 | 8127.96 | 8540.32 | 9609.1 | 9705.24 | 15,267.4 | 13,436.5 | 11,015.4 |
3 | 8252.89 | 8754.25 | 10,217.3 | 10,220.6 | 19,793.6 | 15,491.7 | 12,155.2 |
4 | 8632.51 | 9160.58 | 10,487.1 | 11,145.4 | 15,532 | 15,921.1 | 13,380.2 |
5 | 8846.49 | 9479.29 | 11,046.4 | 11,830.1 | 17,492.5 | 17,638.3 | 14,481.8 |
6 | 9201.59 | 9873.76 | 11,411 | 12,488 | 15,585.3 | 18,152.4 | 15,358.2 |
7 | 9293.07 | 10,015.1 | 11,685.1 | 13,029.5 | 17,033.7 | 19,868.5 | 16,751.3 |
8 | 10,080.1 | 10,993.2 | 12,891.2 | 14,295.8 | 17,321.4 | 20,518.4 | 17,159.1 |
9 | 9985.18 | 10,842.3 | 12,815.2 | 14,613.6 | 18,222.5 | 22,332.9 | 19,188 |
10 | 10,968.9 | 12,001.6 | 14,474.9 | 16,602.5 | 19,960 | 24,353.3 | 21,345.3 |
2023: September | |||||||
1 | 8057.65 | 8039.26 | 7748.32 | 7366.06 | 7277.01 | 7381.23 | 7381.57 |
2 | 7726.42 | 7990.22 | 8786.58 | 8828.21 | 14,163.6 | 12,041.9 | 10,029.1 |
3 | 8247.64 | 8609.77 | 9618.74 | 10,150.4 | 14,170.5 | 14,536.1 | 12,265.5 |
4 | 8313.97 | 8631 | 9791.5 | 9795.11 | 18,703.7 | 14,820.3 | 11,736 |
5 | 8759.38 | 9204.49 | 10,345.5 | 11,259.8 | 13,905.7 | 16,652 | 14,282 |
6 | 8851.15 | 9357.15 | 10,724.4 | 11,653 | 16,282.7 | 17,375 | 14,521.9 |
7 | 9289.65 | 9878.35 | 11,350.2 | 12,612.5 | 15,641.1 | 18,960.8 | 16,187 |
8 | 9656.35 | 10,336.8 | 12,032.2 | 13,588.6 | 16,911.5 | 20,589.9 | 17,615.2 |
9 | 10,122.7 | 10,879.8 | 12,859.4 | 14,816 | 18,280.5 | 22,704 | 19,758.4 |
10 | 11,172.9 | 12,165.6 | 14,822.7 | 17,351.5 | 20,822.6 | 25,700.6 | 22,812.4 |
2023: November | |||||||
1 | 7982.57 | 7976.11 | 7746.84 | 7371.42 | 7374.01 | 7416.82 | 7387.47 |
2 | 7606.96 | 7848.7 | 8421.42 | 8450.72 | 11,883.1 | 10,576.5 | 9345.26 |
3 | 8009.92 | 8271.76 | 9076.5 | 9113.51 | 14,879.4 | 13,007.5 | 10,800.5 |
4 | 8443.29 | 8714.75 | 9430.96 | 9844.52 | 11,725.6 | 13,884.5 | 12,143.8 |
5 | 8688.21 | 9043.79 | 10003.6 | 10602.4 | 13,637.5 | 15,634.6 | 13,570.2 |
6 | 8371.09 | 8671.7 | 9834.34 | 9692.7 | 18,571.4 | 14,782.6 | 11,792.6 |
7 | 8804.19 | 9223.59 | 10,496.4 | 11,154 | 16,783.6 | 17,135.9 | 14,444 |
8 | 9160.99 | 9627.78 | 10,860.9 | 11,853.9 | 14,513.2 | 17,931.3 | 15,848 |
9 | 9542.27 | 10,134.7 | 11,817.5 | 13,258.5 | 17,309 | 20,476.2 | 18,053.6 |
10 | 11,042.5 | 12,012.4 | 14,554.4 | 16,720.1 | 20,561.1 | 25,084.9 | 22,211.2 |
Iteration | 01/2023 | 03/2023 | 05/2023 | 07/2023 | 09/2023 | 11/2023 |
---|---|---|---|---|---|---|
Iteration 1 | 74.15% | 81.46% | 58.44% | 74.15% | 81.12% | 81.47% |
Iteration 2 | 77.52% | 88.60% | 74.76% | 77.52% | 88.74% | 78.51% |
Iteration 3 | 90.02% | 88.06% | 89.85% | 90.02% | 92.05% | 85.56% |
Iteration 4 | 93.59% | 93.42% | 94.81% | 93.59% | 94.67% | 92.87% |
Iteration 5 | 95.31% | 95.40% | 96.52% | 95.31% | 95.25% | 96.37% |
Iteration 6 | 96.32% | 95.94% | 96.85% | 96.32% | 96.21% | 97.33% |
Iteration 7 | 97.11% | 96.88% | 97.34% | 97.11% | 97.09% | 97.66% |
Iteration 8 | 97.05% | 97.78% | 97.60% | 97.05% | 97.19% | 97.97% |
Iteration 9 | 97.55% | 98.16% | 98.03% | 97.55% | 97.46% | 98.24% |
Convergence | 98.1% | 98.2% | 98.0% | 98.1% | 98.0% | 98.2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lemenkova, P. Improving Bimonthly Landscape Monitoring in Morocco, North Africa, by Integrating Machine Learning with GRASS GIS. Geomatics 2025, 5, 5. https://doi.org/10.3390/geomatics5010005
Lemenkova P. Improving Bimonthly Landscape Monitoring in Morocco, North Africa, by Integrating Machine Learning with GRASS GIS. Geomatics. 2025; 5(1):5. https://doi.org/10.3390/geomatics5010005
Chicago/Turabian StyleLemenkova, Polina. 2025. "Improving Bimonthly Landscape Monitoring in Morocco, North Africa, by Integrating Machine Learning with GRASS GIS" Geomatics 5, no. 1: 5. https://doi.org/10.3390/geomatics5010005
APA StyleLemenkova, P. (2025). Improving Bimonthly Landscape Monitoring in Morocco, North Africa, by Integrating Machine Learning with GRASS GIS. Geomatics, 5(1), 5. https://doi.org/10.3390/geomatics5010005