Building Footprint Identification Using Remotely Sensed Images: A Compressed Sensing-Based Approach to Support Map Updating
Abstract
:1. Introduction
2. Materials and Methods
2.1. Datasets
2.2. Compressed Sensing
2.3. Feature Extraction
- The compressed texton dictionary learning stage involves directly learning a universal compressed texton dictionary W in the compressed domain X, rather than from the patch domain P.
- In order to identify a buildup area from the input image, a machine learning model that has been trained for semantic segmentation is applied to the texton vector that contains the extracted features in step (1). Our classifier system employs a neural network that is based on the radial basis function as its learning paradigm.
2.4. Radial Basis Function Classifier
Algorithm 1. Training the CS-RBF model |
Inputs: The original images and texture features. The cross-entropy error is used as the loss function. Output: Weight and bias matrices; the predicted output of the CS-RBF (label values) Procedure: 1: Initialize learning rate, batch size, kernel size, number of kernels, number of max iterations, dropout, and so on. 2: Generate random weights with a Gaussian type and biases with 0; CS-RBF_model = InitCS-RBF_model (weights and bias matrices); 3: While iter < max iteration or error > min error do Compute error according to loss function For iter = 1 to iter < = number/(batch size) do CS-RBF_model.train (TrianingData and TraingLabels), as loss is minimized with gradient descent; update weight and bias matrices; end for iter ++ end while 4: Save parameters (weight, bias) of the CS-RBF; 5: Training CS-RBF finished. |
2.5. Performance Metrics and Comparison with Other Methods
- TP (true positive): represents the number of building pixels that have been properly classified as buildings.
- FP (false positive): represents the number of non-building pixels being misclassified as buildings.
- FN (false negative): represents the number of building pixels being misclassified as non-buildings.
- TN (true negative): represents the number of non-building pixels that have been properly classified as non-buildings.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Z.; Xin, Q.; Sun, Y.; Cao, M. A deep learning-based framework for automated extraction of building footprint polygons from very high-resolution aerial imagery. Remote Sens. 2021, 13, 3630. [Google Scholar] [CrossRef]
- Wagner, F.H.; Dalagnol, R.; Sánchez, A.H.; Hirye, M.C.; Favrichon, S.; Lee, J.H.; Mauceri, S.; Yang, Y.; Saatchi, S. K-textures, a self-supervised hard clustering deep learning algorithm for satellite image segmentation. Front. Environ. Sci. 2022, 10, 946729. [Google Scholar] [CrossRef]
- Reska, D.; Kretowski, M. GPU-accelerated image segmentation based on level sets and multiple texture features. Multimed. Tools Appl. 2021, 80, 5087–5109. [Google Scholar] [CrossRef]
- Alsmadi, M.K. Content-based image retrieval using color, shape and texture descriptors and features. Arab. J. Sci. Eng. 2020, 45, 3317–3330. [Google Scholar] [CrossRef]
- Humeau-Heurtier, A. Color texture analysis: A survey. IEEE Access 2022, 10, 107993–108003. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, C.; Fu, Q.; Kou, R.; Huang, F.; Yang, B.; Gao, M. Techniques and challenges of image segmentation: A review. Electronics 2023, 12, 1199. [Google Scholar] [CrossRef]
- Ranjbarzadeh, R.; Sadeghi, S.; Fadaeian, A.; Jafarzadeh Ghoushchi, S.; Tirkolaee, E.B.; Caputo, A.; Bendechache, M. ETACM: An encoded-texture active contour model for image segmentation with fuzzy boundaries. In Soft Computing; Springer: New York, NY, USA, 2023; pp. 1–13. [Google Scholar]
- Sun, G.; Huang, D.; Peng, Y.; Cheng, L.; Wu, B.; Zhang, Y. Efficient segmentation with texture in ore images based on box-supervised approach. Eng. Appl. Artif. Intell. 2024, 128, 107490. [Google Scholar] [CrossRef]
- Zubair, A.R.; Alo, O.A. Grey level co-occurrence matrix (GLCM) based second order statistics for image texture analysis. arXiv 2024, arXiv:2403.04038. [Google Scholar]
- Chen, X.; Zheng, C.; Yao, H.; Wang, B. Image segmentation using a unified Markov random field model. IET Image Process. 2017, 11, 860–869. [Google Scholar] [CrossRef]
- Almakady, Y.; Mahmoodi, S.; Bennett, M. Adaptive volumetric texture segmentation based on Gaussian Markov random fields features. Pattern Recognit. Lett. 2020, 140, 101–108. [Google Scholar] [CrossRef]
- Hu, S.; Li, J.; Fan, H.; Lan, S.; Pan, Z. Scale and pattern adaptive local binary pattern for texture classification. Expert Syst. Appl. 2024, 240, 122403. [Google Scholar] [CrossRef]
- Farhan, A.H.; Kamil, M.Y. Texture analysis of mammogram using local binary pattern method. J. Phys. Conf. Ser. 2020, 1530, 012091. [Google Scholar] [CrossRef]
- Zhu, L.; Chen, T.; Yin, J.; See, S.; Liu, J. Learning Gabor texture features for fine-grained recognition. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 1–6 October 2023; pp. 1621–1631. [Google Scholar]
- Li, Y.; Ge, M.; Zhang, S.; Wang, K. Adaptive segmentation algorithm for subtle defect images on the surface of magnetic ring using 2d-gabor filter bank. Sensors 2024, 24, 1031. [Google Scholar] [CrossRef] [PubMed]
- Lai, X.; Yang, J.; Li, Y.; Wang, M. A building extraction approach based on the fusion of LiDAR point cloud and elevation map texture features. Remote Sens. 2019, 11, 1636. [Google Scholar] [CrossRef]
- Konstantinidis, D.; Stathaki, T.; Argyriou, V.; Grammalidis, N. Building detection using enhanced HOG–LBP features and region refinement processes. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 10, 888–905. [Google Scholar] [CrossRef]
- Ansari, R.A.; Buddhiraju, K.M. Textural classification based on wavelet, curvelet and contourlet features. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 2753–2756. [Google Scholar]
- Ansari, R.A.; Buddhiraju, K.M.; Bhattacharya, A. Textural classification of remotely sensed images using multiresolution techniques. Geocarto Int. 2020, 35, 1580–1602. [Google Scholar] [CrossRef]
- Ansari, R.A.; Buddhiraju, K.M.; Malhotra, R. Urban change detection analysis utilizing multiresolution texture features from polarimetric SAR images. Remote Sens. Appl. Soc. Environ. 2020, 20, 100418. [Google Scholar] [CrossRef]
- Lucas, C.G.; Gilles, J. Demons registration for 2D empirical wavelet transform: Application to texture segmentation. arXiv 2024, arXiv:2409.13075. [Google Scholar]
- Su, H.; Chen, J.; Li, Z.; Meng, H.; Wang, X. The fusion feature wavelet pyramid based on FCIS and GLCM for texture classification. Int. J. Mach. Learn. Cybern. 2024, 15, 1907–1926. [Google Scholar] [CrossRef]
- Chen, Z.; Zheng, Y. Research on Extraction Method of Surface Information Based on Multi-Feature Combination Such as Fractal Texture. J. Geosci. Environ. Prot. 2023, 11, 50–66. [Google Scholar] [CrossRef]
- Zhang, K.; Wei, G.; Luo, Y.; Zhao, Y.; Zhao, Y.; Zhang, J. Evaluation of aggregate distribution homogeneity for asphalt pavement based on the fractal characteristic of three-dimensional texture. Int. J. Pavement Res. Technol. 2024, 17, 577–594. [Google Scholar] [CrossRef]
- Tang, Z.; Yan, S.; Xu, C. Adaptive super-resolution image reconstruction based on fractal theory. Displays 2023, 80, 102544. [Google Scholar] [CrossRef]
- Candes, E.J.; Tao, T. Near-optimal signal recovery from random projections: Universal encoding strategies? IEEE Trans. Inf. Theory 2006, 52, 5406–5425. [Google Scholar] [CrossRef]
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Yuan, W.; Tian, J.; Hou, B. Image compressed sensing reconstruction algorithm based on attention mechanism. In Proceedings of the International Conference on Computer Vision, Application, and Design (CVAD 2021), Sanya, China, 19–21 November 2021; Volume 12155, pp. 40–45. [Google Scholar]
- Xiang, J.; Zang, Y.; Jiang, H.; Wang, L.; Liu, Y. Soft threshold iteration-based anti-noise compressed sensing image reconstruction network. Signal Image Video Process. 2023, 17, 4523–4531. [Google Scholar] [CrossRef]
- Li, Y.; Song, B.; Kang, X.; Du, X.; Guizani, M. Vehicle-type detection based on compressed sensing and deep learning in vehicular networks. Sensors 2018, 18, 4500. [Google Scholar] [CrossRef]
- Emara, H.M.; El-Shafai, W.; Algarni, A.D.; Soliman, N.F.; Abd El-Samie, F.E. A Hybrid Compressive Sensing and Classification Approach for Dynamic Storage Management of Vital Biomedical Signals. IEEE Access 2023, 11, 108126–108151. [Google Scholar] [CrossRef]
- Gao, Z.; Guo, Y.; Zhang, J.; Zeng, T.; Yang, G. Hierarchical perception adversarial learning framework for compressed sensing MRI. IEEE Trans. Med. Imaging 2023, 42, 1859–1874. [Google Scholar] [CrossRef]
- Shakya, A.K.; Vidyarthi, A. Comprehensive study of compression and texture integration for digital imaging and communications in medicine data analysis. Technologies 2024, 12, 17. [Google Scholar] [CrossRef]
- Monika, R.; Dhanalakshmi, S. An optimal adaptive reweighted sampling-based adaptive block compressed sensing for underwater image compression. Vis. Comput. 2024, 40, 4071–4084. [Google Scholar] [CrossRef]
- Altamimi, A.; Ben Youssef, B. Lossless and Near-Lossless Compression Algorithms for Remotely Sensed Hyperspectral Images. Entropy 2024, 26, 316. [Google Scholar] [CrossRef]
- Fu, C.; Du, B.; Huang, X. Hyperspectral image compression based on multiple priors. J. Frankl. Inst. 2024, 361, 107056. [Google Scholar] [CrossRef]
- Fu, C.; Du, B. Remote sensing image compression based on the multiple prior information. Remote Sens. 2023, 15, 2211. [Google Scholar] [CrossRef]
- El-Ashkar, A.M.; Taha TE, S.; El-Fishawy, A.S.; Abd-Elnaby, M.; Abd El-Samie, F.E.; El-Shafai, W. Simultaneous compressed sensing and single-image super resolution for SAR image reconstruction. Opt. Quantum Electron. 2023, 55, 544. [Google Scholar] [CrossRef]
- Xiang, S.; Liang, Q. Remote sensing image compression based on high-frequency and low-frequency components. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5604715. [Google Scholar] [CrossRef]
- Gan, H.; Shen, M.; Hua, Y.; Ma, C.; Zhang, T. From patch to pixel: A transformer-based hierarchical framework for compressive image sensing. IEEE Trans. Comput. Imaging 2023, 9, 133–146. [Google Scholar] [CrossRef]
- Xu, J.; Bi, W.; Yan, L.; Du, H.; Qiu, B. An efficient lightweight generative adversarial network for compressed sensing magnetic resonance imaging reconstruction. IEEE Access 2023, 11, 24604–24614. [Google Scholar] [CrossRef]
- Hu, H.; Liu, C.; Liu, S.; Ying, S.; Wang, C.; Ding, Y. Full-Process Adaptive Encoding and Decoding Framework for Remote Sensing Images Based on Compression Sensing. Remote Sens. 2024, 16, 1529. [Google Scholar] [CrossRef]
- Chai, X.; Song, S.; Gan, Z.; Long, G.; Tian, Y.; He, X. CSENMT: A deep image compressed sensing encryption network via multi-color space and texture feature. Expert Syst. Appl. 2024, 241, 122562. [Google Scholar] [CrossRef]
- Peyré, G. Sparse modeling of textures. J. Math. Imaging Vis. 2009, 34, 17–31. [Google Scholar] [CrossRef]
- Böttger, T.; Ulrich, M. Real-time texture error detection on textured surfaces with compressed sensing. Pattern Recognit. Image Anal. 2016, 26, 88–94. [Google Scholar] [CrossRef]
- Wahid, A.; Shah, J.A.; Khan, A.U.; Ahmed, M.; Razali, H. Multi-layer basis pursuit for compressed sensing MR image reconstruction. IEEE Access 2020, 8, 186222–186232. [Google Scholar] [CrossRef]
- Irawati, I.D.; Hadiyoso, S.; Budiman, G.; Fahmi, A.; Latip, R. A novel texture extraction-based compressive sensing for lung cancer classification. J. Med. Signals Sens. 2022, 12, 278–284. [Google Scholar] [CrossRef]
- Yin, Z.; Shi, W.; Wu, Z.; Zhang, J. Multilevel wavelet-based hierarchical networks for image compressed sensing. Pattern Recognit. 2022, 129, 108758. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, J.; Zhang, G. Compression of remotely sensed astronomical image using wavelet-based compressed sensing in deep space exploration. Remote Sens. 2021, 13, 288. [Google Scholar] [CrossRef]
- Irawati, I.D.; Budiman, G.; Saidah, S.; Rahmadiani, S.; Latip, R. Block-based compressive sensing in deep learning using AlexNet for vegetable classification. PeerJ Comput. Sci. 2023, 9, e1551. [Google Scholar] [CrossRef] [PubMed]
- Fu, W.; Lu, T.; Li, S. Context-aware compressed sensing of hyperspectral image. IEEE Trans. Geosci. Remote Sens. 2019, 58, 268–280. [Google Scholar] [CrossRef]
- Monika, R.; Samiappan, D.; Kumar, R. Adaptive block compressed sensing-a technological analysis and survey on challenges, innovation directions and applications. Multimed. Tools Appl. 2021, 80, 4751–4768. [Google Scholar] [CrossRef]
- Brodatz, P. Textures: A Photographic Album for Artists and Designers; Dover Publications Inc.: New York, NY, USA, 1999. [Google Scholar]
- Ji, S.; Wei, S.; Lu, M. Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set. IEEE Trans. Geosci. Remote Sens. 2018, 57, 574–586. [Google Scholar] [CrossRef]
- GFDRR Labs. Open Cities AI Challenge Dataset, Version 1.0; Radiant MLHub: Washington, DC, USA, 2024. [Google Scholar] [CrossRef]
- Daubechies, I.; Meyer, Y.; Lemerie-Rieusset, P.G.; Techamitchian, P.; Beylkin, G.; Coifman, R.; Wickerhauser, M.V.; Donoho, D. Wavelet transforms and orthonormal wavelet bases. Differ. Perspect. Wavelets 1993, 47, 1–33. [Google Scholar]
- Mallat, S. A Wavelet Tour of Signal Processing; The Sparse Way: Orlando, FL, USA, 2009; pp. 1–805. [Google Scholar]
- Levina, E. Statistical Issues in Texture Analysis; University of California: Berkeley, CA, USA, 2002. [Google Scholar]
- Haykin, S.S. Neural Networks and Learning Machines/Simon Haykin; McMaster University: Hamilton, ON, USA, 2009. [Google Scholar]
- Powers, D.M. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv 2020, arXiv:2010.16061. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015; Proceedings of the 18th International Conference 2015, Munich, Germany, 5–9 October 2015; Proceedings, Part III 18; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Zhang, Z.; Liu, Q.; Wang, Y. Road extraction by deep residual u-net. IEEE Geosci. Remote Sens. Lett. 2018, 15, 749–753. [Google Scholar] [CrossRef]
- Li, H.; Qiu, K.; Chen, L.; Mei, X.; Hong, L.; Tao, C. SCAttNet: Semantic segmentation network with spatial and channel attention mechanism for high-resolution remote sensing images. IEEE Geosci. Remote Sens. Lett. 2020, 18, 905–909. [Google Scholar] [CrossRef]
- Wang, L.; Li, R.; Zhang, C.; Fang, S.; Duan, C.; Meng, X.; Atkinson, P.M. UNetFormer: A UNet-like transformer for efficient semantic segmentation of remote sensing urban scene imagery. ISPRS J. Photogramm. Remote Sens. 2022, 190, 196–214. [Google Scholar] [CrossRef]
- Meng, X.; Yang, Y.; Wang, L.; Wang, T.; Li, R.; Zhang, C. Class-guided swin transformer for semantic segmentation of remote sensing imagery. IEEE Geosci. Remote Sens. Lett. 2022, 19, 6517505. [Google Scholar] [CrossRef]
- Chen, J.; Jiang, Y.; Luo, L.; Gong, W. ASF-Net: Adaptive screening feature network for building footprint extraction from remote-sensing images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4706413. [Google Scholar] [CrossRef]
- Zhao, Y.; Guo, P.; Sun, Z.; Chen, X.; Gao, H. ResiDualGAN: Resize-residual DualGAN for cross-domain remote sensing images semantic segmentation. Remote Sens. 2023, 15, 1428. [Google Scholar] [CrossRef]
- Ansari, R.A.; Mulrooney, T.J. Self-Attention Multiresolution Analysis-Based Informal Settlement Identification Using Remote Sensing Data. Remote Sens. 2024, 16, 3334. [Google Scholar] [CrossRef]
Class 1 (%) | Class 2 (%) | Class 3 (%) | Class 4 (%) | |
---|---|---|---|---|
Class 1 (%) | 90.34 | 6.28 | 0.36 | 3.01 |
Class 2 (%) | 0 | 95.8 | 0 | 4.19 |
Class 3 (%) | 0.25 | 0 | 94.85 | 4.89 |
Class 4 (%) | 0 | 0 | 0 | 100 |
Kappa coefficient = 0.937 | Kappa error = 0.0006 |
Model | IoU | mIoU | Precision | Recall | F-Score | Accuracy (%) | |
---|---|---|---|---|---|---|---|
Building | Non-Building | ||||||
U-Net [61] | 0.876 | 0.906 | 0.891 | 0.853 | 0.901 | 0.876 | 89.70 |
Deep ResUnet [62] | 0.719 | 0.854 | 0.786 | 0.901 | 0.875 | 0.887 | 90.30 |
ScattNet [63] | 0.904 | 0.918 | 0.911 | 0.882 | 0.821 | 0.850 | 89.03 |
UNetFormer [64] | 0.903 | 0.859 | 0.881 | 0.883 | 0.892 | 0.887 | 92.96 |
CG-Swin [65] | 0.917 | 0.889 | 0.903 | 0.902 | 0.885 | 0.893 | 90.61 |
ASF-Net [66] | 0.892 | 0.901 | 0.896 | 0.886 | 0.902 | 0.893 | 91.89 |
ResiDualGAN [67] | 0.793 | 0.842 | 0.817 | 0.891 | 0.876 | 0.883 | 89.80 |
SA-MRA [68] | 0.898 | 0.936 | 0.917 | 0.887 | 0.902 | 0.894 | 93.24 |
Proposed method | 0.904 | 0.948 | 0.926 | 0.904 | 0.919 | 0.911 | 93.41 |
Model | IoU | mIoU | Precision | Recall | F-Score | Accuracy (%) | |
---|---|---|---|---|---|---|---|
Building | Non-Building | ||||||
U-Net [61] | 0.882 | 0.896 | 0.889 | 0.842 | 0.895 | 0.867 | 89.21 |
Deep ResUnet [62] | 0.726 | 0.846 | 0.786 | 0.757 | 0.801 | 0.778 | 82.10 |
ScattNet [63] | 0.793 | 0.864 | 0.828 | 0.842 | 0.802 | 0.821 | 84.03 |
UNetFormer [64] | 0.885 | 0.843 | 0.864 | 0.827 | 0.892 | 0.858 | 87.96 |
CG-Swin [65] | 0.901 | 0.873 | 0.887 | 0.878 | 0.863 | 0.870 | 89.61 |
ASF-Net [66] | 0.881 | 0.911 | 0.896 | 0.881 | 0.893 | 0.886 | 90.89 |
ResiDualGAN [67] | 0.784 | 0.832 | 0.808 | 0.829 | 0.858 | 0.843 | 84.80 |
SA-MRA [68] | 0.901 | 0.895 | 0.898 | 0.895 | 0.868 | 0.881 | 91.24 |
Proposed method | 0.898 | 0.916 | 0.907 | 0.891 | 0.898 | 0.894 | 92.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ansari, R.A.; Malhotra, R.; Ansari, M.Z. Building Footprint Identification Using Remotely Sensed Images: A Compressed Sensing-Based Approach to Support Map Updating. Geomatics 2025, 5, 7. https://doi.org/10.3390/geomatics5010007
Ansari RA, Malhotra R, Ansari MZ. Building Footprint Identification Using Remotely Sensed Images: A Compressed Sensing-Based Approach to Support Map Updating. Geomatics. 2025; 5(1):7. https://doi.org/10.3390/geomatics5010007
Chicago/Turabian StyleAnsari, Rizwan Ahmed, Rakesh Malhotra, and Mohammed Zakariya Ansari. 2025. "Building Footprint Identification Using Remotely Sensed Images: A Compressed Sensing-Based Approach to Support Map Updating" Geomatics 5, no. 1: 7. https://doi.org/10.3390/geomatics5010007
APA StyleAnsari, R. A., Malhotra, R., & Ansari, M. Z. (2025). Building Footprint Identification Using Remotely Sensed Images: A Compressed Sensing-Based Approach to Support Map Updating. Geomatics, 5(1), 7. https://doi.org/10.3390/geomatics5010007