Radiomics for Machine Learning—A Multi-Class System for the Automatic Detection of COVID-19 and Community-Acquired Pneumonia from Computed Tomography Images
Abstract
:1. Introduction
2. Materials and Methods
- The Relative Difference in the feature values between the two volumes (RL features); Frl = 2 ∗ abs(Fl − Fr)/(Fl + Fr).
- The average feature values between the two volumes (AV features). Fav = (Fl + Fr)/2.
- nr_of_training_samples represents the number of total training samples.
- nr_of_classes represents the number of classes.
- nr_samples_j represents the number of samples in class j.
3. Results
3.1. Two-Class Experiments
3.1.1. Normal–COVID
3.1.2. COVID–CAP
3.1.3. Normal–CAP
3.1.4. Normal–Disease
3.1.5. Summary for Two-Class Cases
- t-test;
- RFE;
- Boruta.
- Random Forest;
- Glmnet.
3.2. Multi-Class Experiments
- A 26 feature data set: Combination of the above 6 features with the 20 features selected from RFE in the COVID–CAP case;
- A 52 feature data set: A total of 20 features selected from RFE in the COVID–CAP case combined with the 35 features selected from RFE in the Normal–CAP case, excluding 3 common AV features;
- A 35 feature data set: A total of 35 features selected by RFE in the Normal–CAP case;
- A 80 feature data set: A total of 80 features selected by RFE, when RFE was applied to a data set containing the sum of the initial RL and AV features, i.e., 2442 features;
- A 61 feature data set: A total of 61 features selected by Boruta, when Boruta was applied to a data set containing the sum of the initial RL and AV features, i.e., 2442 features.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
COVID-19 | Coronavirus Disease 2019 |
CAP | Community-Acquired Pneumonia |
CT | Computed Tomography |
ROI | Region of interest |
AI | Artificial Intelligence |
VOI | Volume of interest |
SVM | Support Vector Machine |
AUC | Area Under the receiver operating characteristic Curve |
GLCM | Gray Level Cooccurrence Matrix |
GLRLM | Gray Level Run Length Matrix |
GLSZM | Gray Level Size Zone Matrix |
GLDM | Gray Level Dependence Matrix |
RL | Relative Difference |
AV | Average |
SMOTE | Synthetic Minority Oversampling Technique |
RFE | Recursive Feature Elimination |
RF | Random Forest |
Glmnet | Lasso and Elastic-Net Regularized Generalized Linear Model |
XGBoost | eXtreme Gradient Boosting |
NN | Neural network |
Appendix A
Normal–COVID | ||||||
---|---|---|---|---|---|---|
Cases | Method | Nr of Features | % Avg Acc | % Avg Sens | % Avg Spec | % Avg Balanced Acc |
1 | RFE (on 562 features from t-test) + RF | 6 AV (no RL) | 72.07 | 58.68 | 86.19 | 72.43 |
2 | RFE (on 562 features from t-test) + RF + SMOTE | 6 AV features from RFE | 79.10 | 82.89 | 77.38 | 80.13 |
3 | RFE (on 562 features from t-test) + Glmnet | 6 AV (no RL) | 76.48 | 47.11 | 89.76 | 68.43 |
4 | RFE (on 562 features from t-test) + Glmnet + SMOTE | 6 AV features from RFE | 78.61 | 86.32 | 75.12 | 80.72 |
5 | Boruta (on 563 features from t-test) + RF | 32 (26 AV + 6 RL) | 76.63 | 58.94 | 84.64 | 71.79 |
6 | Boruta (on 563 features from t-test) + RF + SMOTE | 32 (26 AV + 6 RL) | 81.39 | 85 | 79.76 | 82.38 |
7 | Boruta (on 563 features from t-test) + Glmnet | 32 (26 AV + 6 RL) | 82.62 | 75.53 | 85.83 | 80.67 |
8 | Boruta (on 563 features from t-test) + Glmnet + SMOTE | 32 (26 AV + 6 RL) | 83.11 | 82.89 | 83.21 | 83.05 |
COVID–CAP | ||||||
---|---|---|---|---|---|---|
Cases | Method | Nr of Features | % Avg Acc | % Avg Sens | % Avg Spec | % Avg Balanced Acc |
1 | RFE (on 654 features from t-test) + RF | 20 (2 RL, 18 AV) | 77.62 | 83.22 | 96.78 | 69.66 |
2 | RFE (on 654 features from t-test) + RF + SMOTE | 20 (2 RL, 18 AV) | 88.77 | 90.95 | 82.67 | 86.80 |
3 | RFE (on 654 features from t-test) + Glmnet | 20 (2 RL, 18 AV) | 86.67 | 93.92 | 66.33 | 80.13 |
4 | RFE (on 654 features from t-test) + Glmnet + SMOTE | 20 (2 RL, 18 AV) | 85.55 | 83.42 | 86.48 | 84.95 |
5 | Boruta (on 654 features from t-test) + RF | 42 (6 RL, 36 AV) | 87.72 | 96.30 | 63.66 | 79.98 |
6 | Boruta (on 654 features from t-test) + RF + SMOTE (135 cov 135 cap) | 42 (6 RL, 36 AV) | 87.36 | 85.86 | 89.05 | 82.66 |
7 | Boruta (on 654 features from t-test) + Glmnet | 42 (6 RL, 36 AV) | 87.72 | 94.88 | 67.66 | 81.27 |
8 | Boruta (on 654 features from t-test) + Glmnet + SMOTE | 42 (6 RL, 36 AV) (135 cov, 135 cap) | 85.54 | 83.41 | 86.48 | 84.95 |
9 | Boruta (on 654 features from t-test) + Glmnet + SMOTE | 42 (6 RL, 36 AV) (90 cov, 90 cap) | 85.75 | 84.10 | 86.47 | 85.29 |
Normal–CAP | ||||||
---|---|---|---|---|---|---|
Cases | Method | Nr of Features | % Avg Acc | % Avg Sens | % Avg Spec | % Avg Balanced Acc |
1 | RFE (on 1053 features from t-test) + RF | 35 (11 RL+ 24 AV) | 93.97 | 96.84 | 90.33 | 93.58 |
2 | RFE (on 1053 features from t-test) + RF + SMOTE | 35 (11 RL+ 24 AV) | 93.38 | 92.63 | 94.33 | 93.48 |
3 | RFE on 1053 features from t-test + Glmnet | 35 (11 RL+ 24 AV) | 91.47 | 100.00 | 80.66 | 90.33 |
4 | RFE (on 1053 features from t-test) + Glmnet + SMOTE) | 35 (11 RL+ 24 AV) | 91.47 | 95.53 | 86.33 | 90.93 |
5 | Boruta (on 1053 features from t-test) + RF | 73 (32 RL + 41 AV) | 93.24 | 96.32 | 89.33 | 92.82 |
6 | Boruta (on 1053 features from t-test) + RF + SMOTE | 73 (32 RL + 41 AV) (smote 90-90) | 93.82 | 94.73 | 92.67 | 93.70 |
7 | Boruta (on 1053 features from t-test) + Glmnet | 73 (32 RL + 41 AV) | 89.85 | 98.68 | 78.67 | 88.68 |
8 | Boruta (on 1053 features from t-test) + Glmnet + SMOTE | 73 (32 RL + 41 AV) (smote 90-90) | 90.44 | 93.42 | 86.67 | 90.04 |
Normal–Disease | ||||||
---|---|---|---|---|---|---|
Case | Method | Nr of Features | % Avg Acc | % Avg Sens | % Avg Spec | % Avg Balanced Acc |
1 | RFE on (736 features from t-test) + RF | 40 (5 RL + 35 AV) | 81.58 | 63.95 | 87.46 | 75.70 |
2 | RFE (on 736 features from t-test) + RF + model weights | 40 (5 RL + 35 AV) | 81.58 | 63.95 | 87.46 | 75.70 |
3 | RFE (on 736 features from t-test) + RF + SMOTE 114 n–114 d | 40 (5 RL + 35 AV) | 81.91 | 86.58 | 80.35 | 83.46 |
4 | RFE (on 736 features from t-test) + Glmnet | 40 (5 RL + 35 AV) | 89.47 | 73.68 | 94.74 | 84.21 |
5 | RFE (on 736 features from t-test) + Glmnet + SMOTE | 40 (5 RL + 35 AV) | 85.52 | 86.58 | 85.17 | 85.88 |
6 | Boruta (on 736 feat from t-test) + RF | 37 (8 RL + 29 AV) | 81.45 | 65.00 | 86.93 | 75.96 |
7 | Boruta (on 736 feat from t-test) + RF + SMOTE | 37 (8 RL + 29 AV) (smote 114-114) | 82.30 | 87.63 | 80.53 | 84.08 |
8 | Boruta (on 736 feat from t-test) + Glmnet | 37 (8 RL + 29 AV) | 94.63 | 88.15 | 95.83 | 91.99 |
9 | Boruta (on 736 feat from t-test) + Glmnet + SMOTE | 37 (8 RL + 29 AV) (smote 114-114) | 83.29 | 86.32 | 82.28 | 84.29 |
10 | Boruta (on 736 feat from t-test) + Glmnet + SMOTE | 37 (8 RL + 29 AV) (smote 171-171) | 82.36 | 85.00 | 81.49 | 83.25 |
Normal–COVID–CAP | ||||||
---|---|---|---|---|---|---|
Sets | Method | Nr of Features | % Avg Acc | % Avg Sens | % Avg Spec | % Avg Balanced Acc |
1 | RFE on Normal–COVID + RFE on COVID–CAP + RF | 6 AV + 20 (18 AV + 2 RL) | 76.05 | 73.31 | 85.76 | 79.54 |
2 | RFE on Normal–COVID + RFE on COVID–CAP + RF + SMOTE | 6 AV + 20 (18 AV + 2 RL) | 75.33 | 76.25 | 86.49 | 81.37 |
3 | RFE on Normal–COVID + RFE on COVID–CAP + XGBoost | 6 AV + 20 (18 AV + 2 RL) | 78.55 | 77.20 | 87.53 | 82.36 |
4 | RFE on Normal–COVID + RFE on COVID–CAP + XGBoost + SMOTE | 6 AV + 20 (18 AV + 2 RL) | 77.17 | 82.76 | 78.31 | 87.08 |
5 | RFE on Normal–COVID + RFF on COVID–CAP—only 60 random cases from each class + RF | 6 AV + 20 (18 AV + 2 RL) | 76.11 | 84.33 | 73.91 | 88.00 |
6 | REF on COVID–CAP + RFE on Normal–CAP + RF | 20 (2RL + 18AV) +32 (11 RL + 21 AV: 24-3 common AV) | 74.74 | 72.00 | 84.76 | 78.38 |
7 | RFE on COVID–CAP + RFE on Normal–CAP + RF + SMOTE | 20 (2RL + 18AV) +32 (11 RL + 21 AV: 24-3 common AV) | 74.61 | 75.17 | 85.88 | 80.52 |
8 | RFF on COVID–CAP + RFE on Normal–CAP + XGBoost | 20 (2RL + 18AV) +32 (11 RL + 21 AV: 24-3 common AV) | 75.33 | 73.72 | 85.67 | 79.69 |
9 | RFE on COVID–CAP + RFE on Normal–CAP + XGBoost + SMOTE | 20 (2RL + 18AV) +32 (11 RL + 21 AV: 24-3 common AV) | 75.79 | 81.80 | 76.88 | 85.98 |
10 | RFE on Normal–CAP + RF | 35 (RL + AV) | 71.64 | 78.16 | 71.52 | 78.41 |
11 | RFE on Normal–CAP +RF + SMOTE | 35 (RL + AV) | 69.27 | 79.386 | 70.55 | 80.22 |
12 | RFE on Normal–CAP + XGBoost + SMOTE | 35 (RL + AV) | 69.41 | 79.61 | 70.97 | 80.91 |
13 | RFE on Normal–COVID–CAP set of 2442 (RL+ AV) features + RF | 80 (16 RL + 64 AV) | 73.49 | 70.60 | 84.03 | 77.31 |
14 | RFE on Normal–COVID–CAP set of 2442 (RL+ AV) features + RF + SMOTE | 80 (16 RL + 64 AV) | 73.75 | 73.31 | 85.65 | 79.48 |
15 | RFE on Normal–COVID–CAP set of 2442 (RL+ AV) features + XGBoost | 80 (16 RL + 64 AV) | 75.72 | 73.94 | 85.78 | 79.86 |
16 | RFE on Normal–COVID–CAP set of 2442 (RL+ AV) features + XGBoost + SMOTE | 80 (16 RL + 64 AV) | 73.81 | 74.38 | 85.57 | 79.98 |
17 | Boruta on Normal–COVID–CAP set from 2442 (RL+ AV) features + RF | 61 (18 RL, 43 AV) | 74.61 | 71.94 | 84.69 | 78.31 |
18 | Boruta on Normal–COVID–CAP set of 2442 (RL+ AV) features +RF + SMOTE | 61 (18 RL, 43 AV) | 74.61 | 75.45 | 86.11 | 80.78 |
19 | Boruta on Normal–COVID–CAP set of 2442 (RL+ AV) features + XGBoost | 61 (18 RL, 43 AV) | 75.59 | 73.76 | 85.67 | 79.71 |
20 | Boruta on Normal–COVID–CAP set of 2442 (RL+ AV) features + XGBoost + SMOTE | 61 (18 RL, 43 AV) | 75.20 | 75.95 | 86.34 | 81.15 |
References
- Mayerhoefer, M.E.; Materka, A.; Langs, G.; Häggström, I.; Szczypiński, P.; Gibbs, P.; Cook, G. Introduction to Radiomics. J. Nucl. Med. 2020, 61, 488–495. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; van Stiphout, R.G.; Granton, P.; Zegers, C.M.; Gillies, R.; Boellard, R.; Dekker, A.; et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur. J. Cancer 2012, 48, 441–446. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kumar, V.; Gu, Y.; Basu, S.; Berglund, A.; Eschrich, S.A.; Schabath, M.B.; Forster, K.; Aerts, H.J.; Dekker, A.; Fenstermacher, D.; et al. Radiomics: The process and the challenges. Magn. Reason. Imaging 2012, 30, 1234–1248. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Van Griethuysen, J.J.M.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.H.; Fillon-Robin, J.C.; Pieper, S.; Aerts, H.J.W.L. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017, 77, 104–107. [Google Scholar] [CrossRef]
- Tunali, I.; Gillies, R.J.; Schabath, M.B. Application of Radiomics and Artificial Intelligence for Lung Cancer Precision Medicine. Cold Spring Harb. Perspect. Med. 2021, 11, a039537. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bevilacqua, A.; Calabrò, D.; Malavasi, S.; Ricci, C.; Casadei, R.; Campana, D.; Baiocco, S.; Fanti, S.; Ambrosini, V. A [68Ga] Ga-DOTANOC PET/CT Radiomic Model for Non-Invasive Prediction of Tumour Grade in Pancreatic Neuroendocrine Tumours. Diagnostics 2021, 11, 870. [Google Scholar] [CrossRef] [PubMed]
- Fusco, R.; Piccirillo, A.; Sansone, M.; Granata, V.; Rubulotta, M.R.; Petrosino, T.; Barretta, M.L.; Vallone, P.; Di Giacomo, R.; Esposito, E.; et al. Radiomics and Artificial Intelligence Analysis with Textural Metrics Extracted by Contrast-Enhanced Mammography in the Breast Lesions Classification. Diagnostics 2021, 11, 815. [Google Scholar] [CrossRef]
- Li, L.; Qin, L.; Xu, Z.; Yin, Y.; Wang, X.; Kong, B.; Bai, J.; Lu, Y.; Fang, Z.; Song, Q.; et al. Using Artificial Intelligence to Detect COVID-19 and Community-acquired Pneumonia Based on Pulmonary CT: Evaluation of the Diagnostic Accuracy. Radiology 2020, 296, E65–E71. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rajpoot, R.; Gour, M.; Jain, S.; Semwal, V.B. Integrated ensemble CNN and explainable AI for COVID-19 diagnosis from CT scan and X-ray images. Sci. Rep. 2024, 14, 24985. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhao, W.; Jiang, W.; Qiu, X. Deep learning for COVID-19 detection based on CT images. Sci. Rep. 2021, 11, 14353. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xu, X.; Jiang, X.; Ma, C.; Du, P.; Li, X.; Lv, S.; Yu, L.; Ni, Q.; Chen, Y.; Su, J.; et al. A Deep Learning System to Screen Novel Coronavirus Disease 2019 Pneumonia. Engineering 2020, 6, 1122–1129. [Google Scholar] [CrossRef] [PubMed]
- Shiri, I.; Salimi, Y.; Pakbin, M.; Hajianfar, G.; Avval, A.H.; Sanaat, A.; Mostafaei, S.; Akhavanallaf, A.; Saberi, A.; Mansouri, Z.; et al. COVID-19 prognostic modeling using CT radiomic features and machine learning algorithms: Analysis of a multi-institutional dataset of 14,339 patients. Comput. Biol. Med. 2022, 145, 105467. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bai, H.X.; Wang, R.; Xiong, Z.; Hsieh, B.; Chang, K.; Halsey, K.; Tran, T.M.L.; Choi, J.W.; Wang, D.C.; Shi, L.B.; et al. Artificial Intelligence Augmentation of Radiologist Performance in Distinguishing COVID-19 from Pneumonia of Other Origin at Chest CT. Radiology 2020, 296, E156–E165. [Google Scholar] [CrossRef] [PubMed]
- Shi, F.; Xia, L.; Shan, F.; Song, B.; Wu, D.; Wei, Y.; Yuan, H.; Jiang, H.; He, Y.; Gao, Y.; et al. Large-scale screening to distinguish between COVID-19 and community-acquired pneumonia using infection size-aware classification. Phys. Med. Biol. 2021, 66, 065031. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.J.; Mao, L.; Chen, Y.; Yuan, L.; Wang, F.; Li, X.; Cai, Q.; Qiu, J.; Chen, F. Machine learning-based CT radiomics model distinguishes COVID-19 from non-COVID-19 pneumonia. BMC Infect Dis. 2021, 21. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, Q.; Wang, S.; Li, L.; Wu, Q.; Qian, W.; Hu, Y.; Li, L.; Zhou, X.; Ma, H.; Li, H.; et al. Radiomics Analysis of Computed Tomography helps predict poor prognostic outcome in COVID-19. Theranostics 2020, 5, 7231–7244. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Afshar, P.; Heidarian, S.; Enshaei, N.; Naderkhani, F.; Rafiee, M.J.; Oikonomou, A.; Fard, F.B.; Samimi, K.; Plataniotis, K.N.; Mohammadi, A. COVID-CT-MD, COVID-19 computed tomography scan dataset applicable in machine learning and deep learning. Sci. Data 2021, 8, 121. [Google Scholar] [CrossRef]
- Carlicchi, E.; Gemma, P.; Poerio, A.; Caminati, A.; Vanzulli, A.; Zompatori, M. Chest-CT mimics of COVID-19 pneumonia—A review article. Emerg. Radiol. 2021, 28, 507. [Google Scholar] [CrossRef]
- 3D Slicer Image Computing Platform. Available online: https://www.slicer.org/ (accessed on 28 January 2025).
- Available online: https://pyradiomics.readthedocs.io/en/latest/features.html (accessed on 3 April 2025).
- SMOTE Algorithm for Unbalanced Classification Problems. Available online: https://rdrr.io/cran/performanceEstimation/man/smote.html (accessed on 28 January 2025).
- Tanha, J.; Abdi, Y.; Samadi, N.; Razzaghi, N.; Asadpour, M. Boosting methods for multi-class imbalanced data classification: An experimental review. J. Big Data 2020, 7. [Google Scholar] [CrossRef]
- What Is Imbalanced Data and How to Handle It? Available online: https://turintech.medium.com/what-is-imbalanced-data-and-how-to-handle-it-369a70be16fc (accessed on 3 April 2025).
- How to Improve Class Imbalance using Class Weights in Machine Learning? Available online: https://www.analyticsvidhya.com/blog/2020/10/improve-class-imbalance-class-weights/ (accessed on 28 January 2025).
- Wang, L.; Kelly, B.; Lee, E.H.; Wang, H.; Zheng, J.; Zhang, W.; Halabi, S.; Liu, J.; Tian, Y.; Han, B.; et al. Multi-classifier-based identification of COVID-19 from chest computed tomography using generalizable and interpretable radiomics features. Eur. J. Radiol. 2021, 136, 109552. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ghosh, A.; Jaenada, M.; Pardo, L. Classification of COVID19 Patients Using Robust Logistic Regression. J. Stat. Theory Pract. 2022, 16, 67. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Carvalho, E.D.; Carvalho, E.D.; de Carvalho Filho, A.O.; de Araújo, F.H.D.; Rabêlo, R.D.A.L. Diagnosis of COVID-19 in CT image using CNN and XGBoost. In Proceedings of the 2020 IEEE Symposium on Computers and Communications (ISCC), Rennes, France, 8–10 July 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Mohtasham, F.; Pourhoseingholi, M.; Hashemi Nazari, S.S.; Kavousi, K.; Zali, M.R. Comparative analysis of feature selection techniques for COVID-19 dataset. Sci. Rep. 2024, 14, 18627. [Google Scholar] [CrossRef] [PubMed]
t-Test | RFE | Boruta | |
---|---|---|---|
Normal–COVID | 562 (127 RL, 435 AV) | 6 AV | 32 (6 RL, 26 AV) |
COVID–CAP | 654 (297 RL, 357 AV) | 20 (2 RL, 18 AV) | 42 (6 RL, 36 AV) |
Normal–CAP | 1053 (440 RL, 613 AV) | 35 (11 RL, 24 AV) | 73 (32 RL, 41 AV) |
Normal–Disease | 736 (229 RL, 507 AV) | 40 (5 RL, 35 AV) | 37 (8 RL, 29AV) 1 |
Normal–COVID–CAP | - | 80 (16 RL, 64 AV) | 61 (18 RL, 43 AV) |
Best Case | ||||||||
---|---|---|---|---|---|---|---|---|
Feature Selection Method | Number of Features | Algorithm | SMOTE Used | Avg Acc % | Avg Sens % | Avg Spec % | Tuning Parameters | |
Normal–COVID | Boruta | 32 | Glmnet | YES | 83.11 | 82.89 | 83.21 | alpha = 1 lambda = 1 × 10−4 |
COVID–CAP | RFE | 20 | RF | YES | 88.77 | 90.95 | 82.67 | mtry = 2 |
Normal–CAP | RFE | 35 | RF | NO | 93.97 | 96.84 | 90.33 | mtry = 27 |
Normal/Disease | Boruta | 37 | Glmnet | NO | 94.63 | 88.15 | 95.83 | alpha = 1 lambda = 1 × 10−4 |
Normal–COVID–CAP | RFE | 26 | XGBoost | NO | 78.55 | 77.20 | 87.53 | nrounds = 100, max_depth = 7 eta = 0.05 gamma = 0.01, colsample_bytree = 0.75 min_child_weight = 0 subsample = 0.5. |
Research Work | Disease | Segmentation Method | Type of Segments | Type of Model—Algorithm | Type of Features | Training/Testing Ratio | AUC | Acc % | Sens % | Spec % |
---|---|---|---|---|---|---|---|---|---|---|
Bai HX, AI augmentation to distinguish COVID—other pneumonia | COVID-other pneumonia | Auto-segmentation + partially by radiologists | Whole lung | Deep learning neural network | 70:20:10 (training/validation/testing) | 0.90 | 87 | 89 | 86 | |
Shi F. Large scale screening with infection size aware classification | COVID–CAP | Automated segmentation + handcrafted features | Infected lung regions and lung fields | Handcrafted location-specific features + radiomics | 80:20 | 89.4 | 90.7 | 87.2 | ||
Chen HJ, ML- based Ct-radiomics | COVID–CAP | Semi-automated segmentation (auto lesion segmentation + radiologists’ refinement) | Lesions | SVM | Radiomics | 85:15 | 84.3 | 92.3 | 81.6 | |
Wu Q, Radiomics analysis for COVID-19 poor outcome pred. | Automated | Whole lung | Radiomics + clinical risk factors | 0.862 | ||||||
Proposed 2-class COVID–CAP | COVID–CAP | Automated | Whole lung | Radiomics | 75:25 | 88.77 | 90.95 | 82.67 | ||
Xu X, Deep learning to screen COVID-19 | Normal -COVID–CAP | Automated | Infected regions | Deep learning neural network | 85,6:14,4 | 86.7 | ||||
Proposed 3-class model | Normal -COVID–CAP | Automated | Whole lung | XGBoost | Radiomics | 75:25 | 78.55 | 77.20 | 87.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paschaloudi, V.; Fotopoulos, D.; Chouvarda, I. Radiomics for Machine Learning—A Multi-Class System for the Automatic Detection of COVID-19 and Community-Acquired Pneumonia from Computed Tomography Images. BioMedInformatics 2025, 5, 21. https://doi.org/10.3390/biomedinformatics5020021
Paschaloudi V, Fotopoulos D, Chouvarda I. Radiomics for Machine Learning—A Multi-Class System for the Automatic Detection of COVID-19 and Community-Acquired Pneumonia from Computed Tomography Images. BioMedInformatics. 2025; 5(2):21. https://doi.org/10.3390/biomedinformatics5020021
Chicago/Turabian StylePaschaloudi, Vasileia, Dimitris Fotopoulos, and Ioanna Chouvarda. 2025. "Radiomics for Machine Learning—A Multi-Class System for the Automatic Detection of COVID-19 and Community-Acquired Pneumonia from Computed Tomography Images" BioMedInformatics 5, no. 2: 21. https://doi.org/10.3390/biomedinformatics5020021
APA StylePaschaloudi, V., Fotopoulos, D., & Chouvarda, I. (2025). Radiomics for Machine Learning—A Multi-Class System for the Automatic Detection of COVID-19 and Community-Acquired Pneumonia from Computed Tomography Images. BioMedInformatics, 5(2), 21. https://doi.org/10.3390/biomedinformatics5020021