Subject-Independent Cuff-Less Blood Pressure Monitoring via Multivariate Analysis of Finger/Toe Photoplethysmography and Electrocardiogram Data
Abstract
:1. Introduction
2. Materials and Methods
- Our Recording Device
- B.
- Subjects and Experiments
- C.
- Features and Feature Selection
- Heart Rate and PPG Features
- 2.
- Subject Information-Based Features
- 3.
- Other Features
- D.
- Estimation Algorithms
- E.
- QRS Complex Detection
- F.
- Dataset Construction
- G.
- Experimental Testbed
3. Results
- Dataset Division and Preprocessing
- B.
- PPG Timing Analysis and PTT Comparison
- C.
- Feature Selection and Model Construction
- D.
- Estimation Accuracy and Comparison with Prior Work
- E.
- Regression Analysis of Estimated vs. Measured BP
- F.
- Bland–Altman and Error Distribution Analysis
4. Discussion
- Device Innovation and Inclusion of Toe PPG
- B.
- Feature Extraction and Selection
- C.
- Performance of the Estimation Model
- D.
- Comparison with Previous Calibration-Free Studies
5. Limitations
6. Future Work
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gupta, A.; Whiteley, W.N.; Godec, T.; Rostamian, S.; Ariti, C.; Mackay, J.; Whitehouse, A.; Janani, L.; Poulter, N.R.; Sever, P.S.; et al. Legacy benefits of blood pressure treatment on cardiovascular events are primarily mediated by improved blood pressure variability: The ASCOT trial. Eur. Heart J. 2024, 45, 1159–1169. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Yan, B.P.; Zhang, Y.-T.; Liu, J.; Zhao, N.; Tsang, H.K. Pulse Transit Time Based Continuous Cuffless Blood Pressure Estimation: A New Extension and A Comprehensive Evaluation. Sci. Rep. 2017, 7, 11554. [Google Scholar] [CrossRef] [PubMed]
- Picciotto, D.; Bussalino, E.; Macciò, L.; Parodi, A.; Gandolfo, M.T.; Viazzi, F. Long-term systolic blood pressure variability as an independent risk factor for cardiovascular events in kidney transplant recipients. J. Hypertens. 2024, 42, e50. [Google Scholar] [CrossRef]
- Eguchi, K.; Kuruvilla, S.; Ogedegbe, G.; Gerin, W.; Schwartz, J.E.; Pickering, T.G. What is the optimal interval between successive home blood pressure readings using an automated oscillometric device? J. Hypertens. 2009, 27, 1172. [Google Scholar] [CrossRef]
- Rexhaj, E.; Proenca, M.; Ambuehl, J.; Bonnier, G.; Lemay, M. Evaluation of a cuffless watch-like sensor for 24-hour ambulatory blood pressure monitoring. Eur. Heart J. 2021, 42, ehab724-2348. [Google Scholar] [CrossRef]
- Goldberg, E.M.; Levy, D. New approaches to evaluating and monitoring blood pressure. Curr. Hypertens. Rep. 2016, 18, 49. [Google Scholar] [CrossRef]
- Lee, H.; Lee, H.-Y. Comparison of calibration methods in the precision of a ring-type cuffless blood pressure measurement device. J. Hypertens. 2024, 42, e78. [Google Scholar] [CrossRef]
- Matsumura, K.; Rolfe, P.; Toda, S.; Yamakoshi, T. Cuffless blood pressure estimation using only a smartphone. Sci. Rep. 2018, 8, 7298. [Google Scholar] [CrossRef]
- Burkard, T.; Derendinger, F.; Krisai, P.; Socrates, T.; Schumacher, C.; Mayr, M.; Vischer, A. Ability of a cuffless 24-hour ambulatory blood pressure measurement device to track blood pressure changes compared to a cuff-based device. J. Hypertens. 2023, 41, e9. [Google Scholar] [CrossRef]
- Derendinger, F.C.; Vischer, A.S.; Krisai, P.; Socrates, T.; Schumacher, C.; Mayr, M.; Burkard, T. Ability of a 24-h ambulatory cuffless blood pressure monitoring device to track blood pressure changes in clinical practice. J. Hypertens. 2024, 42, 662–671. [Google Scholar] [CrossRef]
- Lin, W.-H.; Wang, H.; Samuel, O.W.; Liu, G.; Huang, Z.; Li, G. New photoplethysmogram indicators for improving cuffless and continuous blood pressure estimation accuracy. Physiol. Meas. 2018, 39, 25005. [Google Scholar] [CrossRef] [PubMed]
- Xing, X.; Sun, M. Optical blood pressure estimation with photoplethysmography and FFT-based neural networks. Biomed. Opt. Express 2016, 7, 3007. [Google Scholar] [CrossRef] [PubMed]
- Huynh, T.H.; Jafari, R.; Chung, W.Y. Noninvasive cuffless blood pressure estimation using pulse transit time and impedance plethysmography. IEEE Trans. Biomed. Eng. 2019, 66, 967–976. [Google Scholar] [CrossRef] [PubMed]
- Butlin, M.; Shirbani, F.; Barin, E.; Tan, I.; Spronck, B.; Avolio, A. Cuffless estimation of blood pressure: Importance of variability in blood pressure dependence of arterial stiffness across individuals and measurement sites. IEEE Trans. Biomed. Eng. 2018, 65, 2377–2383. [Google Scholar] [CrossRef]
- Sharifi, I.; Goudarzi, S.; Khodabakhshi, M.B. A novel dynamical approach in continuous cuffless blood pressure estimation based on ECG and PPG signals. Artif. Intell. Med. 2019, 97, 143–151. [Google Scholar] [CrossRef]
- Sharma, M.; Barbosa, K.; Ho, V.; Griggs, D.; Ghirmai, T.; Krishnan, S.K.; Hsiai, T.K.; Chiao, J.-C.; Cao, H. Cuff-Less and Continuous Blood Pressure Monitoring: A Methodological Review. Technologies 2017, 5, 21. [Google Scholar] [CrossRef]
- Kachuee, M.; Kiani, M.M.; Mohammadzade, H.; Shabany, M. Cuffless Blood Pressure Estimation Algorithms for Continuous Health-Care Monitoring. IEEE Trans. Biomed. Eng. 2017, 64, 859–869. [Google Scholar] [CrossRef]
- Dehghanojamahalleh, S.; Kaya, M. Sex-related Differences in Photoplethysmography Signals Measured from Finger and Toe. IEEE J. Transl. Eng. Heal. Med. 2019, 7, 1–7. [Google Scholar] [CrossRef]
- Kachuee, M.; Kiani, M.M.; Mohammadzade, H.; Shabany, M. Cuff-less high-accuracy calibration-free blood pressure estimation using pulse transit time. In Proceedings of the 2015 IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, Portugal, 24–27 May 2015; pp. 1006–1009. [Google Scholar] [CrossRef]
- Vlachopoulos, C.; O’Rourke, M.; Nichols, W.W. McDonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Mukkamala, R.; Hahn, J.O. Toward Ubiquitous Blood Pressure Monitoring via Pulse Transit Time: Predictions on Maximum Calibration Period and Acceptable Error Limits. IEEE Trans. Biomed. Eng. 2018, 65, 1410–1420. [Google Scholar] [CrossRef]
- Mukkamala, R.; Hahn, J.-O.; Inan, O.T.; Mestha, L.K.; Kim, C.-S.; Toreyin, H.; Kyal, S. Toward Ubiquitous Blood Pressure Monitoring via Pulse Transit Time: Theory and Practice. IEEE Trans. Biomed. Eng. 2015, 62, 1879–1901. [Google Scholar] [CrossRef]
- Esmaili, A.; Kachuee, M.; Shabany, M. Nonlinear Cuffless Blood Pressure Estimation of Healthy Subjects Using Pulse Transit Time and Arrival Time. IEEE Trans. Instrum. Meas. 2017, 66, 3299–3308. [Google Scholar] [CrossRef]
- Franco, J.; Aedo, J.; Rivera, F. Continuous, non-invasive and cuff-free blood pressure monitoring system. In Proceedings of the 2012 VI Andean Region International Conference (ANDESCON), Cuenca, Ecuador, 7–9 November 2012; pp. 31–34. [Google Scholar] [CrossRef]
- Asmar, R.; Khabouth, J.; Topouchian, J.; El Feghali, R.; Mattar, J. Validation of three automatic devices for self-measurement of blood pressure according to the International Protocol: The Omron M3 Intellisense (HEM-7051-E), the Omron M2 Compact (HEM 7102-E), and the Omron R3-I Plus (HEM 6022-E). Blood Press. Monit. 2010, 15, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Pappano, A.J.; Wier, W.G. Cardiovascular Physiology e-Book: Mosby Physiology Monograph Series; Elsevier Health Sciences: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Hall, J.E. Guyton and Hall Textbook of Medical Physiology e-Book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Elgendi, M. On the Analysis of Fingertip Photoplethysmogram Signals. Curr. Cardiol. Rev. 2012, 8, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Allen, J. Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas. 2007, 28, R1–R39. [Google Scholar] [CrossRef]
- Paliakaitė, B.; Daukantas, S.; Marozas, V. Assessment of Pulse Arrival Time for Arterial Stiffness Monitoring on Body Composition Scales. Comput. Biol. Med. 2017, 85, 135–142. [Google Scholar] [CrossRef]
- Mitchell, G.F.; Parise, H.; Benjamin, E.J.; Larson, M.G.; Keyes, M.J.; Vita, J.A.; Vasan, R.S.; Levy, D. Changes in Arterial Stiffness and Wave Reflection with Advancing Age in Healthy Men and Women. Hypertension 2004, 43, 1239–1245. [Google Scholar] [CrossRef]
- Lakatta, L.E.; Fleg, J.L.; Engel, J.H.; O’Connor, F.C.; Wright, J.G.; Lakatta, L.E.; Yin, F.C.; Lakatta, E.G. Effects of Age and Aerobic Capacity on Arterial Stiffness in Healthy Adults. Circulation 2012, 88, 1456–1462. [Google Scholar] [CrossRef]
- Benetos, A.; Waeber, B.; Izzo, J.; Mitchell, G.; Resnick, L.; Asmar, R.; Safar, M. Influence of Age, Risk Factors, and Cardiovascular and Renal Disease on Arterial Stiffness: Clinical Applications. Am. J. Hypertens. 2002, 15, 1101–1108. [Google Scholar] [CrossRef]
- Yousef, Q.; Reaz, M.B.I.; Ali, M.A.M. The Analysis of PPG Morphology: Investigating the Effects of Aging on Arterial Compliance. Meas. Sci. Rev. 2012, 12, 266–271. [Google Scholar] [CrossRef]
- Laurent, S.; Cockcroft, J.; Van Bortel, L.; Boutouyrie, P.; Giannattasio, C.; Hayoz, D.; Pannier, B.; Vlachopoulos, C.; Wilkinson, I.; Struijker-Boudier, H. Expert Consensus Document on Arterial Stiffness: Methodological Issues and Clinical Applications. Eur. Heart J. 2006, 27, 2588–2605. [Google Scholar] [CrossRef]
- Millasseau, S.C.; Kelly, R.P.; Ritter, J.M.; Chowienczyk, J. Determination of Age-Related Increases in Large Artery Stiffness by Digital Pulse Contour Analysis. Clin. Sci. 2002, 103, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Stolzenberg, R.M. Multiple Regression Analysis. Handb. Data Anal. 2004, 165, 208. [Google Scholar] [CrossRef]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E.; Tatham, R.L. Multivariate Data Analysis; Prentice Hall: Upper Saddle River, NJ, USA, 1998; p. 5. [Google Scholar]
- Tabachnick, B.G.; Fidell, L.S. Using Multivariate Statistics; Allyn & Bacon: Boston, MA, USA, 2007. [Google Scholar]
- Carreira-Perpiñán, M.Á. A Review of Dimension Reduction Techniques. Dept. Comput. Sci. Univ. Sheffield. Tech. Rep. 1997, 9, 1–69. [Google Scholar]
- Fodor, I.K. A Survey of Dimension Reduction Techniques; Lawrence Livermore National Lab.: Livermore, CA, USA, 2002. [Google Scholar]
- O’Brien, E.; Petrie, J.; Littler, W.; De Swiet, M.; Padfield, P.L.; O’Malley, K.; Jamieson, M.; Altman, D.; Bland, M.; Atkins, N. The British Hypertension Society Protocol for the Evaluation of Automated and Semi-Automated Blood Pressure Measuring Devices with Special Reference to Ambulatory Systems. J. Hypertens. 1990, 8, 607–619. [Google Scholar] [CrossRef]
- Arzeno, N.M.; De Deng, Z.-D.; Poon, C.-S.S. Analysis of First-Derivative Based QRS Detection Algorithms. IEEE Trans. Biomed. Eng. 2008, 55, 478–484. [Google Scholar] [CrossRef]
- Arzeno, N.M.; Poon, C.-S.; Deng, Z.-D. Quantitative Analysis of QRS Detection Algorithms Based on the First Derivative of the ECG. In Proceedings of the 2006 EMBS’06 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006; pp. 1788–1791. [Google Scholar] [CrossRef]
Specification | Description |
---|---|
Amplifier Module | Two-channel PPG and single-channel ECG amplifier |
Control Unit | ARM Cortex-M4 (Tiva Launchpad TM4C123G, Texas Instruments) |
PPG Filter | 2nd order high pass (0.5 Hz), 6th order low pass (25 Hz) |
ECG Filter | 2nd order high pass (2 Hz), 6th order low pass (100 Hz) |
Power Supply | Power bank with DC-DC converter for voltage isolation |
Data Transmission | Bluetooth (115,200 bytes per second) |
Sensors and Electrodes | Reusable SpO2 sensors (PPG) Chest-lead Ag/AgCl electrodes (ECG) |
Parameter | Mean | Standard Deviation |
---|---|---|
Age (years) | 25 | 7.9 |
Height (cm) | 171 | 9.4 |
Weight (kg) | 75.8 | 18.9 |
BMI (kg/m2) | 25.8 | 5.7 |
Features | Symbol | Mean ± SD | Equation/Definition | Source | |
---|---|---|---|---|---|
Finger | Toe | ||||
Normalized PTT (ms/m) | PTTn | 176.7 ± 15.1 | 232.5 ± 16.7 | ECG, finger and toe PPG | |
Pulse Acceleration (cm/s2) | ACC | 19.2 ± 3.3 | 11.0 ± 1.6 | ECG, finger and toe PPG | |
S2/S1 Ratio | S2S1 | 7.8 ± 1.6 | 5.5 ± 0.7 | finger and toe PPG | |
IPA | IPA | 2.1 ± 0.5 | 0.2 ± 0.1 | finger and toe PPG | |
LASI (ms) | LASI | 220.6 ± 39.4 | 260.1 ± 56.7 | Sys. to dia. peak latency | finger and toe PPG |
Heart Rate (beats/min) | HR | 78.6 ± 14.4 | - | ECG | |
NN (s) | NN | 0.8 ± 0.1 | - | ECG | |
Weight (kg) | W | 76.2 ± 18.4 | - | Questionnaire | |
Height (cm) | H | 171.6 ± 9.4 | - | Questionnaire | |
Body Mass Index (kg/m2) | BMI | 25.8 ± 5.5 | Questionnaire | ||
Age (years) | AGE | 24.9 ± 7.9 | - | Questionnaire | |
Ln of Squared PWV | LnPWV2 | 9.2 ± 0.2 | 8.6 ± 0.2 | ECG, finger and toe PPG |
Toe PPG Features | Coefficient | |
---|---|---|
SBP | DBP | |
Intercept | −322.53 | 56.16 |
Height | 1.84 | - |
BMI | 5.44 | - |
ACCtoe | −28.20 | - |
ACCtoe × HR | 0.42 | - |
W2 | −7.9 × 10−3 | - |
S2S1toe | 6.55 | - |
(S2S1toe × AGE)2 | - | −128.27 |
PTTntoe−1 | - | 145.66 |
PTTntoe2 × NN | - | −2.31 |
1/(S2S1toe × LnPTTtoe2) | - | −293.12 |
(LASItoe2)/AGE | - | −1.4 × 10−3 |
W/(LASItoe2) | - | −622.44 |
Finger PPG Features | Coefficient | |
---|---|---|
SBP | DBP | |
Intercept | −241.15 | 110.20 |
Height | 0.88 | - |
BMI | 3.34 | - |
ACCtoe | −17.67 | - |
ACCtoe × HR | 0.04 | - |
W2 | 5.1 × 10−3 | - |
S2S1toe | −0.40 | - |
(S2S1toe × AGE)2 | - | −93.01 |
PTTntoe | - | 17.77 |
PTTntoe × NN | - | −0.20 |
LnPWV2 | 20.61 | - |
Combined PPG Features | Coefficient | |
---|---|---|
SBP | DBP | |
Intercept | −973.61 | 132.06 |
Height | −0.27 | - |
BMI | 4.95 | - |
ACCfinger | −66.27 | - |
ACCtoe | 24.09 | - |
ACCtoe + ×HR | 1.1 × 10−3 | - |
Weight2 | −7.4 × 10−3 | - |
S2S1toe | 7.37 | - |
(S2S1toe/AGE)2 | - | −4.52 |
(LnPTTtoe)2/LnPTTfinger | - | 10.08 |
LnPTTfinger/(LnPTTtoe)2 | - | −7.89 |
(PTTntoe)2 × NN | - | −2.71 |
1/(LnPTTtoe2 × S2S1toe) | - | −211.40 |
(LASIfinger)2/AGE | - | −2.9 × 10−3 |
W/(LASIfinger)2 | - | 1.3 × 10−3 |
LnPWV2finger | 122.38 | - |
Study | Signal | Method | SBP MAE ± SDE | DBP MAE ± SDE |
---|---|---|---|---|
Calibration-free Method#1 [19] | ECG and finger PPG | RLRLF | 14.73 ± 18.5 | 7.24 ± 9.2 |
RLRPF | 14.46 ± 18.2 | 7.42 ± 10.0 | ||
ANN | 13.78 ± 17.5 | 6.86 ± 9.0 | ||
SVM | 12.38 ± 16.2 | 6.34 ± 8.4 | ||
Calibration-free Method#2 [17] | ECG and finger PPG | Linear regression | 14.71 ± 10.8 | 6.74 ± 6.1 |
Decision tree | 16.28 ± 16.3 | 7.75 ± 8.5 | ||
SVM | 12.26 ± 10.3 | 5.91 ± 5.8 | ||
AdaBoost | 11.17 ± 10.1 | 5.35 ± 6.1 | ||
Our study | ECG, finger PPG, and toe PPG | MRfinger | 10.28 ± 13.31 | 7.08 ± 9.18 |
MRtoe | 9.70 ± 12.62 | 6.93 ± 8.84 | ||
MRboth | 9.63 ± 12.54 | 6.76 ± 8.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dehghanojamahalleh, S.; Gamage, P.T.; Ahmed, M.; Petersen, C.; Matthew, B.; Hyacinth, K.; Weerasinghe, Y.; Subasi, E.; Subasi, M.M.; Kaya, M. Subject-Independent Cuff-Less Blood Pressure Monitoring via Multivariate Analysis of Finger/Toe Photoplethysmography and Electrocardiogram Data. BioMedInformatics 2025, 5, 24. https://doi.org/10.3390/biomedinformatics5020024
Dehghanojamahalleh S, Gamage PT, Ahmed M, Petersen C, Matthew B, Hyacinth K, Weerasinghe Y, Subasi E, Subasi MM, Kaya M. Subject-Independent Cuff-Less Blood Pressure Monitoring via Multivariate Analysis of Finger/Toe Photoplethysmography and Electrocardiogram Data. BioMedInformatics. 2025; 5(2):24. https://doi.org/10.3390/biomedinformatics5020024
Chicago/Turabian StyleDehghanojamahalleh, Seyedmohsen, Peshala Thibbotuwawa Gamage, Mohammad Ahmed, Cassondra Petersen, Brianna Matthew, Kesha Hyacinth, Yasith Weerasinghe, Ersoy Subasi, Munevver Mine Subasi, and Mehmet Kaya. 2025. "Subject-Independent Cuff-Less Blood Pressure Monitoring via Multivariate Analysis of Finger/Toe Photoplethysmography and Electrocardiogram Data" BioMedInformatics 5, no. 2: 24. https://doi.org/10.3390/biomedinformatics5020024
APA StyleDehghanojamahalleh, S., Gamage, P. T., Ahmed, M., Petersen, C., Matthew, B., Hyacinth, K., Weerasinghe, Y., Subasi, E., Subasi, M. M., & Kaya, M. (2025). Subject-Independent Cuff-Less Blood Pressure Monitoring via Multivariate Analysis of Finger/Toe Photoplethysmography and Electrocardiogram Data. BioMedInformatics, 5(2), 24. https://doi.org/10.3390/biomedinformatics5020024