Drought and Elevated Carbon Dioxide Impact the Morphophysiological Profile of Basil (Ocimum basilicum L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growing Condition
2.2. Treatments Application
2.3. Phenology and Growth
2.4. Root Image Acquisition and Analysis
2.5. Morpho-Physiological Measurements
2.6. Data Analysis
3. Results and Discussion
3.1. Morphological Traits
3.2. Physiological Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vanli, Ö.; Ustundag, B.B.; Ahmad, I.; Hernandez-Ochoa, I.M.; Hoogenboom, G. Using crop modeling to evaluate the impacts of climate change on wheat in southeastern turkey. Environ. Sci. Pollut. Res. 2019, 26, 29397–29408. [Google Scholar] [CrossRef] [PubMed]
- IPCC Climate change 2007: The physical science basis. Agenda 2007, 6, 333.
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.M.B.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Cambridge, UK; New York, NY, USA, , 2013; Available online: https://www.ipcc.ch/site/assets/uploads/2017/09/WG1AR5_Frontmatter_FINAL.pdf (accessed on 27 October 2021).
- Al-Jaouni, S.; Saleh, A.M.; Wadaan, M.A.M.; Hozzein, W.N.; Selim, S.; AbdElgawad, H. Elevated CO2 induces a global metabolic change in basil (Ocimum basilicum L.) and peppermint (Mentha piperita L.) and improves their biological activity. J. Plant Physiol. 2018, 224, 121–131. [Google Scholar] [CrossRef]
- Savo, V.; Lepofsky, D.; Benner, J.P.; Kohfeld, K.E.; Bailey, J.; Lertzman, K. Observations of climate change among subsistence-oriented communities around the world. Nat. Clim. Chang. 2016, 6, 462–473. [Google Scholar] [CrossRef]
- Damalas, C.A. Improving drought tolerance in sweet basil (Ocimum basilicum) with salicylic acid. Sci. Hortic. 2019, 246, 360–365. [Google Scholar] [CrossRef]
- Haile, G.G.; Tang, Q.; Hosseini-Moghari, S.; Liu, X.; Gebremicael, T.G.; Leng, G.; Kebede, A.; Xu, X.; Yun, X. Projected impacts of climate change on drought patterns over East Africa. Earth’s Future 2020, 8, e2020EF001502. [Google Scholar] [CrossRef]
- Jehanzaib, M.; Kim, T.-W. Exploring the influence of climate change-induced drought propagation on wetlands. Ecol. Eng. 2020, 149, 105799. [Google Scholar] [CrossRef]
- Ahmed, E.A.; Hassan, E.A.; El Tobgy, K.M.K.; Ramadan, E.M. Evaluation of rhizobacteria of some medicinal plants for plant growth promotion and biological control. Ann. Agric. Sci. 2014, 59, 273–280. [Google Scholar] [CrossRef] [Green Version]
- Mijani, S.; Nasrabadi, S.E.; Zarghani, H.; Abadi, M.G. Seed germination and early growth responses of hyssop, sweet basil and oregano to temperature levels. Not. Sci. Biol. 2013, 5, 462–467. [Google Scholar] [CrossRef] [Green Version]
- Ekren, S.; Sönmez, Ç.; Özçakal, E.; Kurttaş, Y.S.K.; Bayram, E.; Gürgülü, H. The effect of different irrigation water levels on yield and quality characteristics of purple basil (Ocimum basilicum L.). Agric. Water Manag. 2012, 109, 155–161. [Google Scholar] [CrossRef]
- Alishah, H.M.; Heidari, R.; Hassani, A.; Asadi, D.A. Effect of water stress on Some Morphological and Biochemical Characteristics of Purple Basil (Ocimum basilicum). J. Biol. Sci. 2006, 6, 763–767. [Google Scholar]
- Rahbarian, R.; Khavari-Nejad, R.; Ganjeali, A.; Bagheri, A.; Najafi, F. Drought stress effects on photosynthesis, chlorophyll fluorescence and water relations in tolerant and susceptible chickpea (Cicer arietinum L.) genotypes. Acta Biol. Cracoviensia. Ser. Bot. 2011, 53, 47–56. [Google Scholar] [CrossRef]
- Safikhani, F.; Sharifabadi, H.H.; Siadat, S.A.; Ashoorabadi, A.S.; Seyyednejad, S.M.; Abbaszadeh, B. Effects of drought stress on yield and morphological traits of dragonhead (Dracocephalum moldavica L.). Iran. J. Med. Aromat. Plants 2007, 23, 183–194. [Google Scholar]
- Forouzandeh, M.; Fanoudi, M.; Arazmjou, E.; Tabiei, H. Effect of drought stress and types of fertilizers on the quantity and quality of medicinal plant Basil (Ocimum basilicum L.). Indian J. Innov. Dev. 2012, 1, 696–699. [Google Scholar]
- Saleh, A.M.; Selim, S.; Al Jaouni, S.; AbdElgawad, H. CO2 enrichment can enhance the nutritional and health benefits of parsley (Petroselinum crispum L.) and dill (Anethum graveolens L.). Food Chem. 2018, 269, 519–526. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Gruda, N.; Li, X.; Tang, Y.; Zhang, P.; Duan, Z. Sustainable vegetable production under changing climate: The impact of elevated CO2 on yield of vegetables and the interactions with environments-A review. J. Clean. Prod. 2020, 253, 119920. [Google Scholar] [CrossRef]
- Zhao, X.; Mao, Z.; Xu, J. Gas exchange, chlorophyll and growth responses of Betula platyphylla seedlings to elevated CO2 and nitrogen. Int. J. Biol. 2010, 2, 143. [Google Scholar] [CrossRef]
- Ghanbari, A.; Abedi, K.; Taie, S. Effect of municipal wastewater irrigation on yield and quality of wheat and some soil properties in sistan zone. J. Sci. Technol. Agric. Nat. Resour. 2007, 10, 513–528. [Google Scholar]
- Sharp, R.E.; Poroyko, V.; Hejlek, L.G.; Spollen, W.G.; Springer, G.K.; Bohnert, H.J.; Nguyen, H.T. Root growth maintenance during water deficits: Physiology to functional genomics. J. Exp. Bot. 2004, 55, 2343–2351. [Google Scholar] [CrossRef] [Green Version]
- Reddy, K.R.; Hodges, H.F.; Read, J.J.; McKinion, J.M.; Baker, J.T.; Tarpley, L.; Reddy, V.R. Soil-Plant-Atmosphere-Research (SPAR) facility: A tool for plant research and modeling. Biotronics 2001, 30, 27–50. [Google Scholar]
- Wijewardana, C.; Hock, M.; Henry, B.; Reddy, K.R. Screening corn hybrids for cold tolerance using morphological traits for early-season seeding. Crop Sci. 2015, 55, 851–867. [Google Scholar] [CrossRef] [Green Version]
- Hoagland, D.R.; Arnon, D.I. The Water-Culture Method for Growing Plants without Soil; College of Agriculture, University of California: Davis, CA, USA, 1950; 347p. [Google Scholar]
- McKinion, J.M.; Hodges, H.F. Automated system for measurement of evapotranspiration from closed environmental growth chambers. Trans. ASAE 1985, 28, 1825–1828. [Google Scholar] [CrossRef]
- Timlin, D.; Fleisher, D.; Kim, S.; Reddy, V.; Baker, J. Evapotranspiration measurement in controlled environment chambers: A comparison between time domain reflectometry and accumulation of condensate from cooling coils. Agron. J. 2007, 99, 166–173. [Google Scholar] [CrossRef]
- Radácsi, P.; Inotai, K.; Sárosi, S.; Czövek, P.; Bernath, J.; Nemeth, E. Effect of water supply on the physiological characteristic and production of basil (Ocimum basilicum L.). Eur. J. Hortic. Sci. 2010, 75, 193. [Google Scholar]
- Osakabe, Y.; Osakabe, K.; Shinozaki, K.; Tran, L.-S.P. Response of plants to water stress. Front. Plant Sci. 2014, 5, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sirousmehr, A.; Arbabi, J.; Asgharipour, M.R. Effect of drought stress levels and organic manures on yield, essential oil content and some morphological characteristics of sweet basil (Ocimum basilicum). Adv. Environ. Biol. 2014, 8, 880–885. [Google Scholar]
- Singh, H.; Poudel, M.R.; Dunn, B.L.; Fontanier, C.; Kakani, G. Effect of greenhouse CO2 supplementation on yield and mineral element concentrations of leafy greens grown using nutrient film technique. Agronomy 2020, 10, 323. [Google Scholar] [CrossRef] [Green Version]
- Kordi, S.; Saidi, M.; Ghanbari, F. Induction of drought tolerance in sweet basil (Ocimum basilicum L.) by salicylic acid. Int. J. Agric. Food Res. 2013, 2, 18–26. [Google Scholar] [CrossRef]
- Barickman, T.C.; Adhikari, B.; Sehgal, A.; Walne, C.H.; Reddy, K.R. Drought and elevated CO2 impacts photosynthesis and biochemicals of basil (Ocimum basilicum L.). Stresses 2021, 1, 223–237. [Google Scholar] [CrossRef]
- Long, S.P.; Ainsworth, E.A.; Rogers, A.; Ort, D.R. Rising atmospheric carbon dioxide: Plants FACE the future. Annu. Rev. Plant Biol. 2004, 55, 591–628. [Google Scholar] [CrossRef]
- Zhang, J.; Jiang, H.; Song, X.; Jin, J.; Zhang, X. The responses of plant leaf CO2/H2O exchange and water use efficiency to drought: A meta-analysis. Sustainability 2018, 10, 551. [Google Scholar] [CrossRef] [Green Version]
- Ayub, G.; Smith, R.A.; Tissue, D.T.; Atkin, O.K. Impacts of drought on leaf respiration in darkness and light in Eucalyptus saligna exposed to industrial-age atmospheric CO2 and growth temperature. New Phytol. 2011, 190, 1003–1018. [Google Scholar] [CrossRef]
- Reyes-Fox, M.; Steltzer, H.; Trlica, M.J.; McMaster, G.S.; Andales, A.A.; LeCain, D.R.; Morgan, J.A. Elevated CO 2 further lengthens growing season under warming conditions. Nature 2014, 510, 259–262. [Google Scholar] [CrossRef]
- Fang, Y.; Xiong, L. General mechanisms of drought response and their application in drought resistance improvement in plants. Cell. Mol. Life Sci. 2015, 72, 673–689. [Google Scholar] [CrossRef] [PubMed]
- Asgharipour, M.; Rafiei, M. Effect of different organic amendments and drought on the growth and yield of basil in the greenhouse. Adv. Environ. Biol. 2011, 1233–1240. [Google Scholar]
- Misra, A.; Srivastava, N.K. Influence of water stress on Japanese mint. J. Herbs. Spices Med. Plants 2000, 7, 51–58. [Google Scholar] [CrossRef]
- Li, D.; Liu, H.; Qiao, Y.; Wang, Y.; Cai, Z.; Dong, B.; Shi, C.; Liu, Y.; Li, X.; Liu, M. Effects of elevated CO2 on the growth, seed yield, and water use efficiency of soybean (Glycine max (L.) Merr.) under drought stress. Agric. Water Manag. 2013, 129, 105–112. [Google Scholar] [CrossRef]
- Sumner, M.E. Beneficial use of effluents, wastes, and biosolids. Commun. Soil Sci. Plant Anal. 2000, 31, 1701–1715. [Google Scholar] [CrossRef]
- Pirbalouti, A.G.; Malekpoor, F.; Salimi, A.; Golparvar, A. Exogenous application of chitosan on biochemical and physiological characteristics, phenolic content and antioxidant activity of two species of basil (Ocimum ciliatum and Ocimum basilicum) under reduced irrigation. Sci. Hortic. 2017, 217, 114–122. [Google Scholar] [CrossRef]
- Vaz, M.; Cochard, H.; Gazarini, L.; Graça, J.; Chaves, M.M.; Pereira, J.S. Cork oak (Quercus suber L.) seedlings acclimate to elevated CO2 and water stress: Photosynthesis, growth, wood anatomy and hydraulic conductivity. Trees 2012, 26, 1145–1157. [Google Scholar] [CrossRef]
- O’Leary, G.J.; Christy, B.; Nuttall, J.; Huth, N.; Cammarano, D.; Stöckle, C.; Basso, B.; Shcherbak, I.; Fitzgerald, G.; Luo, Q. Response of wheat growth, grain yield and water use to elevated CO2 under a Free-Air CO2 Enrichment (FACE) experiment and modelling in a semi-arid environment. Glob. Chang. Biol. 2015, 21, 2670–2686. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Xiong, L. Genetic engineering and breeding of drought-resistant crops. Annu. Rev. Plant Biol. 2014, 65, 715–741. [Google Scholar] [CrossRef] [PubMed]
- Forster, B.P.; Thomas, W.T.B.; Chloupek, O. Genetic controls of barley root systems and their associations with plant performance. Asp. Appl. Biol. 2005, 73, 199–204. [Google Scholar]
- Hammer, G.L.; Dong, Z.; McLean, G.; Doherty, A.; Messina, C.; Schussler, J.; Zinselmeier, C.; Paszkiewicz, S.; Cooper, M. Can changes in canopy and/or root system architecture explain historical maize yield trends in the US corn belt? Crop Sci. 2009, 49, 299–312. [Google Scholar] [CrossRef]
- Li, X.; Dong, J.; Chu, W.; Chen, Y.; Duan, Z. The relationship between root exudation properties and root morphological traits of cucumber grown under different nitrogen supplies and atmospheric CO2 concentrations. Plant Soil 2018, 425, 415–432. [Google Scholar] [CrossRef]
- Rogers, H.H.; Runion, G.B.; Krupa, S. V Plant responses to atmospheric CO2 enrichment with emphasis on roots and the rhizosphere. Environ. Pollut. 1994, 83, 155–189. [Google Scholar] [CrossRef]
- Anjum, S.A.; Wang, L.C.; Farooq, M.; Hussain, M.; Xue, L.L.; Zou, C.M. Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. J. Agron. Crop Sci. 2011, 197, 177–185. [Google Scholar] [CrossRef]
- Chaves, M.M.; Flexas, J.; Pinheiro, C. Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Ann. Bot. 2009, 103, 551–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Kelish, A.; Zhao, F.; Heller, W.; Durner, J.; Winkler, J.B.; Behrendt, H.; Traidl-Hoffmann, C.; Horres, R.; Pfeifer, M.; Frank, U. Ragweed (Ambrosia artemisiifolia) pollen allergenicity: SuperSAGE transcriptomic analysis upon elevated CO2 and drought stress. BMC Plant Biol. 2014, 14, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Race, E.J.; Shrikhande, A.J. Characterization of anthocyanins in grape juices by ion trap liquid chromatography− mass spectrometry. J. Agric. Food Chem. 2003, 51, 1839–1844. [Google Scholar] [CrossRef]
- Ghasemzadeh, A.; Jaafar, H.Z.E.; Karimi, E.; Ibrahim, M.H. Combined effect of CO2 enrichment and foliar application of salicylic acid on the production and antioxidant activities of anthocyanin, flavonoids and isoflavonoids from ginger. BMC Complement. Altern. Med. 2012, 12, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ma, D.; Sun, D.; Wang, C.; Li, Y.; Guo, T. Expression of flavonoid biosynthesis genes and accumulation of flavonoid in wheat leaves in response to drought stress. Plant Physiol. Biochem. 2014, 80, 60–66. [Google Scholar] [CrossRef]
- Al-Gabbiesh, A.; Kleinwächter, M.; Selmar, D. Influencing the contents of secondary metabolites in spice and medicinal plants by deliberately applying drought stress during their cultivation. Jordan J. Biol. Sci. 2015, 147, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Taub, D.R.; Wang, X. Why are nitrogen concentrations in plant tissues lower under elevated CO2? A critical examination of the hypotheses. J. Integr. Plant Biol. 2008, 50, 1365–1374. [Google Scholar] [CrossRef] [PubMed]
- Ben-Jabeur, M.; Vicente, R.; López-Cristoffanini, C.; Alesami, N.; Djébali, N.; Gracia-Romero, A.; Serret, M.D.; López-Carbonell, M.; Araus, J.L.; Hamada, W. A novel aspect of essential oils: Coating seeds with thyme essential oil induces drought resistance in wheat. Plants 2019, 8, 371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Treatment | DM% 1,3 | Ht | NN | BN | LA |
---|---|---|---|---|---|
420 ppm | |||||
Control | 8.269 b | 36.56 a | 7.1 a | 15.33 a | 1223.60 ab |
Drought | 10.101 ab | 33.05 b | 6.9 a | 13.56 a | 997.72 c |
720 ppm | |||||
Control | 8.981 b | 36.61 a | 7.0 a | 15.33 a | 1321.09 a |
Drought | 11.823 a | 35.44 a | 7.0 a | 14.22 a | 1070.67 bc |
Treatment 2,4 | ** | *** | ns | * | *** |
CO2 | ns | * | ns | ns | ns |
Treatment × CO2 | ns | * | ns | ns | ns |
Treatment | DM% 1,3 | Ht | NN | BN | LA |
---|---|---|---|---|---|
420 ppm | |||||
Control | 11.733 b | 61.67 a | 10.0 a | 29.87 a | 6946.3 a |
Drought | 16.265 a | 51.27 b | 9.8 a | 31.27 a | 3913.3 b |
720 ppm | |||||
Control | 10.677 b | 60.93 a | 10.1 a | 29.67 a | 8078.9 a |
Drought | 16.571 a | 54.47 b | 10.0 a | 29.67 a | 3978.7 b |
Treatment 2,4 | *** | *** | ns | ns | *** |
CO2 | ns | ns | ns | ns | ns |
Treatment × CO2 | ns | ns | ns | ns | ns |
Treatment | FM 1,4 | LDM | SDM | RDM | ShDM | TDM | RS 2 |
---|---|---|---|---|---|---|---|
420 ppm | |||||||
Control | 80.62 b | 4.479 bc | 2.188 bc | 0.941 a | 6.667 bc | 7.608 bc | 0.140 bc |
Drought | 59.32 c | 3.987 c | 2.021 c | 1.066 a | 6.008 c | 7.073 c | 0.176 a |
720 ppm | |||||||
Control | 94.37 a | 5.779 a | 2.789 a | 1.021 a | 8.568 a | 9.589 a | 0.119 c |
Drought | 67.94 c | 5.074 ab | 2.642 ab | 1.180 a | 7.717 ab | 8.897 ab | 0.163 ab |
Treatment 3,5 | *** | ns | ns | ns | ns | ns | ** |
CO2 | ** | ** | ** | ns | ** | ** | ns |
Treatment × CO2 | ns | ns | ns | ns | ns | ns | ns |
Treatment | FM 1,4 | LDM | SDM | RDM | ShDM | TDM | RS 2 |
---|---|---|---|---|---|---|---|
420 ppm | |||||||
Control | 486.33 b | 25.032 a | 33.049 ab | 6.840 ab | 58.081 ab | 64.922 ab | 0.116 b |
Drought | 284.30 c | 17.591 b | 27.591 b | 5.343 b | 45.182 b | 50.525 b | 0.120 b |
720 ppm | |||||||
Control | 613.71 a | 28.393 a | 38.733 a | 8.511 a | 67.126 a | 75.637 a | 0.128 ab |
Drought | 275.46 c | 17.060 b | 29.756 b | 6.388 b | 46.816 b | 53.204 b | 0.140 a |
Treatment 3,5 | *** | *** | * | ** | ** | ** | ns |
CO2 | ns | ns | ns | * | ns | ns | * |
Treatment × CO2 | ns | ns | ns | ns | ns | ns | ns |
Treatment | LRL 1,3 | TRL | RSA | RAD | RV | RT | RF | RC |
---|---|---|---|---|---|---|---|---|
420 ppm | ||||||||
Control | 45.1 a | 4572.9 a | 854.3 a | 0.597 a | 14.00 b | 10,052 b | 38,545 b | 2412.6 b |
Drought | 43.0 ab | 4230.7 a | 729.5 a | 0.547 a | 13.73 b | 14,347 a | 44,146 b | 3255.8 ab |
720 ppm | ||||||||
Control | 46.7 a | 4159.1 a | 738.6 a | 0.560 a | 15.45 ab | 12,477 ab | 46,580 ab | 3287.8 ab |
Drought | 40.4 b | 4265.6 a | 765.1 a | 0.574 a | 17.60 a | 15,042 a | 55,344 a | 3840.4 a |
Treatment 2,4 | ** | ns | ns | ns | ns | * | ns | ns |
CO2 | ns | ns | ns | ns | * | ns | * | * |
Treatment × CO2 | ns | ns | ns | ns | ns | ns | ns | ns |
Treatment | Chlorophyll 3 | Flavonoids | Anthocyanin | NBI 1 |
---|---|---|---|---|
[μg·mL−1] | [mg·g−1 DM] | [mg·g−1 DM] | ||
420 ppm | ||||
Control | 21.468 bc | 0.6853 ab | 0.1144 b | 32.415 b |
Drought | 25.744 a | 0.6455 b | 0.1028 c | 40.890 a |
720 ppm | ||||
Control | 18.978 c | 0.7044 ab | 0.1126 bc | 28.062 c |
Drought | 22.027 b | 0.7394 a | 0.1269 a | 30.391 bc |
Treatment 2,4 | *** | ns | *** | *** |
CO2 | ** | * | ** | *** |
Treatment × CO2 | ns | ns | ns | * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barickman, T.C.; Adhikari, B.; Sehgal, A.; Walne, C.H.; Reddy, K.R.; Gao, W. Drought and Elevated Carbon Dioxide Impact the Morphophysiological Profile of Basil (Ocimum basilicum L.). Crops 2021, 1, 118-128. https://doi.org/10.3390/crops1030012
Barickman TC, Adhikari B, Sehgal A, Walne CH, Reddy KR, Gao W. Drought and Elevated Carbon Dioxide Impact the Morphophysiological Profile of Basil (Ocimum basilicum L.). Crops. 2021; 1(3):118-128. https://doi.org/10.3390/crops1030012
Chicago/Turabian StyleBarickman, T. Casey, Bikash Adhikari, Akanksha Sehgal, C. Hunt Walne, K. Raja Reddy, and Wei Gao. 2021. "Drought and Elevated Carbon Dioxide Impact the Morphophysiological Profile of Basil (Ocimum basilicum L.)" Crops 1, no. 3: 118-128. https://doi.org/10.3390/crops1030012
APA StyleBarickman, T. C., Adhikari, B., Sehgal, A., Walne, C. H., Reddy, K. R., & Gao, W. (2021). Drought and Elevated Carbon Dioxide Impact the Morphophysiological Profile of Basil (Ocimum basilicum L.). Crops, 1(3), 118-128. https://doi.org/10.3390/crops1030012