Bamboo: Global Occurrence and Its Significance as Food and Related Products
Abstract
:1. Introduction
2. Global Scenarios of Bamboo
3. Utilizations of Bamboo Components
4. Nutritional Aspects and Health Benefits
4.1. Nutrient Compositions of Bamboo Shoots
4.2. Nutrient Compositions of Bamboo Leaves
4.3. Health Benefits
4.4. Safety Concerns of Bamboo Shoots
5. Bamboo as Foods
5.1. Fresh Bamboo Shoots
5.2. Dried Products
5.3. Pickled Products
5.4. Fermented Products
5.5. Thermally Processed Products
5.6. Bamboo Leaf Tea
5.7. Dietary Fiber from Bamboo
5.8. Starch from Bamboo
5.9. Bamboo Juice
5.10. Sugars from Bamboo
5.11. Bamboo Related Foods
6. Cooking Utensils from Bamboo
7. Bamboo as Animal Feeds
8. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wysocki, W.P.; Clark, L.G.; Attigala, L.; Ruiz-Sanchez, E.; Duvall, M.R. Evolution of the bamboos (Bambusoideae; Poaceae): A full plastome phylogenomic analysis. BMC Evol. Biol. 2015, 15, 50. [Google Scholar] [CrossRef] [PubMed]
- Singhal, P.; Satya, S.; Naik, S.N. Fermented bamboo shoots: A complete nutritional, anti-nutritional and antioxidant profile of the sustainable and functional food to food security. Food Chem. Mol. Sci. 2021, 3, 100041. [Google Scholar] [CrossRef]
- Nirmala, C.; Bisht, M.S.; Bajwa, H.K.; Santosh, O. Bamboo: A rich source of natural antioxidants and its applications in the food and pharmaceutical industry. Trends Food Sci. Technol. 2018, 77, 91–99. [Google Scholar] [CrossRef]
- Ahmad, Z.; Upadhyay, A.; Ding, Y.; Emamverdian, A.; Shahzad, A. Bamboo: Origin, Habitat, Distributions and Global Prospective. In Biotechnological Advances in Bamboo; Ahmad, Z., Ding, Y., Shahzad, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–31. [Google Scholar] [CrossRef]
- Vivas, L.S.; Mullins, G.; Cunningham, J.A.; Mihelcic, J.R. Mechanical properties of bamboo: A research synthesis of strength values and the factors influencing them. J. Amer. Bamboo Soc. 2019, 29, 1–21. [Google Scholar]
- Nayak, L.; Mishra, S.P. Prospect of bamboo as a renewable textile fiber, historical overview, labeling, controversies and regulation. Fash. Text. 2016, 3, 2. [Google Scholar] [CrossRef]
- Fatriasari, W.; Karimah, A.; Hastuti, N.; Indrawan, D.A.; Wistara, N. Bamboo for Pulp and Paper. In Multifaceted Bamboo; Md Tahir, P., Lee, S.H., Osman Al-Edrus, S.S., Uyup, M.K.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2023; pp. 291–315. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, L.; Li, Y.; Yang, J.; Yang, H.; Zhao, Y.; Chen, G. Bamboo shoot and its food applications in last decade: An undervalued edible resource from forest to feed future people. Trends Food Sci. Technol. 2024, 146, 104399. [Google Scholar] [CrossRef]
- Silva, M.F.; Menis-Henrique, M.E.C.; Felisberto, M.H.F.; Goldbeck, R.; Clerici, M.T.P.S. Bamboo as an eco-friendly material for food and biotechnology industries. Curr. Opin. Food Sci. 2020, 33, 124–130. [Google Scholar] [CrossRef]
- Kumar, R.; Chandrashekar, N. Fuel properties and combustion characteristics of some promising bamboo species in India. J. Res. 2014, 25, 471–476. [Google Scholar] [CrossRef]
- Chaturvedi, K.; Singhwane, A.; Dhangar, M.; Mili, M.; Gorhae, N.; Naik, A.; Prashant, N.; Srivastava, A.K.; Verma, S. Bamboo for producing charcoal and biochar for versatile applications. Biomass Convers. Biorefinery 2024, 14, 15159–15185. [Google Scholar] [CrossRef]
- Delgado, J.A.; D’Adamo, R.E.; Villacis, A.H.; Halvorson, A.D.; Stewart, C.E.; Alwang, J.; Del Grosso, S.J.; Manter, D.K.; Floyd, B.A. Climate change and its positive and negative impacts on irrigated corn yields in a region of Colorado (USA). Crops 2024, 4, 366–378. [Google Scholar] [CrossRef]
- Chongtham, N.; Bisht, M.S. Bamboo Shoot: Superfood for Nutrition, Health and Medicine; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Dwivedi, A.K.; Kumar, A.; Baredar, P.; Prakash, O. Bamboo as a complementary crop to address climate change and livelihoods—Insights from India. Policy Econ. 2019, 102, 66–74. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, J.; Wang, D.; Ye, F.; He, Y.; Hu, Z.; Zhao, G. A systematic review on the composition, storage, processing of bamboo shoots: Focusing the nutritional and functional benefits. J. Funct. Foods 2020, 71, 104015. [Google Scholar] [CrossRef]
- Lee, S.H.; Md Tahir, P.; Osman Al-Edrus, S.S.; Uyup, M.K.A. Bamboo Resources, Trade, and Utilisation. In Multifaceted Bamboo; Md Tahir, P., Lee, S.H., Osman Al-Edrus, S.S., Uyup, M.K.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2023; pp. 1–14. [Google Scholar] [CrossRef]
- Basak, M.; Dutta, S.; Biswas, S.; Chakraborty, S.; Sarkar, A.; Rahaman, T.; Dey, S.; Biswas, P.; Das, M. Genomic insights into growth and development of bamboos: What have we learnt and what more to discover? Trees 2021, 35, 1771–1791. [Google Scholar] [CrossRef]
- FAO. Global Forest Resources Assessment 2010, Main Report; FAO Forestry Paper 163; Food and Agriculture Organization of the United Nations: Rome, Italy, 2010. [Google Scholar]
- INBAR. Trade Overview 2019 Bamboo and Rattan Commodities in the International Market; International Bamboo and Rattan Organization: Beijing, China, 2021. [Google Scholar]
- Singhal, P.; Bal, L.M.; Satya, S.; Sudhakar, P.; Naik, S.N. Bamboo shoots: A novel source of nutrition and medicine. Crit. Rev. Food Sci. Nutr. 2013, 53, 517–534. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, B.P.; Singh, K.; Singh, A. Nutritional values of some commercial edible bamboo species of the North Eastern Himalayan region, India. J. Bamboo Ratt. 2005, 4, 111–124. [Google Scholar] [CrossRef]
- Divakara, B.N.; Prathima, P.; Nikhitha, C.U. A review on edible bamboo: An alternative food source. Indian J. Agrofor. 2019, 21, 86–93. [Google Scholar]
- Soriano, F.P. Sustainable bamboo utilization in Thailand. ITTO Trop. Updat. 2008, 18, 15–17. [Google Scholar]
- Satya, S.; Bal, L.M.; Singhal, P.; Naik, S.N. Bamboo shoot processing: Food quality and safety aspect (a review). Trends Food Sci. Technol. 2010, 21, 181–189. [Google Scholar] [CrossRef]
- Liese, W.; Welling, J.; Tang, T.K.H. Utilization of Bamboo. In Bamboo. Tropical Forestry; Liese, W., Köhl, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 299–346. [Google Scholar] [CrossRef]
- Yadav, M.; Mathur, A. Bamboo as a sustainable material in the construction industry: An overview. Mater. Today Proc. 2021, 43, 2872–2876. [Google Scholar] [CrossRef]
- Felisberto, M.H.F.; Miyake, P.S.E.; Beraldo, A.L.; Clerici, M.T.P.S. Young bamboo culm: Potential food as source of fiber and starch. Food Res. Int. 2017, 101, 96–102. [Google Scholar] [CrossRef]
- Singhal, P.; Satya, S.; Sudhakar, P. Antioxidant and pharmaceutical potential of bamboo leaves. Bamboo Sci. Cult. 2011, 24, 19–28. [Google Scholar]
- Kiruba, S.; Jeeva, S.; Das, S.; Kannan, D. Bamboo seeds as a means to sustenance of the indigenous community. Indian J. Tradit. Knowl. 2007, 6, 199–203. [Google Scholar]
- Tungjitwitayakul, J.; Singtripop, T.; Nettagul, A.; Oda, Y.; Tatun, N.; Sekimoto, T.; Sakurai, S. Identification, characterization, and developmental regulation of two storage proteins in the bamboo borer Omphisa fuscidentalis. J. Insect Physiol. 2008, 54, 62–76. [Google Scholar] [CrossRef] [PubMed]
- Indira, A.; Santosh, O.; Koul, A.; Nirmala, C. Comparative assessment of the antioxidant potential of bamboo leaves, along with some locally and commercially consumed beverages in India. Adv. Bamboo Sci. 2022, 1, 100007. [Google Scholar] [CrossRef]
- Sayanika, D.W.; Louis, B.; Pranab, R.; Narayan, C.T. Insights on predominant edible bamboo shoot proteins. Afr. J. Biotechnol. 2015, 14, 1511–1518. [Google Scholar] [CrossRef]
- Karnjanapratum, S.; Kaewthong, P.; Takeungwongtrakul, S.; Sae-leaw, T.; Hong, J.H.; Nalinanon, S. Production of fiber hydrolysate from bamboo shoot with antioxidative properties by enzymatic hydrolysis. Curr. Appl. Sci. Technol. 2019, 19, 225–234. [Google Scholar] [CrossRef]
- Karanja, P.N.; Kenji, G.M.; Njoroge, S.M.; Sila, D.N.; Onyango, C.A.; Koaze, H.; Baba, N. Variation of nutrients and functional properties within young shoots of a bamboo species (Yushania alpina) growing at Mt. Elgon Region in Western Kenya. J. Food Nutr. Res. 2015, 3, 675–680. [Google Scholar]
- Satya, S.; Singhal, P.; Bal, L.M.; Sudhakar, P. Bamboo shoot: A potential source of food security. Med. J. Nutr. Metab. 2012, 5, 1–10. [Google Scholar] [CrossRef]
- Chongtham, N.; Bisht, M.S.; Haorongbam, S. Nutritional properties of bamboo shoots: Potential and prospects for utilization as a health food. Compr. Rev. Food Sci. Food Saf. 2011, 10, 153–168. [Google Scholar] [CrossRef]
- Akinmoladun, O.F. Effect of processing methods on chemical and nutrient composition of bamboo (Bambusae arundinacea) leaves. J. Anim. Plant Sci. 2022, 32, 330. [Google Scholar] [CrossRef]
- Singhal, P. Bamboo leaves: An emerging multi-functional food. Food Drug Saf. 2024, 1, 1–9. [Google Scholar] [CrossRef]
- Magalhães, I.M.C.; Paglarini, C.d.S.; Vidal, V.A.S.; Pollonio, M.A.R. Bamboo fiber improves the functional properties of reduced salt and phosphate-free Bologna sausage. J. Food Process Preserv. 2020, 44, e14929. [Google Scholar] [CrossRef]
- Andriarimalala, J.H.; Kpomasse, C.C.; Salgado, P.; Ralisoa, N.; Durai, J. Nutritional potential of bamboo leaves for feeding dairy cattle. Pesqui. Agropecu. Trop. 2019, 49, e54370. [Google Scholar] [CrossRef]
- Sahoo, A.; Ogra, R.K.; Sood, A.; Ahuja, P.S. Chemical composition and nutritive value of leaves from different bamboo cultivars. Indian J. Anim. Nutr. 2009, 26, 306–314. [Google Scholar]
- Weiwen, C.; Zhijiang, L.; Fang, C.; Jianwei, L.; Ciping, D. The nutrition status and nutrition diagnosis of bamboo leaves in the South of Hubei. J. Northeast Univ. 2004, 32, 41–44. [Google Scholar]
- Nirmala, C.; Bisht, M.S.; Laishram, M. Bioactive compounds in bamboo shoots: Health benefits and prospects for developing functional foods. Int. J. Food Sci. Technol. 2014, 49, 1425–1431. [Google Scholar] [CrossRef]
- Shang, Y.F.; Kim, S.M.; Um, B.-H. Optimisation of pressurised liquid extraction of antioxidants from black bamboo leaves. Food Chem. 2014, 154, 164–170. [Google Scholar] [CrossRef]
- Emamverdian, A.; Ding, Y.; Ranaei, F.; Ahmad, Z. Application of bamboo plants in nine aspects. Sci. World J. 2020, 2020, 7284203. [Google Scholar] [CrossRef]
- Santosh, O.; Bajwa, H.K.; Bisht, M.S.; Chongtham, N. Application of Bamboo in the Food and Pharmaceutical Industry. In Biotechnological Advances in Bamboo; Ahmad, Z., Ding, Y., Shahzad, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 401–429. [Google Scholar] [CrossRef]
- Kimura, I.; Kagawa, S.; Tsuneki, H.; Tanaka, K.; Nagashima, F. Multitasking bamboo leaf-derived compounds in prevention of infectious, inflammatory, atherosclerotic, metabolic, and neuropsychiatric diseases. Pharmacol. Ther. 2022, 235, 108159. [Google Scholar] [CrossRef]
- Gagliano, J.; Anselmo-Moreira, F.; Sala-Carvalho, W.R.; Furlan, C.M. What is known about the medicinal potential of bamboo? Adv. Tradit. Med. 2022, 22, 467–495. [Google Scholar] [CrossRef]
- Møller, B.L. Functional diversifications of cyanogenic glucosides. Curr. Opin. Plant Biol. 2010, 13, 337–346. [Google Scholar] [CrossRef]
- Chongtham, N.; Bisht, M.S.; Premlata, T.; Bajwa, H.K.; Sharma, V.; Santosh, O. Quality improvement of bamboo shoots by removal of antinutrients using different processing techniques: A review. J. Food Sci. Technol. 2022, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.K.; Ojha, V. Precooking processing of bamboo shoots for removal of anti-nutrients. J. Food Sci. Technol. 2014, 51, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wu, W.; Fang, X.; Chen, H.; Han, Y.; Liu, R.; Niu, B.; Gao, H. Structural characterization of a polysaccharide from bamboo (Phyllostachys edulis) shoot and its prevention effect on colitis mouse. Food Chem. 2022, 387, 132807. [Google Scholar] [CrossRef] [PubMed]
- Horn, T.; Häser, A. Bamboo tea: Reduction of taxonomic complexity and application of DNA diagnostics based on rbcL and matK sequence data. PeerJ. 2016, 4, e2781. [Google Scholar] [CrossRef]
- Ai, Y.; Gong, L.; Reed, M.; Huang, J.; Zhang, Y.; Jane, J. Characterization of starch from bamboo seeds. Starch-Stärke 2016, 68, 131–139. [Google Scholar] [CrossRef]
- Sarma, U.; Gupta, S. An overview on ethnic fermented food and beverages of India: Interplay of microbes, immunity and nutrition. Nutr. Health 2022, 28, 331–339. [Google Scholar] [CrossRef]
- Acharya, B.; Behera, A.; Sahu, P.K.; Dilnawaz, F.; Behera, S.; Chowdhury, B.; Mishra, D.P. Bamboo shoots: An exploration into its culinary heritage in India and its nutraceutical potential. J. Ethn. Foods 2023, 10, 22. [Google Scholar] [CrossRef]
- Choudhury, D.; Sahu, J.K.; Sharma, G.D. Biochemistry of bitterness in bamboo shoots. Assam Univ. J. Sci. Technol. 2010, 6, 105–111. [Google Scholar]
- Sivamaruthi, B.S.; Alagarsamy, K.; Suganthy, N.; Thangaleela, S.; Kesika, P.; Chaiyasut, C. The role and significance of bacillus and lactobacillus species in Thai fermented foods. Fermentation 2022, 8, 635. [Google Scholar] [CrossRef]
- Bhargava, A.; Kumbhare, V.; Srivastava, A.; Sahai, A. Bamboo parts and seeds for additional source of nutrition. J. Food Sci. Technol. 1996, 33, 145–146. [Google Scholar]
- Singthong, J.; Ningsanond, S.; Cui, S.W. Extraction and physicochemical characterisation of polysaccharide gum from Yanang (Tiliacora triandra) leaves. Food Chem. 2009, 114, 1301–1307. [Google Scholar] [CrossRef]
- Yang, Q.; Duan, Z.; Wang, Z.; He, K.; Sun, Q.; Peng, Z. Bamboo resources, utilization and ex-situ conservation in Xishuangbanna, South-eastern China. J. Res. 2008, 19, 79–83. [Google Scholar] [CrossRef]
- Law, K.; Meng, L.C. Authentic Recipes from China; Tuttle Publishing: North Clarendon, VT, USA, 2012. [Google Scholar]
- Nongkynrih, C.J.; Mipun, P.; Kumar, Y. Bamboos: Diversity and its utilization in Meghalaya, Northeast India. Plant Arch. 2019, 19, 3106–3110. [Google Scholar]
- Bhuiyan, M.H.R.; Hossain, M.A.; Yeasmen, N. Local-traditional foods of Bangladesh: A treasure to be preserved. Int. J. Gastron. Food Sci. 2022, 30, 100602. [Google Scholar] [CrossRef]
- Madamba, P.S. Physical changes in bamboo (Bambusa phyllostachys) shoot during hot air drying: Shrinkage, density, and porosity. Dry. Technol. 2003, 21, 555–568. [Google Scholar] [CrossRef]
- Lv, H.; Lian, C.; Xu, B.; Shu, X.; Yang, J.; Fei, B. Effects of microwave-assisted drying on the drying shrinkage and chemical properties of bamboo stems. Ind. Crops Prod. 2022, 187, 115547. [Google Scholar] [CrossRef]
- Singhal, P.; Satya, S.; NNaik, S. Effect of different drying techniques on the nutritional, antioxidant and cyanogenic profile of bamboo shoots. Appl. Food Res. 2022, 2, 100036. [Google Scholar] [CrossRef]
- Kamarulzaman, A.; Hasanuzzaman, M.; Rahim, N.A. Global advancement of solar drying technologies and its future prospects: A review. Sol. Energy 2021, 221, 559–582. [Google Scholar] [CrossRef]
- Kumar, M.; Sansaniwal, S.K.; Khatak, P. Progress in solar dryers for drying various commodities. Renew. Sustain. Energy Rev. 2016, 55, 346–360. [Google Scholar] [CrossRef]
- Jain, D.; Tiwari, G.N. Thermal aspects of open sun drying of various crops. Energy 2003, 28, 37–54. [Google Scholar] [CrossRef]
- Singhal, P.; Rudra, S.G.; Singh, R.K.; Satya, S.; Naik, S.N. Impact of drying techniques on physical quality of bamboo shoots: Implications on tribal’s livelihoods. Indian J. Tradit. Knowl. 2018, 17, 353–359. [Google Scholar]
- Saini, N.; Chongtham, N.; Bisht, M.S. Bamboo shoot processing: Conventional to Modern Optimisations. In Bamboo Science and Technology. Environmental Footprints and Eco-Design of Products and Processes; Palombini, F.L., Nogueira, F.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2023; pp. 163–199. [Google Scholar] [CrossRef]
- Chen, G.; Li, C.; Wang, S.; Mei, X.; Zhang, H.; Kan, J. Characterization of physicochemical properties and antioxidant activity of polysaccharides from shoot residues of bamboo (Chimonobambusa quadrangularis): Effect of drying procedures. Food Chem. 2019, 292, 281–293. [Google Scholar] [CrossRef]
- Badwaik, L.S.; Choudhury, S.; Borah, P.K.; Sit, N.; Deka, S.C. Comparison of kinetics and other related properties of bamboo shoot drying pretreated with osmotic dehydration. J. Food Process Preserv. 2014, 38, 1171–1180. [Google Scholar] [CrossRef]
- Benjamin, M.A.; Ng, S.Y.; Saikim, F.H.; Rusdi, N.A. The effects of drying techniques on phytochemical contents and biological activities on selected bamboo leaves. Molecules 2022, 27, 6458. [Google Scholar] [CrossRef]
- Darmayanti, L.P.T.; Duwipayana, A.A.; Putra, I.N.K.; Antara, N.S. Preliminary study of fermented pickle of Tabah bamboo shoot (Gigantochloa nigrociliata (Buese) Kurz). Int. J. Biol. Vet. Agric. Food Eng. 2014, 8, 999–1004. [Google Scholar]
- Zheng, J.; Zhang, F.; Zhou, C.; Chen, G.; Lin, M.; Kan, J. Changes in amino acid contents, texture and microstructure of bamboo shoots during pickling process. Int. J. Food Sci. Technol. 2013, 48, 1847–1853. [Google Scholar] [CrossRef]
- Pan-Utai, W.; Settachaimongkon, S.; La-Ongkham, O.; Pornpukdeewattana, S.; Hamwane, M.; Lorpeunge, C.; Adame, M.; Yodbumprenge, C. Physicochemical, nutritional, and antioxidant properties of traditionally fermented Thai vegetables: A promising functional plant-based food. Foods 2024, 13, 2848. [Google Scholar] [CrossRef] [PubMed]
- Kanpiengjai, A.; Nuntikaew, P.; Wongsanittayarak, J.; Leangnim, N.; Khanongnuch, C. Isolation of efficient xylooligosaccharides-fermenting probiotic lactic acid bacteria from ethnic pickled bamboo shoot products. Biology 2022, 11, 638. [Google Scholar] [CrossRef]
- Huilong, J.; Xin, G.; Wenxuan, W.U.; Zhuang, M.; Qing, Q. Isolation of xylanase producing strains, optimization of fermentation conditions and research on enzymatic properties. J. Biol. Life Sci. 2021, 12, 1–15. [Google Scholar] [CrossRef]
- Joshi, B.; Indira, A.; Oinam, S.; Koul, A.; Chongtham, N. Fermented Bamboo Shoots: A Potential Source of Nutritional and Health Supplements. In Bamboo Science and Technology. Environmental Footprints and Eco-Design of Products and Processes; Palombini, F.L., Nogueira, F.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2023; pp. 201–236. [Google Scholar] [CrossRef]
- Tan, X.; Cui, F.; Wang, D.; Lv, X.; Li, X.; Li, J. Fermented vegetables: Health benefits, defects, and current technological solutions. Foods 2024, 13, 38. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.-G.; Yoon, Y.; Bazemore, R. Aroma-active components in fermented bamboo shoots. J. Agric. Food Chem. 2002, 50, 549–554. [Google Scholar] [CrossRef]
- Selmer, T.; Andrei, P.I. p-Hydroxyphenylacetate decarboxylase from Clostridium difficile: A novel glycyl radical enzyme catalysing the formation of p-cresol. Eur. J. Biochem. 2001, 268, 1363–1372. [Google Scholar] [CrossRef] [PubMed]
- Tamang, J.P.; Sarkar, P.K. Microbiology of mesu, a traditional fermented bamboo shoot product. Int. J. Food Microbiol. 1996, 29, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Guu, J.R.; Wang, L.T.; Hamada, M.; Wang, C.; Lin, R.W.; Huang, L.; Watanabe, K. Lactobacillus bambusae sp. nov., isolated from traditional fermented ma bamboo shoots in Taiwan. Int. J. Syst. Evol. Microbiol. 2018, 68, 2424–2430. [Google Scholar] [CrossRef]
- Tamang, B.; Tamang, J.P.; Schillinger, U.; Franz, C.M.A.P.; Gores, M.; Holzapfel, W.H. Phenotypic and genotypic identification of lactic acid bacteria isolated from ethnic fermented bamboo tender shoots of North East India. Int. J. Food Microbiol. 2008, 121, 35–40. [Google Scholar] [CrossRef]
- Jin, Q.; Xie, F.; Luo, J.; Huang, X.; Wen, J.; Zhang, W.; Wu, J.; He, J.; Wang, Z. Investigation of functional and structural properties of insoluble dietary fiber from Sichuan natural fermented pickles with different salting treatments. Starch-Stärke 2018, 70, 1800047. [Google Scholar] [CrossRef]
- Li, W.; Jin, Q.; Wu, Q.; Zhang, W.; Luo, Y.; Gu, S.; Wu, J.; Wang, Z. Effect of a hybrid process, high hydrostatic pressure treatment combined with mixed-strain fermentation, on the quality of the dietary fibre in pickled vegetables. Int. J. Food Sci. Technol. 2020, 55, 2650–2659. [Google Scholar] [CrossRef]
- Sonar, N.R.; Vijayendra, S.V.N.; Prakash, M.; Saikia, M.; Tamang, J.P.; Halami, P.M. Nutritional and functional profile of traditional fermented bamboo shoot based products from Arunachal Pradesh and Manipur states of India. Int. Food Res. J. 2015, 22, 788–797. [Google Scholar]
- Choudhury, D.; Sahu, J.K.; Sharma, G.D. Value addition to bamboo shoots: A review. J. Food Sci. Technol. 2012, 49, 407–414. [Google Scholar] [CrossRef]
- Phungamngoen, C.; Suwan, T. Inhibition of xanthine oxidase and uric acid in canned bamboo shoot by Yanang juice. Int. J. Agric. Technol. 2021, 17, 291–304. [Google Scholar]
- Gulcimen, S.; Ozcan, O.; Çevik, S.B.; Kahraman, K.; Uzal, N. Comparative life cycle assessment of retort pouch and aluminum can for ready-to-eat bean packaging. J. Mater. Cycles Waste Manag. 2023, 25, 3723–3733. [Google Scholar] [CrossRef]
- Bal, L.M.; Singhal, P.; Satya, S.; Naik, S.N.; Kar, A. Bamboo shoot preservation for enhancing its business potential and local economy: A review. Crit. Rev. Food Sci. Nutr. 2012, 52, 804–814. [Google Scholar] [CrossRef]
- Sansawat, A.; Limsukon, W.; Nitteranon, V. Preparation and analysis of physicochemical properties, antioxidant and antibacterial activities of Kombucha tea produced from Beijing bamboo leaf tea (Dendrocalamus sp.) and green tea. J. Curr. Sci. Technol. 2024, 14, 58. [Google Scholar] [CrossRef]
- Studzińska-Sroka, E.; Galanty, A.; Gościniak, A.; Wieczorek, M.; Kłaput, M.; Dudek-Makuch, M.; Cielecka-Piontek, J. Herbal infusions as a valuable functional food. Nutrients 2021, 13, 4051. [Google Scholar] [CrossRef]
- Yang, C.; Yifan, L.; Dan, L.; Qian, Y.; Ming-Yan, J. Bamboo leaf flavones and tea polyphenols show a lipid-lowering effect in a rat model of hyperlipidemia. Drug Res. 2015, 65, 668–671. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, Y.C.; Jhumka, Z.; Anjum, N. Evaluation of total polyphenol and antioxidant activity of leaves of Bambusa nutans and Bambusa vulgaris. J. Pharm. Res. 2015, 9, 271–277. [Google Scholar]
- Hu, C.; Zhang, Y.; Kitts, D.D. Evaluation of antioxidant and prooxidant activities of bamboo Phyllostachys nigra var. Henonis leaf extract in vitro. J. Agric. Food Chem. 2000, 48, 3170–3176. [Google Scholar] [CrossRef]
- Zhang, Y.; Ying, T.; Zhang, Y. Reduction of acrylamide and its kinetics by addition of antioxidant of bamboo leaves (AOB) and extract of green tea (EGT) in asparagine–glucose microwave heating system. J. Food Sci. 2008, 73, C60–C66. [Google Scholar] [CrossRef]
- Zhang, R.; Shi, X.; Liu, J.; Jiang, Y.; Wu, Y.; Xu, Y.; Yang, C. The effects of bamboo leaf flavonoids on growth performance, immunity, antioxidant status, and intestinal microflora of Chinese mitten crabs (Eriocheir sinensis). Anim. Feed. Sci. Technol. 2022, 288, 115297. [Google Scholar] [CrossRef]
- Lu, B.; Wu, X.; Shi, J.; Dong, Y.; Zhang, Y. Toxicology and safety of antioxidant of bamboo leaves. Part 2, Developmental toxicity test in rats with antioxidant of bamboo leaves. Food Chem. Toxicol. 2006, 44, 1739–1743. [Google Scholar] [CrossRef]
- Yang, J.H.; Choi, M.H.; Yang, S.H.; Cho, S.S.; Park, S.J.; Shin, H.J.; Ki, S.H. Potent anti-inflammatory and antiadipogenic properties of bamboo (Sasa coreana Nakai) leaves extract and its major constituent flavonoids. J. Agric. Food Chem. 2017, 65, 6665–6673. [Google Scholar] [CrossRef]
- Gomez, J.P.; Velez, J.P.A.; Pinzon, M.A.; Arango, J.A.M.; Muriel, A.P. Chemical characterization and antiradical properties of pyroligneous acid from a preserved bamboo, Guadua angustifolia Kunth. Braz. Arch. Biol. Technol. 2021, 64, e21190730. [Google Scholar] [CrossRef]
- Jiao, J.; Lü, G.; Liu, X.; Zhu, H.; Zhang, Y. Reduction of blood lead levels in lead-exposed mice by dietary supplements and natural antioxidants. J. Sci. Food Agric. 2011, 91, 485–491. [Google Scholar] [CrossRef] [PubMed]
- Imadi, S.R.; Mahmood, I.; Kazi, A.G. Bamboo Fiber Processing, Properties, and Applications. In Biomass and Bioenergy; Hakeem, K., Jawaid, M., Rashid, U., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 27–46. [Google Scholar] [CrossRef]
- Nyamayi, D.A.; Anyango, J.O.; Omwamba, M. Sensory evaluation of wheat-cassava-bamboo shoot composite bread. J. Food Nutr. Sci. 2022, 10, 86–96. [Google Scholar] [CrossRef]
- Khalkhali, R.; Mostaghim, T. Effects of using bamboo fiber and guar gum on physicochemical, rheological, shelf life and organoleptic characteristics of instant noodles. Food Res. J. 2022, 32, 61–76. [Google Scholar] [CrossRef]
- Ferreira, A.R.; Gianasi, F.; de Menezes Alves Moro, T.; Felisberto, M.H.F.; Neves, E.C.A.; Clerici, M.T.P.S. Functional Pasta: A Comparative Study of the Use of Bamboo Fibers and White Fibers. In Biotechnological Advances in Bamboo; Ahmad, Z., Ding, Y., Shahzad, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 431–446. [Google Scholar] [CrossRef]
- Shen, Y.; Yang, L.; Peng, H.; Shen, L.; Fu, G.; Wan, Y.; Liu, Y.; Wu, X.; Zheng, H. Preparation of water-soluble dietary fiber from bamboo shoots by fungi fermentation and its supplementation in biscuits. Food Bioprod. Process. 2024, 147, 507–517. [Google Scholar] [CrossRef]
- Dello, S.M.; Bertola, N.; Martino, M. Influence of dietary fiber addition on sensory and rheological properties of yogurt. Int. Dairy J. 2004, 14, 263–268. [Google Scholar] [CrossRef]
- Martínez, M.M.; Díaz, Á.; Gómez, M. Effect of different microstructural features of soluble and insoluble fibres on gluten-free dough rheology and bread-making. J. Food Eng. 2014, 142, 49–56. [Google Scholar] [CrossRef]
- Lin, Z.; Chen, J.; Zhang, J.; Brooks, M.S.-L. Potential for value-added utilization of bamboo shoot processing waste—Recommendations for a biorefinery approach. Food Bioprocess. Technol. 2018, 11, 901–912. [Google Scholar] [CrossRef]
- Nirmala, C.; Sharma, M.L. A comparative study of nutrient components of freshly harvested, fermented and canned bamboo shoots of Dendrocalamus giganteus Munro. Bamboo Sci. Cult. 2008, 21, 41–47. [Google Scholar]
- Ahmad, M.I.; Farooq, S.; Zhang, H. Recent advances in the fabrication, health benefits, and food applications of bamboo cellulose. Food Hydrocoll. Health 2022, 2, 100103. [Google Scholar] [CrossRef]
- Gan, J.; Xie, L.; Peng, G.; Xie, J.; Chen, Y.; Yu, Q. Systematic review on modification methods of dietary fiber. Food Hydrocoll. 2021, 119, 106872. [Google Scholar] [CrossRef]
- Tejada-Ortigoza, V.; Garcia-Amezquita, L.E.; Serna-Saldívar, S.O.; Welti-Chanes, J. Advances in the functional characterization and extraction processes of dietary fiber. Food Eng. Rev. 2016, 8, 251–271. [Google Scholar] [CrossRef]
- Jiang, Y.; Yin, H.; Zheng, Y.; Wang, D.; Liu, Z.; Deng, Y.; Zhao, Y. Structure, physicochemical and bioactive properties of dietary fibers from Akebia trifoliata (Thunb.) Koidz. seeds using ultrasonication/shear emulsifying/microwave-assisted enzymatic extraction. Food Res. Int. 2020, 136, 109348. [Google Scholar] [CrossRef]
- Wicharaew, K.; Prommajak, T.; Ruenwai, R. Effect of extraction methods on the physicochemical properties of fiber from bamboo shoot waste. Malays. Appl. Biol. 2019, 48, 39–45. [Google Scholar]
- Ma, M.; Mu, T. Effects of extraction methods and particle size distribution on the structural, physicochemical, and functional properties of dietary fiber from deoiled cumin. Food Chem. 2016, 194, 237–246. [Google Scholar] [CrossRef]
- Tang, C.; Wu, L.; Zhang, F.; Kan, J.; Zheng, J. Comparison of different extraction methods on the physicochemical, structural properties, and in vitro hypoglycemic activity of bamboo shoot dietary fibers. Food Chem. 2022, 386, 132642. [Google Scholar] [CrossRef]
- He, M.X.; Wang, J.L.; Qin, H.; Shui, Z.X.; Zhu, Q.L.; Wu, B.; Tan, F.R.; Pan, K.; Hu, Q.C.; Dai, L.C.; et al. Bamboo: A new source of carbohydrate for biorefinery. Carbohydr. Polym. 2014, 111, 645–654. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, Q.I.; Huang, J.; Fang, D.; Zhuang, W.; Luo, X.; Zou, X.; Zheng, B.; Cao, H. Hypoglycemic effect of dietary fibers from bamboo shoot shell: An in vitro and in vivo study. Food Chem. Toxicol. 2019, 127, 120–126. [Google Scholar] [CrossRef]
- Luo, X.; Wang, Q.; Fang, D.; Zhuang, W.; Chen, C.; Jiang, W.; Zheng, Y. Modification of insoluble dietary fibers from bamboo shoot shell: Structural characterization and functional properties. Int. J. Biol. Macromol. 2018, 120, 1461–1467. [Google Scholar] [CrossRef] [PubMed]
- Li, A.P.; Xie, B.X.; Wang, J.; Tian, Y.F. Comparison on the preparation method function and structure of dietary fiber from bamboo shoots. J. Chin. Inst. Food Sci. Technol. 2010, 10, 86–92. [Google Scholar]
- Chen, Y.; Ye, R.; Yin, L.; Zhang, N. Novel blasting extrusion processing improved the physicochemical properties of soluble dietary fiber from soybean residue and in vivo evaluation. J. Food Eng. 2014, 120, 1–8. [Google Scholar] [CrossRef]
- Yang, M.; Wu, L.; Cao, C.; Wang, S.; Zhang, D. Extrusion improved the physical and chemical properties of dietary fibre from bamboo shoot by-products. Int. J. Food Sci. Technol. 2021, 56, 847–856. [Google Scholar] [CrossRef]
- Tang, C.; Yang, J.; Zhang, F.; Kan, J.; Wu, L.; Zheng, J. Insight into the physicochemical, structural, and in vitro hypoglycemic properties of bamboo shoot dietary fibre: Comparison of physical modification methods. Int. J. Food Sci. Technol. 2022, 57, 4998–5010. [Google Scholar] [CrossRef]
- Ullah, I.; Yin, T.; Xiong, S.; Zhang, J.; Din, Z.; Zhang, M. Structural characteristics and physicochemical properties of okara (soybean residue) insoluble dietary fiber modified by high-energy wet media milling. LWT-Food Sci. Technol. 2017, 82, 15–22. [Google Scholar] [CrossRef]
- Song, Y.; Su, W.; Mu, Y.C. Modification of bamboo shoot dietary fiber by extrusion-cellulase technology and its properties. Int. J. Food Prop. 2018, 21, 1219–1232. [Google Scholar] [CrossRef]
- Yang, W.T.; Gong, X.X.; Ji, H.; Shao, J.F. Qualitative and quantitative characterization of nutrient content and morphology in seeds of bamboo, rice, and wheat. J. Cereal Sci. 2021, 101, 103273. [Google Scholar] [CrossRef]
- Felisberto, M.H.F.; Beraldo, A.L.; Costa, M.S.; Boas, F.V.; Franco, C.M.L.; Clerici, M.T.P.S. Physicochemical and structural properties of starch from young bamboo culm of Bambusa tuldoides. Food Hydrocoll. 2019, 87, 101–107. [Google Scholar] [CrossRef]
- Felisberto, M.H.F.; Beraldo, A.L.; Costa, M.S.; Boas, F.V.; Franco, C.M.L.; Clerici, M.T.P.S. Bambusa vulgaris starch: Characterization and technological properties. Food Res. Int. 2020, 132, 109102. [Google Scholar] [CrossRef]
- Gao, Q.; Wang, D.; Shao, S.; Xue, Y.; Zhang, Y.; Chen, C.; Tang, F.; Sun, J.; Li, Y.; Guo, Q. Identification and quantitation of the actual active components in bamboo juice and its oral liquid by NMR and UPLC-Q-TOF-MS. Sci. Rep. 2020, 10, 19664. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.F.; Li, H.; Yang, X. Investigation on chemical composition in four kinds of bamboo juices. West. J. Trad. Chin. Med. 2014, 27, 13–15. [Google Scholar]
- Li, P.S.; Zhou, F.S.; Li, C.X. Study on chemical constituents of fresh bamboo juice. Chin. Trad. Herb. Drugs 1984, 15, 3–4. [Google Scholar]
- Gao, W.M. Determination of main inorganic elements and amino acids in bamboo juice. Chin. Trad. Pat. Med. 2000, 22, 553–554. [Google Scholar]
- Zong, X.; Liscum, G. Chinese Medicinal Teas: Simple, Proven, Folk Formulas for Common Diseases & Promoting Health; Blue Poppy Enterprises, Inc.: Portland, OR, USA, 1996. [Google Scholar]
- Fatriasari, W.; Solihat, N.N.; Sari, F.P.; Karimah, A.; Sohail, A. Sugar Production from Bamboo. In Multifaceted Bamboo; Md Tahir, P., Lee, S.H., Osman Al-Edrus, S.S., Uyup, M.K.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2023; pp. 217–241. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, Y.; Ajuwon, K.M.; Zhong, R.; Li, T.; Chen, L.; Zhang, H.; Beckers, Y.; Everaert, N. Xylo-oligosaccharides, preparation and application to human and animal health: A review. Front. Nutr. 2021, 8, 731930. [Google Scholar] [CrossRef]
- Palaniappan, A.; Antony, U.; Emmambux, M.N. Current status of xylooligosaccharides: Production, characterization, health benefits and food application. Trends Food Sci. Technol. 2021, 111, 506–519. [Google Scholar] [CrossRef]
- Jin, K.; Ling, Z.; Jin, Z.; Ma, J.; Yang, S.; Liu, X.; Jiang, Z. Local variations in carbohydrates and matrix lignin in mechanically graded bamboo culms. Polymers 2021, 14, 143. [Google Scholar] [CrossRef]
- Deng, J.; Yun, J.; Gu, Y.; Yan, B.; Yin, B.; Huang, C. Evaluating the in vitro and in vivo prebiotic effects of different xylo-oligosaccharides obtained from bamboo shoots by hydrothermal pretreatment combined with endo-xylanase hydrolysis. Int. J. Mol. Sci. 2023, 24, 13422. [Google Scholar] [CrossRef]
- Yi, C.H.; Liu, X.Y.; Yang, P.L.; Wang, C.Y.; Wang, X.B.; Liu, X.; He, Q.J.; Zhao, M. Characterisation and phylogenetic analysis of the complete mitogenome of the edible insect bamboo worm Omphisa fuscidentalis in Yunnan Province, China. J. Insects Food Feed 2023, 9, 1075–1087. [Google Scholar] [CrossRef]
- Singtripop, T.; Wanichacheewa, S.; Tsuzuki, S.; Sakurai, S. Larval growth and diapause in a tropical moth, Omphisa fuscidentalis Hampson. Zool. Sci. 1999, 16, 725–733. [Google Scholar] [CrossRef]
- Yhoung-Aree, J.; Puwastien, P.; Attig, G.A. Edible insects in Thailand: An unconventional protein source? Ecol. Food Nutr. 1997, 36, 133–149. [Google Scholar] [CrossRef]
- Grabowski, N.T.; Chhay, T.; Keo, S.; Lertpatarakomol, R.; Kajaysri, J.; Kang, K.; Miech, P.; Plötz, M.; Mitchaothai, J. Proximate composition of Thai and Cambodian ready-to-eat insects. J. Food Qual. 2021, 2021, 9731464. [Google Scholar] [CrossRef]
- Kim, H.Y.; Lee, E.S.; Jeong, J.Y.; Choi, J.H.; Choi, Y.S.; Han, D.J.; Lee, M.A.; Kim, S.Y.; Kim, C.J. Effect of bamboo salt on the physicochemical properties of meat emulsion systems. Meat Sci. 2010, 86, 960–965. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Kang, S.Y.; Jung, K.K.; Kim, T.G.; Han, H.M.; Rheu, H.M.; Moon, A. Characterization and anti-gastric ulcer activity of bamboo salt. J. Food Hyg. Saf. 1998, 13, 252–257. [Google Scholar]
- Shin, H.Y.; Na, H.J.; Moon, P.D.; Shin, T.; Shin, T.Y.; Kim, S.H.; Hong, S.H.; Kim, H.M. Inhibition of mast cell-dependent immediate-type hypersensitivity reactions by purple bamboo salt. J. Ethnopharmacol. 2004, 91, 153–157. [Google Scholar] [CrossRef]
- Sangija, F.; Wu, W. Bamboo wine: Its production technology and potential as a sustainable health beverage. Food Rev. Int. 2022, 38, 1368–1388. [Google Scholar] [CrossRef]
- Sageng, C.W.; Quee-Ling, L.; Mikal, I.I.; Sandhu, M.K.; Pudun, J.M.; Umadi, M.F.B. Culinary practices of the Bidayuhs in Sarawak, Malaysia: A qualitative study. J. Ethn. Foods 2024, 11, 16. [Google Scholar] [CrossRef]
- Yuming, Y.; Kanglin, W.; Shengji, P.; Jiming, H. Bamboo diversity and traditional uses in Yunnan, China. Mt. Res. Dev. 2004, 24, 157–165. [Google Scholar] [CrossRef]
- Wahyudi, B.A.; Octavia, F.A.; Hadipraja, M.; Isnaeniah, S.; Viriani, V. Lemang (Rice bamboo) as a representative of typical Malay food in Indonesia. J. Ethn. Foods 2017, 4, 3–7. [Google Scholar] [CrossRef]
- Komthong, P.; Suriyaphan, O.; Charoenpanich, J. Determination of acrylamide in Thai-conventional snacks from Nong Mon market, Chonburi using GC-MS technique. Food Addit. Contam. Part B 2012, 5, 20–28. [Google Scholar] [CrossRef]
- Promkhambut, A.; Polthanee, A.; Simma, B.; Fox, J.; Rambo, A.T. Reconfiguring farming systems of smallholders with market-led approach: A case study in Northeast Thailand. Sustainability 2023, 15, 12144. [Google Scholar] [CrossRef]
- Halvorson, J.J.; Cassida, K.A.; Turner, K.E.; Belesky, D.P. Nutritive value of bamboo as browse for livestock. Renew. Agric. Food Syst. 2011, 26, 161–170. [Google Scholar] [CrossRef]
- Liu, J.X.; Wang, X.Q.; Shi, Z.Q.; Ye, H.W. Nutritional evaluation of bamboo shoot shell and its effect as supplementary feed on performance of heifers offered ammoniated rice straw diets. Asian-Australas. J. Anim. Sci. 2000, 13, 1388–1393. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uprarawanna, U.; Kaewsritong, J.; Srikaeo, K. Bamboo: Global Occurrence and Its Significance as Food and Related Products. Crops 2025, 5, 11. https://doi.org/10.3390/crops5020011
Uprarawanna U, Kaewsritong J, Srikaeo K. Bamboo: Global Occurrence and Its Significance as Food and Related Products. Crops. 2025; 5(2):11. https://doi.org/10.3390/crops5020011
Chicago/Turabian StyleUprarawanna, Utsaphong, Jiraphat Kaewsritong, and Khongsak Srikaeo. 2025. "Bamboo: Global Occurrence and Its Significance as Food and Related Products" Crops 5, no. 2: 11. https://doi.org/10.3390/crops5020011
APA StyleUprarawanna, U., Kaewsritong, J., & Srikaeo, K. (2025). Bamboo: Global Occurrence and Its Significance as Food and Related Products. Crops, 5(2), 11. https://doi.org/10.3390/crops5020011