The Essential Oil Composition in Commercial Samples of Verbena officinalis L. Herb from Different Origins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Hydrodistillation of Essential Oil
2.3. Gas Chromatography/Mass Spectrometry
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vélez-Gavilán, J. Verbena officinalis (Vervain) 2020. CABI Compend. 2022, 56184. [Google Scholar] [CrossRef]
- Kubica, P.; Szopa, A.; Dominiak, J.; Luczkiewicz, M.; Ekiert, H. Verbena officinalis (Common Vervain)—A Review on the Investigations of This Medicinally Important Plant Species. Planta Med. 2020, 86, 1241–1257. [Google Scholar] [CrossRef]
- Polumackanycz, M.; Petropoulos, S.A.; Añibarro-Ortega, M.; Pinela, J.; Barros, L.; Plenis, A.; Viapiana, A. Chemical Composition and Antioxidant Properties of Common and Lemon Verbena. Antioxidants 2022, 11, 2247. [Google Scholar] [CrossRef] [PubMed]
- Shu, J.; Chou, G.; Wang, Z. Two New Iridoids from Verbena officinalis L. Molecules 2014, 19, 10473–10479. [Google Scholar] [CrossRef] [PubMed]
- Rehecho, S.; Hidalgo, O.; García-Iñiguez De Cirano, M.; Navarro, I.; Astiasarán, I.; Ansorena, D.; Cavero, R.Y.; Calvo, M.I. Chemical Composition, Mineral Content and Antioxidant Activity of Verbena officinalis L. LWT Food Sci. Technol. 2011, 44, 875–882. [Google Scholar] [CrossRef]
- Xu, W.; Xin, F.; Sha, Y.; Fang, J.; Li, Y.-S. Two New Secoiridoid Glycosides from Verbena officinalis. J. Asian Nat. Prod. Res. 2010, 12, 649–653. [Google Scholar] [CrossRef]
- European Pharmacopoeia, 11th ed.; Council of Europe: Strasbourg, France, 2022.
- Kubica, P.; Szopa, A.; Kokotkiewicz, A.; Miceli, N.; Taviano, M.F.; Maugeri, A.; Cirmi, S.; Synowiec, A.; Gniewosz, M.; Elansary, H.O.; et al. Production of Verbascoside, Isoverbascoside and Phenolic Acids in Callus, Suspension, and Bioreactor Cultures of Verbena officinalis and Biological Properties of Biomass Extracts. Molecules 2020, 25, 5609. [Google Scholar] [CrossRef]
- El-Wakil, E.S.; El-Shazly, M.A.M.; El-Ashkar, A.M.; Aboushousha, T.; Ghareeb, M.A. Chemical Profiling of Verbena officinalis and Assessment of Its Anti-Cryptosporidial Activity in Experimentally Infected Immunocompromised Mice. Arab. J. Chem. 2022, 15, 103945. [Google Scholar] [CrossRef]
- Chen, Y.; Gan, Y.; Yu, J.; Ye, X.; Yu, W. Key Ingredients in Verbena officinalis and Determination of Their Anti-Atherosclerotic Effect Using a Computer-Aided Drug Design Approach. Front. Plant Sci. 2023, 14, 1154266. [Google Scholar] [CrossRef]
- Gibitz-Eisath, N.; Eichberger, M.; Gruber, R.; Sturm, S.; Stuppner, H. Development and Validation of a Rapid Ultra-High Performance Liquid Chromatography Diode Array Detector Method for Verbena Officinalis L. J. Pharm. Biomed. Anal. 2018, 160, 160–167. [Google Scholar] [CrossRef]
- Falleh, H.; Hafsi, C.; Mohsni, I.; Ksouri, R. Évaluation de Différents Procédés d’Extraction des Composés Des Composés Phénoliques d’une Plante Médicinale: Verbena officinalis. Biol. Aujourd’Hui 2021, 215, 133–142. [Google Scholar] [CrossRef] [PubMed]
- De Martino, L.; D’Arena, G.; Minervini, M.M.; Deaglio, S.; Fusco, B.M.; Cascavilla, N.; De Feo, V. Verbena officinalis Essential Oil and Its Component Citral as Apoptotic-Inducing Agent in Chronic Lymphocytic Leukemia. Int. J. Immunopathol. Pharmacol. 2009, 22, 1097–1104. [Google Scholar] [CrossRef] [PubMed]
- Mohini, K.; Mohini, U.; Amrita, K.; Aishwarya, Z.; Disha, S.; Padmaja, K. Verbena officinalis (Verbenaceae): Pharmacology, Toxicology and Role in Female Health. IJAM 2022, 13, 296–304. [Google Scholar] [CrossRef]
- Posatska, N.M.; Grytsyk, A.R.; Struk, O.A. Reserachog Steroid and Volatile Compounds in Verbena officinalis L. Herb. Sci. Pract. J. 2024, 3, 120–125. [Google Scholar] [CrossRef]
- Zhang, Y.; Jin, H.; Qin, J.; Fu, J.; Cheng, X.; Zhang, W. Chemical Constituents from Verbena officinalis. Chem. Nat. Compd. 2011, 47, 319–320. [Google Scholar] [CrossRef]
- Chevallier, A. Encyclopedia of Herbal Medicine, 2nd ed.; DK Publishing Inc.: London, UK, 2000. [Google Scholar]
- Popova, A.; Mihaylova, D.; Spasov, A. Plant-Based Remedies with Reference to Respiratory Diseases—A Review. TOBIOTJ 2021, 15, 46–58. [Google Scholar] [CrossRef]
- Popovich, V.I.; Beketova, H.V. Results of a Randomised Controlled Study on the Efficacy of a Combination of Saline Irrigation and Sinupret Syrup Phytopreparation in the Treatment of Acute Viral Rhinosinusitis in Children Aged 6 to 11 Years. Clin. Phytosci. 2018, 4, 21. [Google Scholar] [CrossRef]
- Kovalenko, V.N. Compendium 2020. Medicines; MORION: Kyiv, Ukraine, 2020. [Google Scholar]
- Jin, C.; Liu, X.; Ma, D.; Hua, X.; Jin, N. Optimization of Polysaccharides Extracted from Verbena officinalis L and Their Inhibitory Effects on Invasion and Metastasis of Colorectal Cancer Cells. Trop. J. Pharm. Res. 2017, 16, 2387–2394. [Google Scholar] [CrossRef]
- Encalada, M.A.; Rehecho, S.; Ansorena, D.; Astiasarán, I.; Cavero, R.Y.; Calvo, M.I. Antiproliferative Effect of Phenylethanoid Glycosides from Verbena officinalis L. on Colon Cancer Cell Lines. LWT Food Sci. Technol. 2015, 63, 1016–1022. [Google Scholar] [CrossRef]
- Nisar, R.; Adhikary, S.; Ahmad, S.; Alam, M.A. In Vitro Antimelanoma Properties of Verbena officinalis Fractions. Molecules 2022, 27, 6329. [Google Scholar] [CrossRef]
- Kou, W.-Z.; Yang, J.; Yang, Q.-H.; Wang, Y.; Wang, Z.-F.; Xu, S.-L.; Liu, J. Study on In-Vivo Anti-Tumor Activity of Verbena officinalis Extract. Afr. J. Trad. Compl. Alt. Med. 2013, 10, 512–517. [Google Scholar] [CrossRef] [PubMed]
- Dziurka, M.; Kubica, P.; Kwiecień, I.; Biesaga-Kościelniak, J.; Ekiert, H.; Abdelmohsen, S.A.M.; Al-Harbi, F.F.; El-Ansary, D.O.; Elansary, H.O.; Szopa, A. In Vitro Cultures of Some Medicinal Plant Species (Cistus × Incanus, Verbena officinalis, Scutellaria lateriflora, and Scutellaria baicalensis) as a Rich Potential Source of Antioxidants—Evaluation by CUPRAC and QUENCHER-CUPRAC Assays. Plants 2021, 10, 454. [Google Scholar] [CrossRef] [PubMed]
- Hrytsyk, A.R.; Posatska, N.M.; Klymenko, A.O. Obtaining and Study of Properties of Exgracts Verbena officinalis. Pharm. Rev. 2016, 3, 39–44. [Google Scholar] [CrossRef]
- Casanova, E.; García-Mina, J.M.; Calvo, M.I. Antioxidant and Antifungal Activity of Verbena officinalis L. Leaves. Plant Foods Hum. Nutr. 2008, 63, 93–97. [Google Scholar] [CrossRef]
- Gharachorloo, M.; Amouheidari, M. Chemical Composition, Antibacterial and Antioxidant Activities of the Essential Oil Isolated from Verbena officinalis. J. Food Biosci. Technol. 2016, 6, 33–40. [Google Scholar]
- Sanchooli, N.; Saeidi, S.; Barani, H.K.; Sanchooli, E. In Vitro Antibacterial Effects of Silver Nanoparticles Synthesized Using Verbena officinalis Leaf Extract on Yersinia Ruckeri, Vibrio Cholera and Listeria Monocytogenes. Iran J. Microbiol. 2018, 10, 400–408. [Google Scholar]
- Ashfaq, A.; Khan, A.; Minhas, A.M.; Aqeel, T.; Assiri, A.M.; Bukhari, I.A. Anti-Hyperlipidemic Effects of Caralluma edulis (Asclepiadaceae) and Verbena officinalis (Verbenaceae) Whole Plants against High-Fat Diet-Induced Hyperlipidemia in Mice. Trop. J. Pharm. Res. 2017, 16, 2417–2423. [Google Scholar] [CrossRef]
- Rodrigues Oliveira, S.M.; Dias, E.; Girol, A.P.; Silva, H.; Pereira, M.D.L. Exercise Training and Verbena officinalis L. Affect Pre-Clinical and Histological Parameters. Plants 2022, 11, 3115. [Google Scholar] [CrossRef]
- Bekara, A.; Amazouz, A.; Benyamina Douma, T. Evaluating the Antidepressant Effect of Verbena officinalis L. (Vervain) Aqueous Extract in Adult Rats. Basic Clin. Neurosci. J. 2020, 11, 91–98. [Google Scholar] [CrossRef]
- Jawaid, T.; Imam, S.A.; Kamal, M. Antidepressant Activity of Methanolic Extract of Verbena officinalis Linn. Plant in Mice. Asian J. Pharm. Clin. Res. 2015, 8, 308–310. [Google Scholar]
- Rashidian, A.; Kazemi, F.; Mehrzadi, S.; Dehpour, A.R.; Mehr, S.E.; Rezayat, S.M. Anticonvulsant Effects of Aerial Parts of Verbena officinalis Extract in Mice: Involvement of Benzodiazepine and Opioid Receptors. J. Evid. Based Complement. Altern Med. 2017, 22, 632–636. [Google Scholar] [CrossRef]
- Hrytsyk, Y.; Koshovyi, O.; Lepiku, M.; Jakštas, V.; Žvikas, V.; Matus, T.; Melnyk, M.; Grytsyk, L.; Raal, A. Phytochemical and Pharmacological Research in Galenic Remedies of Solidago canadensis L. Herb. Phyton 2024, 93, 2303–2315. [Google Scholar] [CrossRef]
- Raal, A.; Ilina, T.; Kovalyova, A.; Koshovyi, O. Volatile Compounds in Distillates and Hexane Extracts from the Flowers of Philadelphus coronarius and Jasminum officinale. Sci. Pharm. Sci. 2024, 6, 37–46. [Google Scholar] [CrossRef]
- Chalchat, J.-C.; Garry, R.-P. Chemical Composition of the Leaf Oil of Verbena officinalis L. J. Essent. Oil Res. 1996, 8, 419–420. [Google Scholar] [CrossRef]
- Martino, L.D.; D’ Arena, G.; Minervini, M.M.; Deaglio, S.; Sinisi, N.P.; Cascavilla, N.; Feo, V.D. Active Caspase-3 Detection to Evaluate Apoptosis Induced by Verbena officinalis Essential Oil and Citral in Chronic Lymphocytic Leukaemia Cells. Rev. Bras. Farm. 2011, 21, 869–873. [Google Scholar] [CrossRef]
- Kokotkiewicz, A.; Zabiegala, B.; Kubica, P.; Szopa, A.; Bucinski, A.; Ekiert, H.; Luczkiewicz, M. Accumulation of Volatile Constituents in Agar and Bioreactor Shoot Cultures of Verbena officinalis L. Plant Cell Tiss. Organ Cult. 2021, 144, 671–679. [Google Scholar] [CrossRef]
- Thakur, M.; Bhattacharya, S.; Khosla, P.K.; Puri, S. Improving Production of Plant Secondary Metabolites through Biotic and Abiotic Elicitation. J. Appl. Res. Med. Aromat. Plants 2019, 12, 1–12. [Google Scholar] [CrossRef]
- Butnariu, M.; Sarac, I. Essential Oils from Plants. JBBS 2018, 1, 35–43. [Google Scholar] [CrossRef]
- Kang, W.; Choi, D.; Park, S.; Park, T. Carvone Decreases Melanin Content by Inhibiting Melanoma Cell Proliferation via the Cyclic Adenosine Monophosphate (cAMP) Pathway. Molecules 2020, 25, 5191. [Google Scholar] [CrossRef]
- Lima, L.T.F.D.; Ganzella, F.A.D.O.; Cardoso, G.C.; Pires, V.D.S.; Chequin, A.; Santos, G.L.; Braun-Prado, K.; Galindo, C.M.; Braz Junior, O.; Molento, M.B.; et al. L-Carvone Decreases Breast Cancer Cells Adhesion, Migration, and Invasion by Suppressing FAK Activation. Chem. Biol. Interact. 2023, 378, 110480. [Google Scholar] [CrossRef]
- Aprotosoaie, A.C.; Costache, I.-I.; Miron, A. Anethole and Its Role in Chronic Diseases. In Drug Discovery from Mother Nature; Gupta, S.C., Prasad, S., Aggarwal, B.B., Eds.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2016; Volume 929, pp. 247–267. ISBN 978-3-319-41341-9. [Google Scholar]
- Hassanzadeh, S.-A.; Abbasi-Maleki, S.; Mousavi, Z. Anti-Depressive-like Effect of Monoterpene Trans-Anethole via Monoaminergic Pathways. Saudi J. Biol. Sci. 2022, 29, 3255–3261. [Google Scholar] [CrossRef] [PubMed]
- Rostami-Faradonbeh, N.; Amini-Khoei, H.; Zarean, E.; Bijad, E.; Lorigooini, Z. Anethole as a Promising Antidepressant for Maternal Separation Stress in Mice by Modulating Oxidative Stress and Nitrite Imbalance. Sci. Rep. 2024, 14, 7766. [Google Scholar] [CrossRef]
- Vahedi, M.; Abbasi-Maleki, S.; Abdolghaffari, A.H. The Antidepressant Potential of (R)- (-)-Carvone Involves Antioxidant and Monoaminergic Mechanisms in Mouse Models. Phytomedicine Plus 2024, 4, 100593. [Google Scholar] [CrossRef]
- Hatano, V.Y.; Torricelli, A.S.; Giassi, A.C.C.; Coslope, L.A.; Viana, M.B. Anxiolytic Effects of Repeated Treatment with an Essential Oil from Lippia Alba and (R)-(-)-Carvone in the Elevated T-Maze. Braz. J. Med. Biol. Res. 2012, 45, 238–243. [Google Scholar] [CrossRef]
- Miyagawa, M.; Satou, T.; Yukimune, C.; Ishibashi, A.; Seimiya, H.; Yamada, H.; Hasegawa, T.; Koike, K. Anxiolytic-Like Effect of Illicium verum Fruit Oil, trans-Anethole and Related Compounds in Mice. Phytother. Res. 2014, 28, 1710–1712. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Varoni, E.M.; Iriti, M.; Martorell, M.; Setzer, W.N.; Del Mar Contreras, M.; Salehi, B.; Soltani-Nejad, A.; Rajabi, S.; Tajbakhsh, M.; et al. Carvacrol and Human Health: A Comprehensive Review. Phytother. Res. PTR 2018, 32, 1675–1687. [Google Scholar] [CrossRef]
- Mączka, W.; Twardawska, M.; Grabarczyk, M.; Wińska, K. Carvacrol-A Natural Phenolic Compound with Antimicrobial Properties. Antibiotics 2023, 12, 824. [Google Scholar] [CrossRef]
- Imran, M.; Aslam, M.; Alsagaby, S.A.; Saeed, F.; Ahmad, I.; Afzaal, M.; Arshad, M.U.; Abdelgawad, M.A.; El-Ghorab, A.H.; Khames, A.; et al. Therapeutic Application of Carvacrol: A Comprehensive Review. Food Sci. Nutr. 2022, 10, 3544–3561. [Google Scholar] [CrossRef]
- Mansi, V.G.; Bidya, D.S. Carvacrol and Its Effect on Cardiovascular Diseases: From Molecular Mechanism to Pharmacological Modulation. Food Biosci. 2024, 57, 103444. [Google Scholar] [CrossRef]
- Salmani, H.; Hakimi, Z.; Arab, Z.; Marefati, N.; Mahdinezhad, M.R.; RezaeiGolestan, A.; Beheshti, F.; Soukhtanloo, M.; Mahnia, A.; Hosseini, M. Carvacrol Attenuated Neuroinflammation, Oxidative Stress and Depression and Anxiety like Behaviors in Lipopolysaccharide-Challenged Rats. Avicenna J. Phytomedicine 2022, 12, 514–526. [Google Scholar] [CrossRef]
- Lagrouh, F.; Dakka, N.; Bakri, Y. The Antifungal Activity of Moroccan Plants and the Mechanism of Action of Secondary Metabolites from Plants. J. Mycol. Médicale 2017, 27, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.T.; Ali, E.S.; Uddin, S.J.; Shaw, S.; Islam, M.A.; Ahmed, M.I.; Chandra Shill, M.; Karmakar, U.K.; Yarla, N.S.; Khan, I.N.; et al. Phytol: A Review of Biomedical Activities. Food Chem. Toxicol. 2018, 121, 82–94. [Google Scholar] [CrossRef] [PubMed]
- Inamdar, A.A.; Hossain, M.M.; Bernstein, A.I.; Miller, G.W.; Richardson, J.R.; Bennett, J.W. Fungal-derived Semiochemical 1-octen-3-ol Disrupts Dopamine Packaging and Causes Neurodegeneration. Proc. Natl. Acad. Sci. USA 2013, 110, 19561–19566. [Google Scholar] [CrossRef] [PubMed]
- Ming, T.; Tao, Q.; Tang, S.; Zhao, H.; Yang, H.; Liu, M.; Ren, S.; Xu, H. Curcumin: An Epigenetic Regulator and Its Application in Cancer. Biomed. Pharmacother. 2022, 156, 113956. [Google Scholar] [CrossRef]
- Zhao, Z.-J.; Sun, Y.-L.; Ruan, X.-F. Bornyl Acetate: A Promising Agent in Phytomedicine for Inflammation and Immune Modulation. Phytomedicine 2023, 114, 154781. [Google Scholar] [CrossRef]
- Silva, D.R.; Endo, E.H.; Filho, B.P.D.; Nakamura, C.V.; Svidzinski, T.I.E.; De Souza, A.; Young, M.C.M.; Ueda-Nakamura, T.; Cortez, D.A.G. Chemical Composition and Antimicrobial Properties of Piper ovatum Vahl. Molecules 2009, 14, 1171–1182. [Google Scholar] [CrossRef]
- Ardakani, M.S.; Mosaddegh, M.; Shafaati, A. Volatile Constituents from the Aerial Parts of Verbena officinalis L. (Vervain). Iran. J. Pharm. Res. 2003, 39–42. [Google Scholar]
Country of Origin | Company | Webpage | Yield of EO, mL/kg |
---|---|---|---|
Estonia 1 | Kubja Herbal Farm (2023) | https://kubja.ee/ (accessed on 17 February 2025) | 1.51 |
Estonia 2 | Kubja Herbal Farm (2024) | https://kubja.ee/ (accessed on 17 February 2025) | 1.85 |
UK | Clinic Naturae | https://clinicnaturae.com/ (accessed on 17 February 2025) | 1.23 |
Greece | You Herb It | https://www.youherbit.com/ (accessed on 17 February 2025) | 4.68 |
USA, South Carolina | Trifecta Botanicals | https://www.trifectabotanicals.com/ (accessed on 17 February 2025) | 5.15 |
Germany | Greek Herbay | https://greekherbay.com/ (accessed on 17 February 2025) | 3.69 |
Hungary | Herba Peru—Luci Vita | https://herbaperu.eu/ (accessed on 17 February 2025) | 0.32 |
Ukraine 1 | Collected from nature | Collected from nature | 1.21 |
Ukraine 2 | PhytoBioTechnologies | https://www.goldenfarm.com.ua/en/fitobiotehnologii-ukraina/ (accessed on 17 February 2025) | 0.31 |
Compound | RI | Library RI | Content in Essential Oil, % | Mentioned in Previous Studies | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Estonia 1 | Estonia 2 | UK | Greece | USA | Germany | Hungary | Ukraine 1 | Ukraine 2 | ||||
Hexanal | 800 | 801 | 0.10 | 0.09 | 0.53 | 0.02 | 0.22 | 0.02 | 0.16 | 0.03 | 0.09 | |
1-Hexanol | 865 | 868 | 0.11 | 0.08 | 0.01 | 0.04 | 0.01 | nd | 0.21 | nd | 0.01 | |
p-Xylene | 866 | 865 | 1.81 | 0.01 | 0.15 | 0.05 | 0.03 | nd | 0.03 | 0.20 | 0.17 | |
α-Pinene | 932 | 932 | 0.18 | 0.53 | 0.05 | 0.02 | 0.16 | 0.57 | 0.45 | 0.20 | 0.71 | [13,37,38] |
(E)-2-Heptenal | 955 | 958 | 0.02 | 0.01 | 0.16 | 0.09 | 0.02 | 0.01 | 0.04 | 0.04 | 0.01 | |
Benzaldehyde | 958 | 962 | 0.33 | 0.27 | 0.26 | 0.13 | 0.13 | 0.03 | 0.29 | 0.05 | 0.14 | [15] |
α-Sabinene | 973 | 974 | 0.06 | 0.05 | 0.01 | 0.02 | 0.03 | 1.01 | 0.11 | 0.10 | 0.10 | [13,38] |
1-Octen-3-ol | 978 | 980 | 1.17 | 1.15 | 1.02 | 2.49 | 0.56 | 1.25 | 7.76 | 2.29 | 6.04 | [39] |
6-Methyl-5-hepten-2-one | 987 | 986 | 0.19 | 0.14 | 0.11 | 0.04 | 0.06 | 0.84 | 0.16 | nd | nd | [28] |
β-Myrcene | 991 | 991 | 0.08 | 0.13 | 0.02 | nd | 0.07 | 0.13 | 0.13 | 0.32 | 0.95 | |
2-Pentyl-furan | 991 | 993 | 0.13 | 0.31 | 1.16 | 0.12 | 0.24 | 0.10 | 0.26 | nd | 0.18 | |
(Z)-2-(2-Pentenyl)furan | 1002 | 1002 | 0.47 | nd | nd | 0.04 | 0.02 | nd | 0.11 | 0.28 | 0.84 | |
(E,E)-2,4-Heptadienal | 1010 | 1012 | 0.15 | 0.09 | 0.34 | 0.16 | 0.17 | 2.54 | 0.36 | nd | 0.16 | |
o-Cymene | 1024 | 1022 | 0.37 | 0.55 | 0.21 | 0.09 | 5.75 | 3.03 | 0.38 | 0.04 | 0.14 | [13,38] |
p-Cymene | 1024 | 1025 | 0.37 | 0.55 | 0.21 | 0.09 | 5.75 | 3.03 | 0.38 | 0.04 | 0.14 | [37] |
D-Limonene | 1028 | 1031 | 1.66 | 1.41 | 0.32 | 0.15 | 0.32 | 5.43 | 0.42 | 1.05 | 3.22 | [28,37,38,39] |
Eucalyptol | 1030 | 1032 | 0.24 | 0.22 | 0.03 | 0.06 | 0.45 | 1.62 | 0.49 | 0.04 | 0.05 | [28,37,38,39] |
Benzeneacetaldehyde | 1043 | 1045 | 0.26 | 0.17 | 0.36 | 0.55 | 0.24 | nd | 0.83 | 0.18 | 0.55 | [39] |
(E)-2-Octenal | 1057 | 1060 | 0.03 | 0.04 | 0.16 | 0.03 | 0.05 | 0.01 | 0.08 | 0.01 | 0.03 | |
γ-Terpinene | 1059 | 1060 | 0.05 | 0.05 | 0.06 | 0.03 | 0.39 | 0.41 | 0.07 | nd | 0.02 | [13,37,38] |
Artemisia ketone | 1058 | 1062 | 0.03 | 0.02 | 0.02 | nd | 0.04 | 0.04 | 0.06 | nd | nd | |
1-Octanol | 1070 | 1070 | 0.07 | 0.07 | 0.10 | 0.10 | 0.16 | 0.05 | 0.14 | 0.02 | 0.02 | |
Linalool | 1100 | 1099 | 2.28 | 1.76 | 1.04 | 2.02 | 0.77 | 0.89 | 2.09 | 0.10 | 0.23 | [28,38,39] |
Nonanal | 1104 | 1104 | 0.08 | 0.16 | 0.24 | 0.10 | 0.23 | 0.08 | 0.48 | 0.09 | 0.20 | |
α-Thujone | 1105 | 1103 | 0.27 | 0.16 | 0.26 | 0.21 | 0.11 | 0.78 | 0.38 | nd | 0.03 | [39] |
β-Thujone | 1105 | 1114 | 0.07 | 0.05 | 0.04 | 0.11 | 0.02 | 0.06 | 0.07 | nd | nd | [39] |
Camphor | 1145 | 1145 | 1.76 | 1.08 | 0.23 | 1.10 | 0.11 | 0.13 | 0.91 | 0.09 | 0.02 | [39] |
L-Menthone | 1154 | 1164 | 4.80 | 3.88 | 0.64 | 0.60 | 0.08 | 0.11 | 0.66 | nd | 0.02 | [39] |
DL-Menthol | 1172 | 1173 | 3.29 | 3.42 | 0.45 | 1.00 | 0.54 | 0.05 | 0.73 | 0.01 | 0.05 | [15,39] |
Terpinen-4-ol | 1178 | 1177 | 0.75 | 0.55 | 0.34 | 0.51 | 0.15 | 0.67 | 0.30 | 0.01 | 0.04 | [13,37,38,39] |
Acetophenone | 1184 | 1183 | 0.11 | 0.08 | 0.08 | 0.12 | 0.07 | 0.41 | 0.11 | 0.01 | 0.03 | |
α-Terpineol | 1191 | 1189 | 0.66 | 0.53 | 0.30 | 0.64 | 0.26 | 1.03 | 0.70 | 0.01 | 0.06 | [13,38,39] |
Methyl salicylate | 1194 | 1192 | 0.12 | 0.10 | 0.26 | 0.09 | 1.15 | 0.03 | 0.08 | 0.01 | 0.06 | |
(E)-Dihydrocarvone | 1197 | 1201 | 0.44 | 0.29 | 0.04 | 0.17 | 0.02 | 0.13 | 0.20 | nd | 0.01 | |
Estragole | 1199 | 1196 | 8.17 | 6.53 | 0.52 | 0.87 | 0.25 | 0.23 | 0.53 | nd | 0.01 | [39] |
Decanal | 1206 | 1206 | 0.10 | 0.08 | 0.08 | 0.07 | 0.09 | 0.05 | 0.13 | 0.05 | 0.06 | |
β-Citronellol | 1228 | 1220 | 0.18 | 0.23 | 0.15 | 0.44 | 0.07 | 0.49 | 0.37 | 0.01 | 0.04 | |
Anisole | 1236 | 1235 | 0.09 | 0.09 | 0.03 | 0.04 | 0.78 | 0.02 | 0.08 | nd | 0.01 | |
Pulegone | 1240 | 1237 | 2.31 | 1.51 | 0.43 | 0.53 | 0.25 | 0.24 | 0.74 | nd | 0.06 | |
L-Carvone | 1245 | 1245 | 20.36 | 16.27 | 3.77 | 3.04 | 0.36 | 2.87 | 5.82 | 0.05 | 0.15 | [39] |
Piperitone | 1255 | 1253 | 1.31 | 0.89 | 0.46 | 0.36 | 0.10 | 0.92 | 4.98 | nd | nd | [37] |
(E)-2-Decenal | 1262 | 1263 | 0.15 | 0.03 | 0.44 | 0.03 | 0.04 | 0.06 | 0.16 | 0.15 | 0.02 | |
(E)-Cinnamaldehyde | 1270 | 1270 | 0.55 | 0.43 | 1.19 | 0.11 | 0.09 | 0.09 | 0.32 | nd | nd | |
(E)-Citral | 1272 | 1270 | 0.25 | 0.31 | nd | 0.33 | 0.20 | 3.33 | 0.21 | nd | nd | [13,37,38] |
Anethole | 1287 | 1287 | 15.38 | 20.48 | 25.64 | 6.41 | 12.64 | 6.48 | 6.80 | 0.02 | 0.05 | [13,38,39] |
L-Bornyl acetate | 1288 | 1285 | 0.08 | 0.14 | 0.11 | 0.14 | 0.04 | 0.22 | 0.17 | 7.43 | 15.86 | [38] |
Thymol | 1292 | 1291 | 2.69 | 3.39 | 2.41 | 2.13 | 6.44 | 1.38 | 1.20 | nd | 0.10 | [28,37] |
Menthyl acetate | 1295 | 1295 | 0.22 | 0.28 | 0.08 | 0.15 | 0.03 | nd | 0.07 | nd | nd | |
Carvacrol | 1302 | 1299 | 5.16 | 4.64 | 22.98 | 18.49 | 7.39 | 11.51 | 3.16 | 0.07 | 0.10 | [37] |
(E,E)-2,4-Decadienal | 1317 | 1317 | 0.10 | 0.16 | 1.22 | 0.29 | 0.52 | 0.04 | 0.60 | 0.06 | 0.12 | |
α-Terpinyl acetate | 1351 | 1350 | 0.21 | 0.31 | 0.47 | 0.52 | 0.02 | 0.41 | 0.36 | nd | nd | |
Eugenol | 1359 | 1357 | 0.97 | 0.78 | 0.11 | 0.62 | 2.52 | 1.81 | 0.12 | nd | 0.01 | |
n-Capric acid | 1369 | 1373 | 0.09 | 0.11 | 0.32 | 0.28 | 0.39 | nd | 0.05 | 0.01 | 0.03 | |
Copaene | 1378 | 1376 | 0.09 | 0.26 | 0.05 | 0.05 | 1.02 | 1.34 | 0.12 | 0.20 | nd | [13,37,38] |
L-β-Bourbonene | 1387 | 1384 | 0.03 | 0.12 | 0.01 | 0.01 | 0.08 | 2.43 | 0.16 | 0.63 | 2.15 | |
Methyleugenol | 1406 | 1402 | 0.18 | 0.17 | 0.12 | 1.45 | 0.22 | 0.77 | 0.26 | nd | 0.02 | |
Caryophyllene | 1423 | 1419 | 0.26 | 0.82 | 0.06 | 0.12 | 2.62 | 0.85 | 0.46 | 1.61 | 2.74 | [28,38] |
(Z)-β-Copaene | 1438 | 1432 | 0.07 | 0.19 | 0.01 | 0.01 | 0.09 | 0.50 | nd | 3.01 | 4.03 | |
(E)-Geranylacetone | 1454 | 1453 | 0.43 | 0.66 | 1.10 | 0.78 | 1.12 | 0.41 | 2.34 | 0.41 | 0.76 | |
Humulene | 1457 | 1454 | 0.28 | 1.00 | nd | 0.01 | 5.59 | 0.55 | 0.41 | 2.31 | 5.00 | [38] |
γ-Muurolene | 1479 | 1477 | 0.09 | 0.28 | 0.03 | 0.02 | 0.05 | 0.50 | 0.09 | 48.82 | nd | [38] |
α-Curcumene | 1485 | 1483 | 0.72 | 2.13 | 0.18 | 0.27 | 0.28 | 8.04 | 1.52 | 14.78 | 16.76 | [28,37] |
(E)-β-Ionone | 1488 | 1486 | 0.73 | 0.82 | 2.16 | 2.51 | 1.48 | 7.54 | 2.35 | 1.81 | 5.41 | |
Bicyclogermacren | 1500 | 1496 | 0.04 | 0.09 | 0.01 | nd | 0.23 | 0.45 | 0.11 | 0.54 | 2.23 | [13,37,38] |
β-Bisabolene | 1511 | 1509 | 0.16 | 0.56 | 0.11 | 0.06 | 0.10 | 0.11 | 0.62 | nd | nd | [28] |
γ-Cadinene | 1517 | 1513 | 0.09 | 0.31 | 0.04 | 0.09 | 0.14 | 1.90 | 0.16 | 0.23 | 3.52 | [2] |
Myristicin | 1524 | 1519 | 0.64 | 0.84 | 0.37 | 0.30 | 0.52 | 0.16 | 1.59 | nd | nd | |
δ-Cadinene | 1526 | 1524 | 0.26 | 0.69 | 0.17 | 0.26 | 0.36 | 0.96 | 0.64 | 0.08 | 0.13 | [37] |
D-Spathulenol | 1581 | 1576 | 0.10 | 0.15 | 0.10 | 0.17 | 0.36 | 3.32 | 0.46 | 0.09 | 0.35 | [37] |
Caryophyllene oxide | 1587 | 1581 | 0.16 | 0.25 | 0.14 | 0.36 | 1.04 | 3.92 | 0.59 | 0.20 | 0.26 | [28,37] |
Cedrol | 1605 | 1599 | 0.02 | 0.05 | 0.06 | 0.02 | 0.04 | 0.20 | nd | nd | nd | |
α-Humulene epoxide II | 1613 | 1606 | 0.06 | 0.12 | 0.06 | 0.12 | 0.54 | 0.68 | 0.11 | nd | 0.20 | |
β-Asarone | 1624 | 1626 | 0.03 | 0.03 | nd | 0.11 | 2.24 | 3.21 | 0.04 | nd | nd | |
Benzophenone | 1629 | 1635 | 0.01 | 0.01 | 0.04 | 0.05 | 0.49 | 0.14 | 0.05 | nd | 0.03 | [15] |
Selin-11-en-4-α-ol | 1658 | 1653 | 0.09 | 0.16 | 0.07 | 0.09 | 0.07 | 0.11 | 0.17 | 0.40 | 0.79 | |
ar-Turmerone | 1668 | 1664 | 0.02 | 0.04 | 0.15 | 1.08 | 1.34 | 0.12 | 0.26 | nd | nd | |
Asarone | 1683 | 1678 | 0.04 | 0.03 | 0.03 | 0.02 | 3.60 | 0.04 | 0.79 | nd | nd | |
Apiol | 1685 | 1682 | 0.27 | 0.30 | 0.51 | nd | 0.20 | 1.72 | nd | nd | 0.08 | |
ent-Germacra-4(15),5,10(14)-trien-1β-ol | 1690 | 1690 | 0.05 | 0.08 | 0.04 | 0.09 | 0.08 | 0.09 | 0.10 | 0.16 | 0.61 | |
Acorenone B | 1693 | 1701 | 0.13 | 0.30 | 0.27 | 0.05 | 0.36 | 0.27 | 0.01 | 0.10 | 0.40 | |
Myristic acid | 1765 | 1768 | 0.04 | 0.17 | 2.12 | 1.05 | 0.61 | nd | 0.01 | nd | nd | |
Phenanthrene | 1776 | 1776 | 0.04 | 0.05 | 0.28 | 0.62 | 0.11 | 0.06 | 0.39 | 1.48 | 2.55 | |
Hexahydrofarnesyl acetone | 1846 | 1844 | 1.18 | 2.60 | 8.99 | 3.89 | 1.56 | 0.47 | 4.79 | 4.35 | 5.96 | [15] |
Phthalic acid | 1870 | 1869 | 0.10 | 0.19 | 6.03 | 0.66 | 0.70 | 0.15 | 0.62 | 0.63 | 1.05 | |
Farnesyl acetone | 1920 | 1918 | 0.15 | 0.31 | 0.65 | 0.43 | 0.36 | 0.55 | 0.81 | 0.15 | 0.27 | |
Methyl palmitate | 1927 | 1926 | 0.23 | 0.16 | 1.95 | 0.13 | 0.23 | 0.04 | 1.21 | 0.37 | 0.64 | |
Dibutyl phthalate | 1964 | 1965 | 0.10 | nd | 0.22 | 0.42 | 0.67 | 0.19 | 1.37 | 1.58 | 3.45 | |
Palmitic acid | 1977 | 1968 | 8.78 | 7.17 | 0.11 | 35.02 | 13.49 | nd | 2nd | nd | 2.95 | [39] |
Methyl linolenate | 2097 | 2099 | 0.30 | 0.14 | 0.72 | 0.16 | 0.17 | 0.02 | 1.79 | 0.54 | 0.93 | |
Phytol | 2109 | 2114 | 0.22 | 0.42 | 0.46 | 0.52 | 0.55 | 2.01 | 7.01 | 1.60 | 4.23 | [39] |
Hexacosane | 2594 | 2600 | 0.13 | 0.22 | 0.22 | 0.97 | 0.24 | 0.14 | 1.46 | 0.78 | 1.28 |
Country | Estonia 1 | Estonia 2 | UK | Greece | USA | Germany | Hungary | Ukraine 1 | Ukraine 2 |
---|---|---|---|---|---|---|---|---|---|
Pairwise Similarity Coefficient, % | |||||||||
Estonia 1 | 100.00 | 95.93 | 55.95 | 43.16 | 39.46 | 31.28 | 60.87 | −6.39 | −9,52 |
Estonia 2 | 95.93 | 100.00 | 68.24 | 45.83 | 54.56 | 37.31 | 65.47 | −3.67 | −3.87 |
UK | 55.95 | 68.24 | 100.00 | 85.17 | 69.42 | 58.67 | 58.60 | −3.37 | −2.09 |
Greece | 43.16 | 45.83 | 85.17 | 100.00 | 54.33 | 65.39 | 46.28 | −4.40 | −2.09 |
USA | 39.46 | 54.56 | 69.42 | 54.33 | 100.00 | 48.22 | 37.94 | −7.31 | −5.60 |
Germany | 31.28 | 37.31 | 58.67 | 65.39 | 48.22 | 100.00 | 37.93 | 6.07 | 27.92 |
Hungary | 60.87 | 65.47 | 58.60 | 46.28 | 37.94 | 37.93 | 100.00 | −1.93 | 12.69 |
Ukraine 1 | −6.39 | −3.67 | −3.37 | −4.40 | −7.31 | 6.07 | −1.93 | 100.00 | 26.98 |
Ukraine 2 | −9.52 | −3.87 | −2.09 | −2.94 | −5.60 | 27.92 | 12.69 | 26.98 | 100.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raal, A.; Dolgošev, G.; Ilina, T.; Kovalyova, A.; Lepiku, M.; Grytsyk, A.; Koshovyi, O. The Essential Oil Composition in Commercial Samples of Verbena officinalis L. Herb from Different Origins. Crops 2025, 5, 16. https://doi.org/10.3390/crops5020016
Raal A, Dolgošev G, Ilina T, Kovalyova A, Lepiku M, Grytsyk A, Koshovyi O. The Essential Oil Composition in Commercial Samples of Verbena officinalis L. Herb from Different Origins. Crops. 2025; 5(2):16. https://doi.org/10.3390/crops5020016
Chicago/Turabian StyleRaal, Ain, Getter Dolgošev, Tetiana Ilina, Alla Kovalyova, Martin Lepiku, Andriy Grytsyk, and Oleh Koshovyi. 2025. "The Essential Oil Composition in Commercial Samples of Verbena officinalis L. Herb from Different Origins" Crops 5, no. 2: 16. https://doi.org/10.3390/crops5020016
APA StyleRaal, A., Dolgošev, G., Ilina, T., Kovalyova, A., Lepiku, M., Grytsyk, A., & Koshovyi, O. (2025). The Essential Oil Composition in Commercial Samples of Verbena officinalis L. Herb from Different Origins. Crops, 5(2), 16. https://doi.org/10.3390/crops5020016