Hydrolytic Enzyme Production and Susceptibility to Antifungal Compounds of Opportunistic Candida parapsilosis Strains Isolated from Cucurbitaceae and Rosaceae Fruits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location and Sampling
2.2. Microbiological Analyses and Species Identification
2.3. Production of Hydrolytic Enzymesн
2.3.1. Phospholipase Activity
2.3.2. Protease Activity
2.3.3. Hemolytic Activity
2.4. Antimycotic sensitivity of Endophytic Candida parapsilosis Strains
2.5. Data Analyses
3. Results
3.1. Abundance and Diversity of Endophytic Yeast Complexes in Vegetables and Fruits
3.2. Production of Hydrolytic Enzymes and Antimycotic Susceptibility of Candida parapsilosis Endophytic Strains
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hibino, K.; Wong, R.W.; Haegg, U.; Samaranayake, L.P. The effects of orthodontic appliances on Candida in the human mouth. Int. J. Paediatr. Dent. 2009, 19, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Miceli, M.H.; Dнaz, J.A.; Lee, S.A. Emerging opportunistic yeast infections. Lancet Infect. Dis. 2011, 11, 142–151. [Google Scholar] [CrossRef]
- Lockhart, S.R.; Guarner, J. Emerging and reemerging fungal infections. Semin. Diagn. Pathol. 2019, 36, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Tepeeva, A.N.; Glushakova, A.M.; Kachalkin, A.V. Yeast communities of the Moscow city soils. Microbiology 2018, 87, 407–415. [Google Scholar] [CrossRef]
- Glushakova, A.M.; Kachalkin, A.V.; Zheltikova, T.M.; Chernov, I.Y. Yeasts associated with wind-pollinated plants—Leading pollen allergens in Central Russia. Microbiology 2015, 84, 722–725. [Google Scholar] [CrossRef]
- van Asbeck, E.C.; Clemons, K.V.; Stevens, D.A. Candida parapsilosis: A review of its epidemiology, pathogenesis, clinical aspects, typing and antimicrobial susceptibility. Crit. Rev. Microbiol. 2009, 35, 283–309. [Google Scholar] [CrossRef]
- Silva, S.; Negri, M.; Henriques, M.; Oliveira, R.; Williams, D.W.; Azeredo, J. Candida glabrata, Candida parapsilosis and Candida tropicalis: Biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiol. Rev. 2012, 36, 288–305. [Google Scholar] [CrossRef] [Green Version]
- Kachalkin, A.V.; Glushakova, A.M.; Venzhik, A.S. Presence of clinically significant endophytic yeasts in agricultural crops: Monitoring and ecological safety assessment. IOP Conf. Ser. Earth Environ. Sci. 2021, 723, 042005. [Google Scholar] [CrossRef]
- Branco, J.; Miranda, I.M.; Rodrigues, A.G. Candida parapsilosis virulence and antifungal resistance mechanisms: A comprehensive review of key determinants. J. Fungi 2023, 9, 80. [Google Scholar] [CrossRef]
- Chand-Goyal, T.; Spotts, R. Enumeration of bacterial and yeast colonists of apple fruits and identification of epiphytic yeasts on pear fruits in the Pacific Northwest United States. Microbiol. Res. 1996, 158, 427–432. [Google Scholar] [CrossRef]
- Isaeva, O.; Glushakova, A.; Yurkov, A.; Chernov, I.Y. The yeast Candida railenensis in the fruits of English oak (Quercus robur L.). Microbiology 2009, 78, 355–359. [Google Scholar] [CrossRef]
- Isaeva, O.V.; Glushakova, A.M.; Garbuz, S.A.; Kachalkin, A.V.; Chernov, I.Y. Endophytic yeast fungi in plant storage tissues. Biol. Bull. 2010, 37, 26–34. [Google Scholar] [CrossRef]
- Vadkertiovб, R.; Molnбrovб, J.; Vrбnovб, D.; Slбvikovб, E. Yeasts and yeast-like organisms associated with fruits and blossoms of different fruit trees. Can. J. Microbiol. 2012, 58, 1344–1352. [Google Scholar] [CrossRef] [PubMed]
- Doty, S.L. Endophytic Yeasts: Biology and Applications. In Symbiotic Endophytes; Aroca, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 335–343. [Google Scholar]
- Glushakova, A.M.; Kachalkin, A.V. Endophytic yeasts in Malus domestica and Pyrus communis fruits under anthropogenic impact. Microbiology 2017, 86, 128–135. [Google Scholar] [CrossRef]
- Ling, L.; Tu, Y.; Ma, W.; Feng, S.; Yang, C.; Zhao, Y.; Wang, N.; Li, Z.; Lu, L.; Zhang, J. A potentially important resource: Endophytic yeasts. World J. Microbiol. Biotechnol. 2020, 36, 110. [Google Scholar] [CrossRef]
- Morris, C. Phyllosphere. In Encyclopedia of Life Sciences; John Wiley & Sons: Chichester, UK, 2001. [Google Scholar]
- Infante, E.D.P.; Marquнnez, X.; Moreno, G. Tomato peel (Solanum lycopersicum L.) colonization by the endophyte yeast Candida guilliermondii (Castellani) Langeron et Guerra. Agron. Colomb. 2012, 30, 388–394. [Google Scholar]
- Ruiz-Herrera, J.; Elorza, M.V.; Valentнn, E.; Sentandreu, R. Molecular organization of the cell wall of Candida albicans and its relation to pathogenicity. FEMS Yeast Res. 2006, 6, 14–29. [Google Scholar] [CrossRef] [Green Version]
- Nosek, J.; Holesova, Z.; Kosa, P.; Gacser, A.; Tomaska, L. Biology and genetics of the pathogenic yeast Candida parapsilosis. Curr. Genet. 2009, 55, 497–509. [Google Scholar] [CrossRef]
- Selmecki, A.; Forche, A.; Judith Berman, J. Genomic plasticity of the human fungal pathogen Candida albicans. ASM J. Eukaryot. Cell 2010, 9, EC.00060-10. [Google Scholar] [CrossRef] [Green Version]
- Abi-chacra, E.A.; Souza, L.O.P.; Cruz, L.P.; Braga-Silva, L.A.; Gonзalves, D.S.; Sodrй, C.L.; Ribeiro, M.D.; Seabra, S.H.; Figueiredo-Carvalho, M.H.G.; Barbedo, L.S.; et al. Phenotypical properties associated with virulence from clinical isolates belonging to the Candida parapsilosis complex. FEMS Yeast Res. 2013, 13, 831–848. [Google Scholar] [CrossRef] [Green Version]
- Glushakova, A.M.; Kachalkin, A.V.; Akhapkina, I.G. The monitoring of sensitivity of natural strains and clinical isolates of yeast fungus to antimycotics. Klin. Lab. Diag. 2017, 62, 296–300. [Google Scholar]
- Gai, C.S.; Lacava, P.T.; Maccheroni, W., Jr.; Glienke, C.; Araъjo, W.L.; Miller, T.A.; Azevedo, J.L. Diversity of endophytic yeasts from sweet orange and their localization by scanning electron microscopy. J. Basic Microb. 2009, 49, 441–451. [Google Scholar] [CrossRef] [PubMed]
- Price, M.F.; Wilkinson, I.D.; Gentry, L.O. Plate method for detection of phospholipase activity in Candida albicans. Sabouraudia 1982, 20, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Rьchel, J.; Tegeler, R.; Trost, M.A. Comparison of secretory proteinases from different strains of Candida albicans. Sabouraudia 1982, 20, 233–244. [Google Scholar] [CrossRef]
- Luo, G.; Samaranayake, L.P.; Yau, J.Y. Candida species exhibit differential in vitro hemolytic activities. J. Clin. Microbiol. 2001, 39, 2971–2974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barry, A.L.; Coyle, M.B.; Thornsberry, C.; Gerlach, E.H.; Hawkinson, R.W. Methods of measuring zones of inhibition with the Bauer-Kirby disk susceptibility test. J. Clin. Microbiol. 1979, 10, 885–889. [Google Scholar] [CrossRef] [Green Version]
- Kurtzman, C.P.; Fell, J.W.; Boekhout, T. (Eds.) The Yeasts, A Taxonomic Study; Elsevier: Amsterdam, The Netherlands, 2011; pp. 1–2080. [Google Scholar]
- Yang, H.; Wang, L.; Li, S.; Gao, X.; Wu, N.; Zhao, Y.; Sun, W. Control of postharvest grey spot rot of loquat fruit with Metschnikowia pulcherrima E1 and potential mechanisms of action. Biol. Control. 2021, 152, 104406. [Google Scholar] [CrossRef]
- Fernandez-San Millan, A.; Gamir, J.; Farran, I.; Larraya, L.; Veramendi, J. Identification of new antifungal metabolites produced by the yeast Metschnikowia pulcherrima involved in the biocontrol of postharvest plant pathogenic fungi. Postharvest Biol. Technol. 2022, 192, 111995. [Google Scholar] [CrossRef]
- Michбn, C.; Martнnez, J.L.; Alvarez, M.C.; Turk, M.; Sychrova, H.; Ramos, J. Salt and oxidative stress tolerance in Debaryomyces hansenii and Debaryomyces fabryi. FEMS Yeast Res. 2013, 13, 180–188. [Google Scholar] [CrossRef] [Green Version]
- Tafer, H.; Sterflinger, K.; Lopandic, K. Draft genome of Debaryomyces fabryi CBS 789T, isolated from a human interdigital mycotic lesion. Genome Announc. 2016, 4, e01580-15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Araujo, F.V.; Soares, C.A.G.; Hagler, A.N.; Mendonзa-Hagler, L.C. Ascomycetous yeast communities of marine invertebrates in a Southeast Brazilian mangrove ecosystem. Antonie van Leeuwenhoek 1995, 68, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Garcнa-Martos, P.; Hernбndez-Molina, J.M.; Galбn, F.; Ruiz-Henestrosa, J.R.; Garcнa-Agudo, R.; Palomo, M.J.; Mira, J. Isolation of Hanseniaspora uvarum (Kloeckera apiculata) in humans. Mycopathologia 1999, 144, 73–75. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, Б.; Inбcio, J. Phylloplane Yeasts. In Biodiversity and Ecophysiology of Yeasts; Pйter, G., Rosa, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 263–301. [Google Scholar]
- Glushakova, A.M.; Chernov, I.Y. Seasonal dynamics of the structure of epiphytic yeast communities. Microbiology 2010, 79, 830–839. [Google Scholar] [CrossRef]
- Kemler, M.; Witfeld, F.; Begerow, D.; Yurkov, A. Phylloplane yeasts in temperate climates. In Yeasts in Natural Ecosystems: Diversity; Springer: Cham, Switzerland, 2017; pp. 171–197. [Google Scholar]
- Gouka, L.; Raaijmakers, J.M.; Cordovez, V. Ecology and functional potential of phyllosphere yeasts. Trends Plant Sci. 2022, 27, 1109–1123. [Google Scholar] [CrossRef]
- Cavello, I.; Albanesi, A.; Fratebianchi, D.; Garmedia, G.; Vero, S.; Cavalitto, S. Pectinolytic yeasts from cold environments: Novel findings of Guehomyces pullulans, Cystofilobasidium infirmominiatum and Cryptococcus adeliensis producing pectinases. Extremophiles 2017, 21, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Glushakova, A.M.; Lysak, L.V.; Kachalkin, A.V.; Ivanova, A.E.; Umarova, A.B.; Abramyan, I.A.; Maksimova, I.A. Transformation of microbial complexes in components of soil constructions of different origin (soil, peat, sand) during freezing-thawing processes. Microbiology 2021, 90, 176–186. [Google Scholar] [CrossRef]
- Tуth, R.; Nosek, J.; Mora-Montes, H.M.; Gabaldon, T.; Bliss, J.M.; Nosanchuk, J.D.; Turner, S.A.; Butler, G.; Vбgvцlgyi, C.; Gбcser, A. Candida parapsilosis: From Genes to the Bedside. ASM J. Clin. Microbiol. Rev. 2019, 32, e00111-18. [Google Scholar] [CrossRef] [Green Version]
- Hagler, A.N. Yeasts as indicators of environmental quality. In Biodiversity and Ecophysiology of Yeasts; The Yeast Handbook; Springer: Berlin/Heidelberg, Germany, 2006; pp. 515–532. [Google Scholar]
- Trofa, D.; Gacser, A.; Nosanchuk, J.D. Candida parapsilosis, an emerging fungal pathogen. Clin. Microbiol. Rev. 2008, 21, 606–625. [Google Scholar] [CrossRef] [Green Version]
- Eggimann, P.; Garbino, J.; Pittet, D. Epidemiology of Candida species infections in critically ill non-immunosuppressed patients. Lancet Infect. Dis. 2003, 3, 685–702. [Google Scholar] [CrossRef]
- Sardi, J.C.O.; Scorzoni, L.; Bernardi, T. Candida species: Current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J. Med. Microbiol. 2013, 62, 10–24. [Google Scholar] [CrossRef] [PubMed]
- Akhapkina, I.G.; Glushakova, A.M.; Rodionova, E.N.; Kachalkin, A.V. Colonization activity of Candida clinical isolates and their antibiotic sensitivity. J. Microbiol. Epidemiol. Immunobiol. 2020, 97, 197–202. [Google Scholar] [CrossRef]
- Akhapkina, I.G.; Glushakova, A.M.; Rodionova, E.N.; Kachalkin, A.V. The effectiveness of antifungal agents against yeasts of Candida genus isolated in Moscow region. Antibiot. Chemother. 2020, 65, 16–22. [Google Scholar] [CrossRef]
- Friedman, D.Z.P.; Schwartz, I.S. Emerging fungal infections: New patients, new patterns, and new pathogens. J. Fungi. 2019, 5, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magobo, R.E.; Lockhart, S.R.; Govender, N.P. Fluconazole-resistant Candida parapsilosis strains with a Y132F substitution in the ERG11 gene causing invasive infections in a neonatal unit, South Africa. Mycoses 2020, 63, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Branco, J.; Ryan, A.P.; Silva, A.P.; Butler, G.; Miranda, I.M.; Rodrigues, A.G. Clinical azole cross-resistance in Candida parapsilosis is related to a novel MRR1 gain-of-function mutation. Clin. Microbiol. Infect. 2022, 28, 1655. [Google Scholar] [CrossRef] [PubMed]
- Martini, C.; Torelli, R.; de Groot, T.; De Carolis, E.; Morandotti, G.A.; De Angelis, G.; Posteraro, B.; Meis, J.F.; Sanguinetti, M. Prevalence and Clonal Distribution of Azole-Resistant Candida parapsilosis Isolates Causing Bloodstream Infections in a Large Italian Hospital. Front. Cell Infect. Microbiol. 2020, 10, 232. [Google Scholar] [CrossRef]
- Fekkar, A.; Blaize, M.; Bougle, A.; Normand, A.C.; Raoelina, A.; Kornblum, D.; Kamus, L.; Piarroux, R.; Imbert, S. Hospital outbreak of fluconazole-resistant Candida parapsilosis: Arguments for clonal transmission and long-term persistence. Antimicrob. Agents Chemother. 2021, 65, e02036-20. [Google Scholar] [CrossRef]
Names of Vegetables and Fruits | Samples | Location |
---|---|---|
Cucurbita pepo (variety “Zorka”) | 8 | Vladimir Region |
Cucurbita pepo (variety winter table pumpkin) | 7 | Vladimir Region |
Cucurbita zucchini (variety “Black Beauty”) | 9 | Vladimir Region |
Malus domestica (variety “Cinnamon Stripe”) | 12 | Moscow Region |
Malus domestica (variety “Bessemianka Michurinskaya”) | 12 | Vladimir Region |
Prunus domestica | 17 | Moscow Region |
Yeast Species | Cucurbita pepo (Variety “Zorka”) | Cucurbita pepo (Variety Winter Table Pumpkin) | Cucurbita zucchini | Malus domestica (Variety “Cinnamon Stripe”) | Malus domestica (Variety “Bessemianka Michurinskaya”) | Prunus domestica |
---|---|---|---|---|---|---|
Ascomycetes | ||||||
Aureobasidium pullulans | 24.72 ± 0.21 | 21.44 ± 0.51 | 17.26 ± 0.21 | 11.23 ± 1.01 | 10.98 ± 0.12 | 10.81 ± 0.2 |
Barnettozyma californica | 6.22 ± 0.23 | 5.11 ± 012 | 0.13 ± 0.04 | – | – | 5.87 ± 0.71 |
Candida parapsilosis | 6.01 ± 0,67 | 8.41 ± 0.09 | 6.12 ± 0.23 | 2.09 ± 0.9 | 4.26 ± 0.02 | 1.91 ± 0,22 |
Candida saitoana | – * | – | – | 2.17 ± 0.02 | – | 2.85 ± 0.21 |
Candida sake | – | – | 2.41 ± 0.11 | 3.02 ± 0.04 | 1.45 ± 0.3 | 1.14 ± 076 |
Candida santamariae | – | – | – | 9.01 ± 0.17 | – | – |
Debaryomyces hansenii | 3.19 ± 0.56 | – | 1.17 ± 0.02 | 6.54 ± 0.11 | 11.28 ± 0.23 | 7.19 ± 1.1 |
Hanseniaspora uvarum | – | – | 5.04 ± 0.11 | 11.67 ± 0.45 | 16.44 ± 0.36 | 14.84 ± 0.1 |
Metschnikowia pulcherrima | 9.16 ± 0.34 | 12.44 ± 0.07 | 7.67 ± 0.12 | 19.41 ± 0.16 | 21.42 ± 0.77 | 24.08 ± 0.8 |
Pichia membranifaciens | – | – | – | – | – | 2.11 ± 0.92 |
Starmerella sp. | – | – | – | – | – | 0.31 ± 0.02 |
Basidiomycetes | ||||||
Cystofilobasidium infirmominiatum | 21.55 ± 0.55 | 17.64 ± 0.21 | 9.24 ± 0.2 | – | – | – |
Filobasidium magnum | 2.11 ± 0.31 | – | – | 17.44 ± 0.45 | 15.12 ± 0.02 | 0.61 ± 0.01 |
Leucosporidium egoroviorum | – | – | 23.47 ± 0.16 | – | – | – |
Papiliotrema flavescens | 11.23 ± 0.12 | 18.06 ± 0.2 | 0.24 ± 0.01 | 2.11 ± 0.17 | 2.97 ± 0.16 | – |
Pseudohyphozyma pustula | – | – | – | 4.02 ± 0.13 | – | – |
Rhodotorula babjevae | – | 0.77 ± 0.01 | 1.21 ± 0.5 | 0.91 ± 0.07 | 1.12 ± 0.11 | – |
Rhodotorula mucilaginosa | 15.81 ± 0.81 | 16.13 ± 1.01 | 24.83 ± 0,34 | 10.38 ± 0.31 | 14.96 ± 0.62 | 27.53 ± 0.8 |
Vishniacozyma victoriae | – | – | 1.21 ± 0.02 | – | – | 0.75 ± 0.01 |
Average abundance, lg (CFU/g) | 1.78 | 2.01 | 3.12 | 5.62 | 5.89 | 3.54 |
Total species number | 9 | 8 | 13 | 13 | 10 | 13 |
Ascomycete yeast species/ Basidiomycete yeast species | 5/4 | 4/4 | 7/6 | 8/5 | 6/4 | 10/3 |
Code | Substrate | Phospholipase † | Phospholipase A2 (mmol/L) | Protease † | Hemolysis † |
---|---|---|---|---|---|
ATCC 22019 | control | 1 | 0.35 ± 0.02 | 0.84 ± 0.05 | |
CPE-01 | Cucurbita pepo | 1 | 0.32 ± 0.05 | 0.71 ± 0.01 | |
CPE-02 | Cucurbita pepo | 1 | 0.28 ± 0.05 | 0.83 ± 0.01 | |
CPE-03 | Cucurbita pepo | 1 | 0.28 ± 0.08 | 0.80 ± 0.05 | |
CPE-04 | Cucurbita pepo | 1 | 0.35 ± 0.11 | 0.84 ± 0.01 | |
CPE-05 | Cucurbita pepo | 0.51 ± 0.02 | 13.81 ± 0.03 | 0.34 ± 0.01 | 0.84 ± 0.05 |
CPE-06 | Cucurbita pepo | 1 | 0.22 ± 0.09 | 0.86 ± 0.02 | |
CPE-07 | Cucurbita pepo | 1 | 0.15 ± 0.02 | 0.74 ± 0.05 | |
CPE-08 | Cucurbita pepo | 1 | 0.30 ± 0.02 | 0.91 ± 0.10 | |
CPE-09 | Cucurbita pepo | 1 | 0.32 ± 0.04 | 0.72 ± 0.03 | |
CPE-10 | Cucurbita pepo | 1 | 0.36 ± 0.05 | 0.88 ± 0.05 | |
CPE-11 | Cucurbita pepo | 1 | 0.31 ± 0.05 | 0.84 ± 0.11 | |
CPE-12 | Cucurbita pepo | 1 | 0.26 ± 0.10 | 0.93 ± 0.01 | |
CPE-13 | Cucurbita pepo | 1 | 0.33 ± 0.03 | 0.74 ± 0.05 | |
CPE-14 | Cucurbita pepo | 1 | 0.36 ± 0.06 | 0.96 ± 0.06 | |
CPE-15 | Cucurbita pepo | 1 | 0.34 ± 0.04 | 0.91 ± 0.11 | |
CPE-16 | Cucurbita pepo | 1 | 0.30 ± 0.02 | 0.84 ± 0.03 | |
CPE-17 | Cucurbita pepo | 1 | 0.31 ± 0.02 | 0.80 ± 0.12 | |
CPE-18 | Cucurbita pepo | 1 | 0.34 ± 0.06 | 0.72 ± 0.21 | |
CPE-19 | Cucurbita pepo | 1 | 0.41 ± 0.11 | 0.89 ± 0.01 | |
CPE-20 | Cucurbita pepo | 1 | 0.35 ± 0.09 | 0.84 ± 0.04 | |
CPE-21 | Cucurbita pepo | 1 | 0.32 ± 0.02 | 0.90 ± 0.04 | |
CPE-22 | Cucurbita pepo | 1 | 0.31 ± 0.02 | 0.97 ± 0.05 | |
CPE-23 | Cucurbita pepo | 1 | 0.45 ± 0.11 | 0.86 ± 0.02 | |
CPE-24 | Cucurbita pepo | 1 | 0.30 ± 0.07 | 0.87 ± 0.01 | |
CPE-25 | Cucurbita pepo | 1 | 0.32 ± 0.04 | 0.90 ± 0.01 | |
CPE-26 | Cucurbita pepo | 1 | 0.32 ± 0.04 | 0.94 ± 0.03 | |
CPE-27 | Cucurbita pepo | 1 | 0.38 ± 0.02 | 0.84 ± 0.05 | |
CPE-28 | Cucurbita pepo | 1 | 0.34 ± 0.03 | 0.84 ± 0.16 | |
CPE-29 | Cucurbita pepo | 1 | 0.25 ± 0.02 | 0.88 ± 0.01 | |
CPE-30 | Cucurbita pepo | 1 | 0.29 ± 0.02 | 0.81 ± 0.01 | |
CPE-31 | Cucurbita pepo | 1 | 0.35 ± 0.01 | 0.92 ± 0.09 | |
CPE-32 | Cucurbita pepo | 1 | 0.34 ± 0.06 | 0.84 ± 0.10 | |
CPE-33 | Cucurbita pepo | 1 | 0.34 ± 0.16 | 0.98 ± 0.02 | |
CPE-34 | Cucurbita pepo | 1 | 0.31 ± 0.02 | 0.81 ± 0.02 | |
CPE-35 | Cucurbita pepo | 1 | 0.30 ± 0.01 | 0.82 ± 0.02 | |
CPE-36 | Cucurbita pepo | 1 | 0.30 ± 0.09 | 0.80 ± 0.11 | |
CPE-37 | Cucurbita pepo | 1 | 0.37 ± 0.11 | 0.98 ± 0.06 | |
CPE-38 | Cucurbita pepo | 1 | 0.35 ± 0.11 | 0.84 ± 0.02 | |
CPE-39 | Cucurbita pepo | 1 | 0.38 ± 0.02 | 0.82 ± 0.02 | |
CPE-40 | Cucurbita zucchini | 1 | 0.31 ± 0.02 | 0.81 ± 0.11 | |
CPE-41 | Cucurbita zucchini | 1 | 0.38 ± 0.01 | 0.74 ± 0.23 | |
CPE-42 | Cucurbita zucchini | 1 | 0.40 ± 0.02 | 0.80 ± 0.05 | |
CPE-43 | Cucurbita zucchini | 1 | 0.65 ± 0.05 | 0.80 ± 0.02 | |
CPE-44 | Cucurbita zucchini | 1 | 0.21 ± 0.05 | 0.94 ± 0.04 | |
CPE-45 | Cucurbita zucchini | 1 | 0.33 ± 0.01 | 0.87 ± 0.04 | |
CPE-46 | Cucurbita zucchini | 1 | 0.32 ± 0.08 | 0.82 ± 0.05 | |
CPE-47 | Cucurbita zucchini | 1 | 0.32 ± 0.11 | 0.80 ± 0.01 | |
CPE-48 | Cucurbita zucchini | 1 | 0.35 ± 0.05 | 0.73 ± 0.02 | |
CPE-49 | Cucurbita zucchini | 1 | 0.33 ± 0.04 | 0.88 ± 0.02 | |
CPE-50 | Cucurbita zucchini | 1 | 0.34 ± 0.04 | 0.90 ± 0.01 | |
CPE-51 | Cucurbita zucchini | 1 | 0.34 ± 0.01 | 0.90 ± 0.01 | |
CPE-52 | Cucurbita zucchini | 1 | 0.15 ± 0.02 | 0.91 ± 0.16 | |
CPE-53 | Cucurbita zucchini | 1 | 0.30 ± 0.02 | 0.94 ± 0.41 | |
CPE-54 | Cucurbita zucchini | 1 | 0.39 ± 0.06 | 0.82 ± 0.04 | |
CPE-55 | Cucurbita zucchini | 1 | 0.26 ± 0.12 | 0.82 ± 0.04 | |
CPE-56 | Cucurbita zucchini | 1 | 0.21 ± 0.07 | 0.81 ± 0.01 | |
CPE-57 | Cucurbita zucchini | 1 | 0.30 ± 0.16 | 0.82 ± 0.01 | |
CPE-58 | Cucurbita zucchini | 1 | 0.34 ± 0.01 | 0.84 ± 0.02 | |
CPE-59 | Cucurbita zucchini | 1 | 0.34 ± 0.01 | 0.86 ± 0.02 | |
CPE-60 | Cucurbita zucchini | 1 | 0.30 ± 0.05 | 0.88 ± 0.22 | |
CPE-61 | Cucurbita zucchini | 1 | 0.31 ± 0.01 | 0.88 ± 0.13 | |
CPE-62 | Cucurbita zucchini | 1 | 0.38 ± 0.04 | 0.81 ± 0.05 | |
CPE-63 | Cucurbita zucchini | 0.54 ± 0.10 | 16.11 ± 0.05 | 0.11 ± 0.02 | 0.94 ± 0.01 |
CPE-64 | Cucurbita zucchini | 1 | 0.30 ± 0.11 | 0.74 ± 0.12 | |
CPE-65 | Cucurbita zucchini | 1 | 0.30 ± 0.09 | 0.84 ± 0.01 | |
CPE-66 | Cucurbita zucchini | 1 | 0.31 ± 0.05 | 0.74 ± 0.04 | |
CPE-67 | Cucurbita zucchini | 1 | 0.29 ± 0.06 | 0.84 ± 0.04 | |
CPE-68 | Malus domestica | 1 | 0.32 ± 0.12 | 0.94 ± 0.02 | |
CPE-69 | Malus domestica | 1 | 0.38 ± 0.01 | 0.94 ± 0.01 | |
CPE-70 | Malus domestica | 1 | 0.38 ± 0.02 | 0.94 ± 0.12 | |
CPE-71 | Malus domestica | 1 | 0.36 ± 0.05 | 0.90 ± 0.01 | |
CPE-72 | Malus domestica | 1 | 0.41 ± 0.06 | 1 | |
CPE-73 | Malus domestica | 1 | 0.45 ± 0.05 | 0.84 ± 0.44 | |
CPE-74 | Malus domestica | 1 | 0.32 ± 0.01 | 0.84 ± 0.06 | |
CPE-75 | Malus domestica | 1 | 0.37 ± 0.07 | 0.84 ± 0.05 | |
CPE-76 | Malus domestica | 1 | 0.36 ± 0.01 | 1 | |
CPE-77 | Malus domestica | 1 | 0.30 ± 0.16 | 1 | |
CPE-78 | Malus domestica | 1 | 0.39 ± 0.06 | 0.84 ± 0.05 | |
CPE-79 | Malus domestica | 1 | 0.44 ± 0.06 | 0.82 ± 0.02 | |
CPE-80 | Malus domestica | 1 | 0.33 ± 0.05 | 0.90 ± 0.02 | |
CPE-81 | Malus domestica | 1 | 0.34 ± 0.01 | 0.90 ± 0.01 | |
CPE-82 | Malus domestica | 1 | 0.35 ± 0.02 | 0.91 ± 0.02 | |
CPE-83 | Malus domestica | 1 | 0.36 ± 0.03 | 0.86 ± 0.11 | |
CPE-84 | Malus domestica | 1 | 0.37 ± 0.09 | 0.84 ± 0.07 | |
CPE-85 | Malus domestica | 1 | 0.30 ± 0.11 | 0.82 ± 0.21 | |
CPE-86 | Malus domestica | 1 | 0.42 ± 0.07 | 0.84 ± 0.01 | |
CPE-87 | Malus domestica | 1 | 0.31 ± 0.01 | 0.89 ± 0.05 | |
CPE-88 | Malus domestica | 1 | 0.30 ± 0.01 | 0.82 ± 0.05 | |
CPE-89 | Malus domestica | 1 | 0.35 ± 0.02 | 1 | |
CPE90 | Prunus domestica | 1 | 0.36 ± 0.04 | 0.89 ± 0.01 | |
CPE91 | Prunus domestica | 1 | 0.35 ± 0.02 | 0.81 ± 0.03 | |
CPE92 | Prunus domestica | 1 | 0.45 ± 0.22 | 0.82 ± 0.05 | |
CPE93 | Prunus domestica | 1 | 0.44 ± 0.08 | 0.92 ± 0.04 | |
CPE94 | Prunus domestica | 1 | 0.38 ± 0.01 | 0.84 ± 0.12 | |
CPE95 | Prunus domestica | 1 | 0.31 ± 0.02 | 0.86 ± 0.18 | |
CPE96 | Prunus domestica | 1 | 0.30 ± 0.02 | 0.86 ± 0.05 | |
CPE97 | Prunus domestica | 1 | 0.39 ± 0.04 | 0.80 ± 0.01 | |
CPE98 | Prunus domestica | 1 | 0.32 ± 0.01 | 0.81 ± 0.05 | |
CPE99 | Prunus domestica | 1 | 0.34 ± 0.01 | 0.83 ± 0.05 | |
CPE100 | Prunus domestica | 1 | 0.37 ± 0.01 | 1 | |
CPE101 | Prunus domestica | 1 | 0.36 ± 0.04 | 0.82 ± 0.10 | |
CPE102 | Prunus domestica | 1 | 0.33 ± 0.06 | 0.80 ± 0.06 | |
CPE103 | Prunus domestica | 1 | 0.33 ± 0.13 | 1 | |
CPE104 | Prunus domestica | 1 | 0.28 ± 0.01 | 0.96 ± 0.01 | |
CPE105 | Prunus domestica | 1 | 0.38 ± 0.01 | 0.94 ± 0.04 | |
CPE106 | Prunus domestica | 1 | 0.47 ± 0.02 | 0.81 ± 0.04 | |
CPE107 | Prunus domestica | 1 | 0.32 ± 0.01 | 0.94 ± 0.01 |
Amphotericin B | Fluconazole | ||
---|---|---|---|
Code | Substrate | 13–17 | 27–33 |
ATCC 22019 | control | 17.9 ± 0.01 | 27.6 ± 0.02 |
CPE-01 | Cucurbita pepo | 17.1 ± 0.01 | 27.1 ± 0.05 |
CPE-02 | Cucurbita pepo | 17.1 ± 0.06 | 27.1 ± 0.11 |
CPE-03 | Cucurbita pepo | 16.2 ± 0.05 | 27.0 ± 0.04 |
CPE-04 † | Cucurbita pepo | 19.2 ± 0.05 | 26.6 ± 0.01 |
CPE-05 | Cucurbita pepo | 12.5 ± 0.03 | 26.1 ± 0.01 |
CPE-06 | Cucurbita pepo | 18.6 ± 0.4 | 27.2 ± 0.11 |
CPE-07 | Cucurbita pepo | 17.6 ± 0.16 | 27.1 ± 0.03 |
CPE-08 | Cucurbita pepo | 14.2 ± 0.07 | 27.2 ± 0.11 |
CPE-09 | Cucurbita pepo | 17.9 ± 0.01 | 27.6 ± 0.11 |
CPE-10 | Cucurbita pepo | 17.2 ± 0.05 | 27.2 ± 0.10 |
CPE-11 | Cucurbita pepo | 16.9 ± 0.12 | 28.1 ± 0.05 |
CPE-12 | Cucurbita pepo | 17.2 ± 0.11 | 21.2 ± 0.05 |
CPE-13 | Cucurbita pepo | 18.2 ± 0.05 | 27.2 ± 0.05 |
CPE-14 | Cucurbita pepo | 15.7 ± 0.11 | 27.1 ± 0.02 |
CPE-15 | Cucurbita pepo | 17.3 ± 0.01 | 27.0 ± 0.33 |
CPE-16 | Cucurbita pepo | 17.0 ± 0.42 | 27.0 ± 0.01 |
CPE-17 | Cucurbita pepo | 17.1 ± 0.03 | 27.4 ± 0.04 |
CPE-18 | Cucurbita pepo | 16.8 ± 0.11 | 27.4 ± 0.02 |
CPE-19 | Cucurbita pepo | 17.5 ± 0.10 | 27.0 ± 0.02 |
CPE-20 | Cucurbita pepo | 16.1 ± 0.05 | 27.1 ± 0.10 |
CPE-21 | Cucurbita pepo | 14.5 ± 0.12 | 27.1 ± 0.12 |
CPE-22 | Cucurbita pepo | 17.2 ± 0.07 | 27.2 ± 0.06 |
CPE-23 | Cucurbita pepo | 11.9 ± 0.5 | 27.0 ± 0.05 |
CPE-24 | Cucurbita pepo | 17.9 ± 0.07 | 27.6 ± 0.23 |
CPE-25 | Cucurbita pepo | 17.9 ± 0.12 | 27.1 ± 0.01 |
CPE-26 | Cucurbita pepo | 16.9 ± 0.12 | 28.6 ± 0.02 |
CPE-27 | Cucurbita pepo | 17.1 ± 0.03 | 28.2 ± 0.02 |
CPE-28 | Cucurbita pepo | 17.0 ± 0.05 | 27.1 ± 0.13 |
CPE-29 | Cucurbita pepo | 17.2 ± 0.05 | 27.1 ± 0.04 |
CPE-30 | Cucurbita pepo | 17.2 ± 0.37 | 27.5 ± 0.02 |
CPE-31 | Cucurbita pepo | 17.4 ± 0.05 | 26.9 ± 0.01 |
CPE-32 | Cucurbita pepo | 16.9 ± 0.10 | 27.1 ± 0.54 |
CPE-33 | Cucurbita pepo | 17,2 ± 0.08 | 27.0 ± 0.11 |
CPE-34 | Cucurbita pepo | 17.1 ± 0.01 | 27.1 ± 0.02 |
CPE-35 | Cucurbita pepo | 16.9 ± 0.01 | 27.2 ± 0.55 |
CPE-36 | Cucurbita pepo | 15.4 ± 0.05 | 27.0 ± 0.2 |
CPE-37 | Cucurbita pepo | 16. 9 ± 0.21 | 27.0 ± 0.03 |
CPE-38 | Cucurbita pepo | 17.0 ± 0.16 | 27.2 ± 0.01 |
CPE-39 | Cucurbita pepo | 15.9 ± 0.05 | 27.1 ± 0.16 |
CPE-40 | Cucurbita zucchini | 14.9 ± 0.11 | 27.0 ± 0.12 |
CPE-41 | Cucurbita zucchini | 15.1 ± 0.12 | 27.4 ± 0.11 |
CPE-42 | Cucurbita zucchini | 17.0 ± 0.09 | 26.6 ± 0.11 |
CPE-43 | Cucurbita zucchini | 17.0 ± 0.40 | 27.6 ± 0.11 |
CPE-44 | Cucurbita zucchini | 13.6 ± 0.05 | 27.1 ± 0.09 |
CPE-45 | Cucurbita zucchini | 13.1 ± 0.01 | 27.0 ± 0.14 |
CPE-46 | Cucurbita zucchini | 14.9 ± 0.05 | 29.2 ± 0.11 |
CPE-47 | Cucurbita zucchini | 13.9 ± 0.11 | 27.0 ± 0.07 |
CPE-48 | Cucurbita zucchini | 12.9 ± 0.04 | 26.0 ± 0.05 |
CPE-49 | Cucurbita zucchini | 12.9 ± 0.11 | 26.2 ± 0.02 |
CPE-50 | Cucurbita zucchini | 17.1 ± 0.05 | 27.2 ± 0.15 |
CPE-51 | Cucurbita zucchini | 15.1 ± 0.01 | 27.2 ± 0.02 |
CPE-52 | Cucurbita zucchini | 14.9 ± 0.17 | 27.0 ± 0.06 |
CPE-53 | Cucurbita zucchini | 16.9 ± 0.11 | 27.0 ± 0.12 |
CPE-54 | Cucurbita zucchini | 16.9 ± 0.04 | 28.2 ± 0.20 |
CPE-55 | Cucurbita zucchini | 17.1 ± 0.01 | 29.0 ± 0.42 |
CPE-56 | Cucurbita zucchini | 13.8 ± 0.13 | 27.8 ± 0.04 |
CPE-57 | Cucurbita zucchini | 13.9 ± 0.30 | 27.0 ± 0.12 |
CPE-58 | Cucurbita zucchini | 14.9 ± 0.05 | 27.0 ± 0.05 |
CPE-59 | Cucurbita zucchini | 15.9 ± 0.44 | 27.0 ± 0.05 |
CPE-60 | Cucurbita zucchini | 17.1 ± 0.05 | 27.1 ± 0.11 |
CPE-61 | Cucurbita zucchini | 13.9 ± 0.01 | 27.9 ± 0.01 |
CPE-62 | Cucurbita zucchini | 13.5 ± 0.02 | 27.1 ± 0.05 |
CPE-63 | Cucurbita zucchini | 12.1 ± 0.04 | 26.9 ± 0.01 |
CPE-64 | Cucurbita zucchini | 15.9 ± 0.12 | 27.2 ± 0.44 |
CPE-65 | Cucurbita zucchini | 15.5 ± 0.01 | 27.6 ± 0.02 |
CPE-66 | Cucurbita zucchini | 17.2 ± 0.05 | 27.8 ± 0.01 |
CPE-67 | Cucurbita zucchini | 15.9 ± 0.18 | 27.5 ± 0.12 |
CPE-68 | Malus domestica | 17.9 ± 0.03 | 27.0 ± 0.01 |
CPE-69 | Malus domestica | 18.2 ± 0.10 | 27.0 ± 0.72 |
CPE-70 | Malus domestica | 18.6 ± 0.05 | 27.1 ± 0.12 |
CPE-71 | Malus domestica | 17.1 ± 0.37 | 27.9 ± 0.05 |
CPE-72 | Malus domestica | 17.5 ± 0.05 | 27.1 ± 0.11 |
CPE-73 | Malus domestica | 18.1 ± 0.07 | 28.2 ± 0.02 |
CPE-74 | Malus domestica | 17.1 ± 0.12 | 27.0 ± 0.23 |
CPE-75 | Malus domestica | 17.1 ± 0.05 | 27.0 ± 0.09 |
CPE-76 | Malus domestica | 19,9 ± 0.06 | 27.0 ± 0.05 |
CPE-77 | Malus domestica | 18.1 ± 0.01 | 27.8 ± 0.01 |
CPE-78 | Malus domestica | 16.9 ± 0.11 | 27.0 ± 0.11 |
CPE-79 | Malus domestica | 17.1 ± 0.02 | 26.6 ± 0.13 |
CPE-80 | Malus domestica | 17.1 ± 0.05 | 27.6 ± 0.04 |
CPE-81 | Malus domestica | 18,2 ± 0.12 | 26.8 ± 0.09 |
CPE-82 | Malus domestica | 16.8 ± 0.03 | 27.5 ± 0.11 |
CPE-83 | Malus domestica | 17.1 ± 0.40 | 27.0 ± 0.09 |
CPE-84 | Malus domestica | 17.0 ± 0.22 | 27.0 ± 0.23 |
CPE-85 | Malus domestica | 17.2 ± 0.01 | 27.0 ± 0.04 |
CPE-86 | Malus domestica | 17.2 ± 0.09 | 27.1 ± 0.05 |
CPE-87 | Malus domestica | 17.0 ± 0.11 | 27.9 ± 0.16 |
CPE-88 | Malus domestica | 17,6 ± 0.05 | 27.2 ± 0.07 |
CPE-89 | Malus domestica | 19.1 ± 0.21 | 27.0 ± 0.02 |
CPE-90 | Prunus domestica | 17.2 ± 0.03 | 27.0 ± 0.10 |
CPE-91 | Prunus domestica | 17.1 ± 0.44 | 27.1 ± 0.03 |
CPE-92 | Prunus domestica | 16.5 ± 0.13 | 27.1 ± 0.01 |
CPE-93 | Prunus domestica | 17.2 ± 0.02 | 25.6 ± 0.30 |
CPE-94 | Prunus domestica | 17.0 ± 0.02 | 27.0 ± 0.22 |
CPE-95 | Prunus domestica | 17.0 ± 0.04 | 27.0 ± 0.01 |
CPE-96 | Prunus domestica | 17.2 ± 0.18 | 27.1 ± 0.05 |
CPE-97 | Prunus domestica | 16.9 ± 0.05 | 27.0 ± 0.02 |
CPE-98 | Prunus domestica | 17.1 ± 0.01 | 27.5 ± 0.02 |
CPE-99 | Prunus domestica | 17.1 ± 0.11 | 27.2 ± 0.02 |
CPE-100 | Prunus domestica | 17.2 ± 0.03 | 27.6 ± 0.05 |
CPE-101 | Prunus domestica | 15.8 ± 0.55 | 27.0 ± 0.11 |
CPE-102 | Prunus domestica | 17.2 ± 0.16 | 27.0 ± 0.45 |
CPE-103 | Prunus domestica | 16.9 ± 0.44 | 27.3 ± 0.13 |
CPE-104 | Prunus domestica | 17.0 ± 0.05 | 27.1 ± 0.03 |
CPE-105 | Prunus domestica | 17.0 ± 0.01 | 27.0 ± 0.01 |
CPE-106 | Prunus domestica | 17.4 ± 0.12 | 27.0 ± 0.17 |
CPE-107 | Prunus domestica | 17.2 ± 0.02 | 27.2 ± 0.02 |
Phospholipase | Protease | Hemolysis | Amphotericin B | Fluconazole | |
---|---|---|---|---|---|
Cucurbita pepo | 0.99 ± 0.0005 | 0.32 ± 0.05 | 0.85 ± 0.07 | 16.74 ± 0.11 | 27.06 ± 0.09 |
Cucurbita zucchini | 0.98 ± 0.004 | 0.32 ± 0.05 | 0.84 ± 0.07 | 15.10 ± 0.10 | 27.31 ± 0.1 |
Malus domestica | – † | 0.36 ± 0.05 | 0.89 ± 0.06 | 17.63 ± 0.14 | 27.22 ± 0.12 |
Prunus domestica | – | 0.36 ± 0.04 | 0.76 ± 0.05 | 16.83 ± 0.14 | 27.04 ± 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glushakova, A.; Kachalkin, A.; Rodionova, E. Hydrolytic Enzyme Production and Susceptibility to Antifungal Compounds of Opportunistic Candida parapsilosis Strains Isolated from Cucurbitaceae and Rosaceae Fruits. Appl. Microbiol. 2023, 3, 199-211. https://doi.org/10.3390/applmicrobiol3010014
Glushakova A, Kachalkin A, Rodionova E. Hydrolytic Enzyme Production and Susceptibility to Antifungal Compounds of Opportunistic Candida parapsilosis Strains Isolated from Cucurbitaceae and Rosaceae Fruits. Applied Microbiology. 2023; 3(1):199-211. https://doi.org/10.3390/applmicrobiol3010014
Chicago/Turabian StyleGlushakova, Anna, Aleksey Kachalkin, and Evgenia Rodionova. 2023. "Hydrolytic Enzyme Production and Susceptibility to Antifungal Compounds of Opportunistic Candida parapsilosis Strains Isolated from Cucurbitaceae and Rosaceae Fruits" Applied Microbiology 3, no. 1: 199-211. https://doi.org/10.3390/applmicrobiol3010014
APA StyleGlushakova, A., Kachalkin, A., & Rodionova, E. (2023). Hydrolytic Enzyme Production and Susceptibility to Antifungal Compounds of Opportunistic Candida parapsilosis Strains Isolated from Cucurbitaceae and Rosaceae Fruits. Applied Microbiology, 3(1), 199-211. https://doi.org/10.3390/applmicrobiol3010014