Probiotic-Based Sanitation in the Built Environment—An Alternative to Chemical Disinfectants
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Sayah, M.H. Chemical disinfectants of COVID-19: An overview. J. Water Health 2020, 18, 843–848. [Google Scholar] [CrossRef] [PubMed]
- CDC. Disinfection Methods. Disinfection & Sterilization Guidelines. Guidelines Library. Infection Control. Available online: https://www.cdc.gov/infectioncontrol/guidelines/disinfection/disinfection-methods/index.html (accessed on 26 April 2023).
- List N: Disinfectants for Use against SARS-CoV-2 (COVID-19). Available online: https://www.epa.gov/pesticide-registration/list-n-disinfectants-use-against-sars-cov-2-covid-19 (accessed on 23 June 2020).
- Hora, P.I.; Pati, S.G.; McNamara, P.J.; Arnold, W.A. Increased Use of Quaternary Ammonium Compounds during the SARS-CoV-2 Pandemic and Beyond: Consideration of Environmental Implications. Environ. Sci. Technol. Lett. 2020, 7, 89–94. [Google Scholar] [CrossRef]
- Curran, E.T.; Wilkinson, M.; Bradley, T. Chemical disinfectants: Controversies regarding their use in low risk healthcare environments (part 1). J. Infect. Prev. 2019, 20, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Caselli, E. Hygiene: Microbial strategies to reduce pathogens and drug resistance in clinical settings. Microb. Biotechnol. 2017, 10, 1079–1083. [Google Scholar] [CrossRef]
- Mattison, C.P.; Calderwood, L.E.; Marsh, Z.A.; Wikswo, M.E.; Balachandran, N.; Kambhampati, A.K.; Gleason, M.E.; Lawinger, H.; Mirza, S.A. Childcare and School Acute Gastroenteritis Outbreaks: 2009–2020. Pediatrics 2022, 150, e2021056002. [Google Scholar] [CrossRef]
- D’Accolti, M.; Soffritti, I.; Mazzacane, S.; Caselli, E. Fighting AMR in the Healthcare Environment: Microbiome-Based Sanitation Approaches and Monitoring Tools. Int. J. Mol. Sci. 2019, 20, 1535. [Google Scholar] [CrossRef] [Green Version]
- Plaza-Rodríguez, C.; Kaesbohrer, A.; Tenhagen, B. Probabilistic model for the estimation of the consumer exposure to methicillin-resistant Staphylococcus aureus due to cross-contamination and recontamination. Microbiologyopen 2019, 8, e900. [Google Scholar] [CrossRef] [Green Version]
- Lai, C.; Chen, S.; Ko, W.; Hsueh, P. Increased antimicrobial resistance during the COVID-19 pandemic. Int. J. Antimicrob. Agents 2021, 57, 106324. [Google Scholar] [CrossRef]
- Clancy, C.J.; Buehrle, D.J.; Nguyen, M.H. PRO: The COVID-19 pandemic will result in increased antimicrobial resistance rates. JAC Antimicrob. Resist. 2020, 2, dlaa049. [Google Scholar] [CrossRef]
- Chen, B.; Han, J.; Dai, H.; Jia, P. Biocide-tolerance and antibiotic-resistance in community environments and risk of direct transfers to humans: Unintended consequences of community-wide surface disinfecting during COVID-19? Environ. Pollut. 2021, 283, 117074. [Google Scholar] [CrossRef]
- Ambrosino, A.; Pironti, C.; Dell’Annunziata, F.; Giugliano, R.; Chianese, A.; Moccia, G.; DeCaro, F.; Galdiero, M.; Franci, G.; Motta, O. Investigation of biocidal efficacy of commercial disinfectants used in public, private and workplaces during the pandemic event of SARS-CoV-2. Sci. Rep. 2022, 12, 5468. [Google Scholar] [CrossRef] [PubMed]
- Schrank, C.L.; Minbiole, K.P.C.; Wuest, W.M. Are Quaternary Ammonium Compounds, the Workhorse Disinfectants, Effective against Severe Acute Respiratory Syndrome-Coronavirus-2? ACS Infect. Dis. 2020, 6, 1553–1557. [Google Scholar] [CrossRef]
- Hegstad, K.; Langsrud, S.; Lunestad, B.T.; Scheie, A.A.; Sunde, M.; Yazdankhah, S.P. Does the wide use of quaternary ammonium compounds enhance the selection and spread of antimicrobial resistance and thus threaten our health? Microb. Drug. Resist. 2010, 16, 91–104. [Google Scholar] [CrossRef] [PubMed]
- Chemaly, R.F.; Simmons, S.; Dale, C.; Ghantoji, S.S.; Rodriguez, M.; Gubb, J.; Stachowiak, J.; Stibich, M. The role of the healthcare environment in the spread of multidrug-resistant organisms: Update on current best practices for containment. Ther. Adv. Infect. Dis. 2014, 2, 79–90. [Google Scholar] [CrossRef] [PubMed]
- Cave, R.; Cole, J.; Mkrtchyan, H.V. Surveillance and prevalence of antimicrobial resistant bacteria from public settings within urban built environments: Challenges and opportunities for hygiene and infection control. Environ. Int. 2021, 157, 106836. [Google Scholar] [CrossRef]
- He, G.; Landry, M.; Chen, H.; Thorpe, C.; Walsh, D.; Varela, M.F.; Pan, H. Detection of benzalkonium chloride resistance in community environmental isolates of staphylococci. J. Med. Microbiol. 2014, 63, 735–741. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; O’dononghue, M.; Boost, M.V. Characterization of staphylococci contaminating automated teller machines in Hong Kong. Epidemiol. Infect. 2012, 140, 1366–1371. [Google Scholar] [CrossRef] [Green Version]
- Buffet-Bataillon, S.; Tattevin, P.; Bonnaure-Mallet, M.; Jolivet-Gougeon, A. Emergence of resistance to antibacterial agents: The role of quaternary ammonium compounds--a critical review. Int. J. Antimicrob. Agents 2012, 39, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Doherty, T. The role of the healthcare environment in the acquisition of infection. Br. J. Nurs. 2020, 29, 8. [Google Scholar] [CrossRef]
- Mahoney, A.R.; Safaee, M.M.; Wuest, W.M.; Furst, A.L. The silent pandemic: Emergent antibiotic resistances following the global response to SARS-CoV-2. iScience 2021, 24, 102304. [Google Scholar] [CrossRef]
- Weber, D.J.; Rutala, W.A.; Sickbert-Bennett, E.E. Outbreaks associated with contaminated antiseptics and disinfectants. Antimicrob. Agents Chemother. 2007, 51, 4217–4224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. Available online: http://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-bacteria/en/ (accessed on 17 October 2020).
- Cleaning and Disinfectant Chemical Exposures and Temporal Associations with COVID-19—National Poison Data System, United States, January 1, 2020–March 31, 2020. Available online: https://www.cdc.gov/mmwr/volumes/69/wr/mm6916e1.htm (accessed on 24 June 2020).
- Rosenman, K.D.; Reilly, M.J.; Wang, L. Calls to a State Poison Center Concerning Cleaners and Disinfectants From the Onset of the COVID-19 Pandemic Through April 2020. Public. Health Rep. 2021, 136, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Soave, P.M.; Grassi, S.; Oliva, A.; Romanò, B.; Di Stasio, E.; Dominici, L.; Pascali, V.; Antonelli, M. Household disinfectant exposure during the COVID-19 pandemic: A retrospective study of the data from an Italian poison control center. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 1738–1742. [Google Scholar] [CrossRef] [PubMed]
- Yasseen Iii, A.; Weiss, D.; Remer, S.; Dobbin, N.; MacNeill, M.; Bogeljic, B.; Leong, D.; Wan, V.; Mosher, L.; Bélair, G.; et al. Increases in exposure calls related to selected cleaners and disinfectants at the onset of the COVID-19 pandemic: Data from Canadian poison centres. Health Promot. Chronic Dis. Prev. Can. 2021, 41, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.; Filippelli, G.M.; Salamova, A. Increased Indoor Exposure to Commonly Used Disinfectants during the COVID-19 Pandemic. Environ. Sci. Technol. Lett. 2020, 7, 760–765. [Google Scholar] [CrossRef]
- Kuehn, B.M. More Than 1 in 3 US Adults Use Disinfectants Unsafely. JAMA 2020, 324, 328. [Google Scholar] [CrossRef]
- Gharpure, R.; Hunter, C.M.; Schnall, A.H.; Barrett, C.E.; Kirby, A.E.; Kunz, J.; Berling, K.; Mercante, J.W.; Murphy, J.L.; Garcia-Williams, A.G. Knowledge and Practices Regarding Safe Household Cleaning and Disinfection for COVID-19 Prevention—United States, May 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 705–709. [Google Scholar] [CrossRef]
- Zheng, G.; Webster, T.F.; Salamova, A. Quaternary Ammonium Compounds: Bioaccumulation Potentials in Humans and Levels in Blood before and during the COVID-19 Pandemic. Environ. Sci. Technol. 2021, 55, 14689–14698. [Google Scholar] [CrossRef]
- Zheng, G.; Schreder, E.; Sathyanarayana, S.; Salamova, A. The first detection of quaternary ammonium compounds in breast milk: Implications for early-life exposure. J. Expo. Sci. Environ. Epidemiol. 2022, 32, 682–688. [Google Scholar] [CrossRef]
- Hrubec, T.C.; Seguin, R.P.; Xu, L.; Cortopassi, G.A.; Datta, S.; Hanlon, A.L.; Lozano, A.J.; McDonald, V.A.; Healy, C.A.; Anderson, T.C.; et al. Altered toxicological endpoints in humans from common quaternary ammonium compound disinfectant exposure. Toxicol. Rep. 2021, 8, 646–656. [Google Scholar] [CrossRef]
- Vandenplas, O.; D’Alpaos, V.; Evrard, G.; Jamart, J.; Thimpont, J.; Huaux, F.; Renauld, J. Asthma related to cleaning agents: A clinical insight. BMJ Open 2013, 3, e003568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purohit, A.; Kopferschmitt-Kubler, M.C.; Moreau, C.; Popin, E.; Blaumeiser, M.; Pauli, G. Quaternary ammonium compounds and occupational asthma. Int. Arch. Occup. Environ. Health 2000, 73, 423–427. [Google Scholar] [CrossRef]
- Gonzalez, M.; Jégu, J.; Kopferschmitt, M.; Donnay, C.; Hedelin, G.; Matzinger, F.; Velten, M.; Guilloux, L.; Cantineau, A.; de Blay, F. Asthma among workers in healthcare settings: Role of disinfection with quaternary ammonium compounds. Clin. Exp. Allergy 2014, 44, 393–406. [Google Scholar] [CrossRef] [PubMed]
- LaKind, J.S.; Lehmann, G.M.; Davis, M.H.; Hines, E.P.; Marchitti, S.A.; Alcala, C.; Lorber, M. Infant Dietary Exposures to Environmental Chemicals and Infant/Child Health: A Critical Assessment of the Literature. Environ. Health Perspect. 2018, 126, 96002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dumas, O.; Varraso, R.; Boggs, K.M.; Quinot, C.; Zock, J.; Henneberger, P.K.; Speizer, F.E.; Le Moual, N.; Camargo, C.A. Association of Occupational Exposure to Disinfectants With Incidence of Chronic Obstructive Pulmonary Disease Among US Female Nurses. JAMA Netw. Open 2019, 2, e1913563. [Google Scholar] [CrossRef] [PubMed]
- Parveen, N.; Chowdhury, S.; Goel, S. Environmental impacts of the widespread use of chlorine-based disinfectants during the COVID-19 pandemic. Environ. Sci. Pollut. Res. Int. 2022, 29, 85742–85760. [Google Scholar] [CrossRef]
- Li, D.; Sangion, A.; Li, L. Evaluating consumer exposure to disinfecting chemicals against coronavirus disease 2019 (COVID-19) and associated health risks. Environ. Int. 2020, 145, 106108. [Google Scholar] [CrossRef]
- Nabi, G.; Wang, Y.; Hao, Y.; Khan, S.; Wu, Y.; Li, D. Massive use of disinfectants against COVID-19 poses potential risks to urban wildlife. Environ. Res. 2020, 188, 109916. [Google Scholar] [CrossRef]
- Dewey, H.M.; Jones, J.M.; Keating, M.R.; Budhathoki-Uprety, J. Increased Use of Disinfectants During the COVID-19 Pandemic and Its Potential Impacts on Health and Safety. ACS Chem. Heal. Saf. 2021, 29, 27–38. [Google Scholar] [CrossRef]
- Al-Ghalith, G.A.; Knights, D. Bygiene: The New Paradigm of Bidirectional Hygiene. Yale J. Biol. Med. 2015, 88, 359–365. [Google Scholar]
- Velazquez, S.; Griffiths, W.; Dietz, L.; Horve, P.; Nunez, S.; Hu, J.; Shen, J.; Fretz, M.; Bi, C.; Xu, Y.; et al. From one species to another: A review on the interaction between chemistry and microbiology in relation to cleaning in the built environment. Indoor Air 2019, 29, 880–894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, E.A.; Bruning, E.; Nims, R.W.; Rubino, J.R.; Ijaz, M.K. A 21st century view of infection control in everyday settings: Moving from the Germ Theory of Disease to the Microbial Theory of Health. Am. J. Infect. Control. 2020, 48, 1387–1392. [Google Scholar] [CrossRef] [PubMed]
- Stone, W.; Tolmay, J.; Tucker, K.; Wolfaardt, G.M. Disinfectant, Soap or Probiotic Cleaning? Surface Microbiome Diversity and Biofilm Competitive Exclusion. Microorganisms 2020, 8, 1726. [Google Scholar] [CrossRef] [PubMed]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reid, G.; Jass, J.; Sebulsky, M.T.; McCormick, J.K. Potential uses of probiotics in clinical practice. Clin. Microbiol. Rev. 2003, 16, 658–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldin, B.R. Health benefits of probiotics. Br. J. Nutr. 1998, 80, S203–S207. [Google Scholar] [CrossRef]
- Shu, M.; Wang, Y.; Yu, J.; Kuo, S.; Coda, A.; Jiang, Y.; Gallo, R.L.; Huang, C. Fermentation of Propionibacterium acnes, a commensal bacterium in the human skin microbiome, as skin probiotics against methicillin-resistant Staphylococcus aureus. PLoS ONE 2013, 8, e55380. [Google Scholar] [CrossRef] [Green Version]
- Alkaya, B.; Laleman, I.; Keceli, S.; Ozcelik, O.; Cenk Haytac, M.; Teughels, W. Clinical effects of probiotics containing Bacillus species on gingivitis: A pilot randomized controlled trial. J. Periodontal Res. 2017, 52, 497–504. [Google Scholar] [CrossRef]
- Kim, S.; Guevarra, R.B.; Kim, Y.; Kwon, J.; Kim, H.; Cho, J.H.; Kim, H.B.; Lee, J. Role of Probiotics in Human Gut Microbiome-Associated Diseases. J. Microbiol. Biotechnol. 2019, 29, 1335–1340. [Google Scholar] [CrossRef]
- Roudsari, M.R.; Karimi, R.; Sohrabvandi, S.; Mortazavian, A.M. Health effects of probiotics on the skin. Crit. Rev. Food Sci. Nutr. 2015, 55, 1219–1240. [Google Scholar] [CrossRef]
- Wilkins, T.; Sequoia, J. Probiotics for Gastrointestinal Conditions: A Summary of the Evidence. Am. Fam. Physician 2017, 96, 170–178. [Google Scholar] [PubMed]
- Kerry, R.G.; Patra, J.K.; Gouda, S.; Park, Y.; Shin, H.; Das, G. Benefaction of probiotics for human health: A review. J. Food Drug. Anal. 2018, 26, 927–939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, V.P.; Sharma, J.; Babu, S.; Rizwanulla, N.; Singla, A. Role of probiotics in health and disease: A review. J. Pak. Med. Assoc. 2013, 63, 253–257. [Google Scholar] [PubMed]
- Oelschlaeger, T.A. Mechanisms of probiotic actions—A review. Int. J. Med. Microbiol. 2010, 300, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Danko, D.; Afshinnekoo, E.; Bezdan, D.; Bhattacharyya, M.; Castro-Nallar, E.; Chmielarczyk, A.; Hazrin-Chong, N.H.; Deng, Y.; Dias-Neto, E.; et al. Annotating unknown species of urban microorganisms on a global scale unveils novel functional diversity and local environment association. Environ. Res. 2022, 207, 112183. [Google Scholar] [CrossRef]
- Gilbert, J.A.; Stephens, B. Microbiology of the built environment. Nat. Rev. Microbiol. 2018, 16, 661–670. [Google Scholar] [CrossRef]
- Rai, S.; Singh, D.K.; Kumar, A. Microbial, environmental and anthropogenic factors influencing the indoor microbiome of the built environment. J. Basic Microbiol. 2021, 61, 267–292. [Google Scholar] [CrossRef]
- Prussin, A.J.; Marr, L.C. Sources of airborne microorganisms in the built environment. Microbiome 2015, 3, 78. [Google Scholar] [CrossRef] [Green Version]
- Mahnert, A.; Moissl-Eichinger, C.; Zojer, M.; Bogumil, D.; Mizrahi, I.; Rattei, T.; Martinez, J.L.; Berg, G. Man-made microbial resistances in built environments. Nat. Commun. 2019, 10, 968. [Google Scholar] [CrossRef] [Green Version]
- Danko, D.; Bezdan, D.; Afshin, E.E.; Ahsanuddin, S.; Bhattacharya, C.; Butler, D.J.; Chng, K.R.; Donnellan, D.; Hecht, J.; Jackson, K.; et al. A global metagenomic map of urban microbiomes and antimicrobial resistance. Cell 2021, 184, 3376–3393.e17. [Google Scholar] [CrossRef]
- Falagas, M.E.; Makris, G.C. Probiotic bacteria and biosurfactants for nosocomial infection control: A hypothesis. J. Hosp. Infect. 2009, 71, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Jeżewska-Frąckowiak, J.; Seroczyńska, K.; Banaszczyk, J.; Jedrzejczak, G.; Żylicz-Stachula, A.; Skowron, P.M. The promises and risks of probiotic Bacillus species. Acta Biochim. Pol. 2018, 65, 509–519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vehapi, M.; Özçimen, D. Antimicrobial and bacteriostatic activity of surfactants against B. subtilis for microbial cleaner formulation. Arch. Microbiol. 2021, 203, 3389–3397. [Google Scholar] [CrossRef] [PubMed]
- Caselli, E.; Antonioli, P.; Mazzacane, S. Safety of probiotics used for hospital environmental sanitation. J. Hosp. Infect. 2016, 94, 193–194. [Google Scholar] [CrossRef]
- Vandini, A. Reduction of the microbiological load on hospital surfaces through probiotic-based cleaning procedures: A new strategy to control nosocomial infections. J. Microbiol. Exp. 2014, 1, 27. [Google Scholar] [CrossRef] [Green Version]
- Fauci, V.L. An Innovative Approach to Hospital Sanitization Using Probiotics: In Vitro and Field Trials. J. Microb. Biochem. Technol. 2015, 7, 160–164. [Google Scholar] [CrossRef] [Green Version]
- Vandini, A.; Temmerman, R.; Frabetti, A.; Caselli, E.; Antonioli, P.; Balboni, P.G.; Platano, D.; Branchini, A.; Mazzacane, S. Hard surface biocontrol in hospitals using microbial-based cleaning products. PLoS ONE 2014, 9, e108598. [Google Scholar] [CrossRef] [Green Version]
- Caselli, E.; D’Accolti, M.; Vandini, A.; Lanzoni, L.; Camerada, M.T.; Coccagna, M.; Branchini, A.; Antonioli, P.; Balboni, P.G.; Di Luca, D.; et al. Impact of a Probiotic-Based Cleaning Intervention on the Microbiota Ecosystem of the Hospital Surfaces: Focus on the Resistome Remodulation. PLoS ONE 2016, 11, e0148857. [Google Scholar] [CrossRef] [Green Version]
- Caselli, E.; Brusaferro, S.; Coccagna, M.; Arnoldo, L.; Berloco, F.; Antonioli, P.; Tarricone, R.; Pelissero, G.; Nola, S.; La Fauci, V.; et al. Reducing healthcare-associated infections incidence by a probiotic-based sanitation system: A multicentre, prospective, intervention study. PLoS ONE 2018, 13, e0199616. [Google Scholar] [CrossRef] [Green Version]
- Caselli, E.; Arnoldo, L.; Rognoni, C.; D’Accolti, M.; Soffritti, I.; Lanzoni, L.; Bisi, M.; Volta, A.; Tarricone, R.; Brusaferro, S.; et al. Impact of a probiotic-based hospital sanitation on antimicrobial resistance and HAI-associated antimicrobial consumption and costs: A multicenter study. Infect. Drug Resist. 2019, 12, 501–510. [Google Scholar] [CrossRef] [Green Version]
- D’Accolti, M.; Soffritti, I.; Bini, F.; Mazziga, E.; Cason, C.; Comar, M.; Volta, A.; Bisi, M.; Fumagalli, D.; Mazzacane, S.; et al. Shaping the subway microbiome through probiotic-based sanitation during the COVID-19 emergency: A pre-post case-control study. Microbiome 2023, 11, 64. [Google Scholar] [CrossRef] [PubMed]
- D’Accolti, M.; Soffritti, I.; Bini, F.; Mazziga, E.; Arnoldo, L.; Volta, A.; Bisi, M.; Antonioli, P.; Laurenti, P.; Ricciardi, W.; et al. Potential Use of a Combined Bacteriophage-Probiotic Sanitation System to Control Microbial Contamination and AMR in Healthcare Settings: A Pre-Post Intervention Study. Int. J. Mol. Sci. 2023, 24, 6535. [Google Scholar] [CrossRef]
- Soffritti, I.; D’Accolti, M.; Cason, C.; Lanzoni, L.; Bisi, M.; Volta, A.; Campisciano, G.; Mazzacane, S.; Bini, F.; Mazziga, E.; et al. Introduction of Probiotic-Based Sanitation in the Emergency Ward of a Children’s Hospital During the COVID-19 Pandemic. Infect. Drug Resist. 2022, 15, 1399–1410. [Google Scholar] [CrossRef] [PubMed]
- Afinogenova, A.; Kraeva, L.; Afinogenov, G.; Veretennikov, V. Probiotic-based sanitation as alternatives to chemical disinfectants. Russ. J. Infect. Immun. 2017, 7, 419–424. [Google Scholar] [CrossRef]
- Al-Marzooq, F.; Bayat, S.A.; Sayyar, F.; Ishaq, H.; Nasralla, H.; Koutaich, R.; Kawas, S.A. Can probiotic cleaning solutions replace chemical disinfectants in dental clinics? Eur. J. Dent. 2018, 12, 532–539. [Google Scholar] [CrossRef]
- D’Accolti, M.; Soffritti, I.; Lanzoni, L.; Bisi, M.; Volta, A.; Mazzacane, S.; Caselli, E. Effective elimination of Staphylococcal contamination from hospital surfaces by a bacteriophage-probiotic sanitation strategy: A monocentric study. Microb. Biotechnol. 2019, 12, 742–751. [Google Scholar] [CrossRef] [Green Version]
- Kleintjes, W.G.; Prag, R.; Kotzee, E.P. The effect of probiotics for environmental cleaning on hospital-acquired infection in a burn centre: The results of a non-randomised controlled prospective study. S. Afr. J. Plast. Reconstr. Aesthetic Surg. Burn. 2020, 3, 33–36. [Google Scholar] [CrossRef]
- Klassert, T.E.; Zubiria-Barrera, C.; Neubert, R.; Stock, M.; Schneegans, A.; López, M.; Driesch, D.; Zakonsky, G.; Gastmeier, P.; Slevogt, H.; et al. Comparative analysis of surface sanitization protocols on the bacterial community structures in the hospital environment. Clin. Microbiol. Infect. 2022, 28, 1105–1112. [Google Scholar] [CrossRef]
- Leistner, R.; Kohlmorgen, B.; Brodzinski, A.; Schwab, F.; Lemke, E.; Zakonsky, G.; Gastmeier, P. Environmental cleaning to prevent hospital-acquired infections on non-intensive care units: A pragmatic, single-centre, cluster randomized controlled, crossover trial comparing soap-based, disinfection and probiotic cleaning. EClinicalMedicine 2023, 59, 101958. [Google Scholar] [CrossRef]
- La Fauci, V.; Costa, G.B.; Arena, A.; Ventura Spagnolo, E.; Genovese, C.; Palamara, M.A.; Squeri, R. Trend of MDR-microorganisms isolated from the biological samples of patients with HAI and from the surfaces around that patient. New Microbiol. 2018, 41, 42–46. [Google Scholar]
- Boyce, J.M. Modern technologies for improving cleaning and disinfection of environmental surfaces in hospitals. Antimicrob. Resist. Infect. Control 2016, 5, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Accolti, M.; Soffritti, I.; Bini, F.; Mazziga, E.; Mazzacane, S.; Caselli, E. Pathogen Control in the Built Environment: A Probiotic-Based System as a Remedy for the Spread of Antibiotic Resistance. Microorganisms 2022, 10, 225. [Google Scholar] [CrossRef] [PubMed]
- D’Accolti, M.; Soffritti, I.; Bonfante, F.; Ricciardi, W.; Mazzacane, S.; Caselli, E. Potential of an Eco-Sustainable Probiotic-Cleaning Formulation in Reducing Infectivity of Enveloped Viruses. Viruses 2021, 13, 2227. [Google Scholar] [CrossRef] [PubMed]
- Mingmongkolchai, S.; Panbangred, W. Bacillus probiotics: An alternative to antibiotics for livestock production. J. Appl. Microbiol. 2018, 124, 1334–1346. [Google Scholar] [CrossRef] [PubMed]
- Schallmey, M.; Singh, A.; Ward, O.P. Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 2004, 50, 1–17. [Google Scholar] [CrossRef]
- Łubkowska, B.; Jeżewska-Frąckowiak, J.; Sroczyński, M.; Dzitkowska-Zabielska, M.; Bojarczuk, A.; Skowron, P.M.; Cięszczyk, P. Analysis of Industrial Bacillus Species as Potential Probiotics for Dietary Supplements. Microorganisms 2023, 11, 488. [Google Scholar] [CrossRef]
- Teasdale, S.M.; Kademi, A. Quality challenges associated with microbial-based cleaning products from the Industry Perspective. Food Chem. Toxicol. 2018, 116, 20–24. [Google Scholar] [CrossRef]
- Lopetuso, L.R.; Scaldaferri, F.; Franceschi, F.; Gasbarrini, A. Bacillus clausii and gut homeostasis: State of the art and future perspectives. Expert. Rev. Gastroenterol. Hepatol. 2016, 10, 943–948. [Google Scholar] [CrossRef]
- Hesnawi, R.; Dahmani, K.; Al-Swayah, A.; Mohamed, S.; Mohammed, S.A. Biodegradation of Municipal Wastewater with Local and Commercial Bacteria. Procedia Eng. 2014, 70, 810–814. [Google Scholar] [CrossRef] [Green Version]
- Berg, N.W.; Evans, M.R.; Sedivy, J.; Testman, R.; Acedo, K.; Paone, D.; Long, D.; Osimitz, T.G. Safety assessment of the use of Bacillus-based cleaning products. Food Chem. Toxicol. 2018, 116, 42–52. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, S.; Ding, S.; Shen, J.; Zhu, K. Toxins and mobile antimicrobial resistance genes in Bacillus probiotics constitute a potential risk for One Health. J. Hazard. Mater. 2020, 382, 121266. [Google Scholar] [CrossRef]
- Baumgardner, R.M.; Berreta, A.; Kopper, J.J. Evaluation of commercial probiotics for antimicrobial resistance genes. Can. Vet. J. 2021, 62, 379–383. [Google Scholar] [PubMed]
- Lee, N.; Kim, W.; Paik, H. Bacillus strains as human probiotics: Characterization, safety, microbiome, and probiotic carrier. Food Sci. Biotechnol. 2019, 28, 1297–1305. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, G.; Steinberg, N.; Oppenheimer-Shaanan, Y.; Olender, T.; Doron, S.; Ben-Ari, J.; Sirota-Madi, A.; Bloom-Ackermann, Z.; Kolodkin-Gal, I. Not so simple, not so subtle: The interspecies competition between Bacillus simplex and Bacillus subtilis and its impact on the evolution of biofilms. NPJ Biofilms Microbiomes 2016, 2, 15027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Gestel, J.; Weissing, F.J.; Kuipers, O.P.; Kovács, A.T. Density of founder cells affects spatial pattern formation and cooperation in Bacillus subtilis biofilms. ISME J. 2014, 8, 2069–2079. [Google Scholar] [CrossRef] [Green Version]
- Seminara, A.; Angelini, T.E.; Wilking, J.N.; Vlamakis, H.; Ebrahim, S.; Kolter, R.; Weitz, D.A.; Brenner, M.P. Osmotic spreading of Bacillus subtilis biofilms driven by an extracellular matrix. Proc. Natl. Acad. Sci. USA 2012, 109, 1116–1121. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, L.; van der Mei, H.; Teixeira, J.A. Biosurfactant from Lactococcus lactis 53 inhibits microbial adhesion on silicone rubber. Appl. Microbiol. Biotechnol. 2004, 66, 306–311. [Google Scholar] [CrossRef] [Green Version]
- van der Mei, H.C.; Free, R.H.; Elving, G.J.; van Weissenbruch, R.; Albers, F.W.; Bussher, H.J. Effect of probiotic bacteria on prevalence of yeasts in oropharyngeal biofilms on silicone rubber voice prostheses in vitro. J. Med. Microbiol. 2000, 49, 713–718. [Google Scholar] [CrossRef] [Green Version]
- Walencka, E.; Różalska, S.; Sadowska, B. The influence of Lactobacillus acidophilus-derived surfactants on staphylococcal adhesion and biofilm formation. Folia Microbiol. 2008, 53, 61–66. [Google Scholar] [CrossRef]
- van Hoogmoed, C.G.; van der Kuijl-Booij, M.; van der Mei, H.C.; Busscher, H.J. Inhibition of Streptococcus mutans NS Adhesion to Glass with and without a Salivary Conditioning Film by Biosurfactant- Releasing Streptococcus mitisStrains | Applied and Environmental Microbiology. Appl. Environ. Microbiol. 2000, 66, 659–663. [Google Scholar] [CrossRef] [Green Version]
- Idi, A.; Md Nor, M.H.; Abdul Wahab, M. F Photosynthetic bacteria: An eco-friendly and cheap tool for bioremediation | SpringerLink. Rev. Environ. Sci. Biotechnol. 2015, 14, 271–285. [Google Scholar] [CrossRef]
- Jeżewska-Frąckowiak, J.; Żebrowska, J.; Czajkowska, E.; Jasińska, J.; Pęksa, M.; Jędrzejczak, G.; Skowron, P.M. Identification of bacterial species in probiotic consortiums in selected commercial cleaning preparations. Acta Biochim. Pol. 2019, 66, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Spök, A.; Arvanitakis, G.; McClung, G. Status of microbial based cleaning products in statutory regulations and ecolabelling in Europe, the USA, and Canada. Food Chem. Toxicol. 2018, 116, 10–19. [Google Scholar] [CrossRef]
- Iraldo, F.; Kahlenborn, W.; Grießhammer, R. The Future of Ecolabels. Int. J. Life Cycle Assess. 2020, 25, 833–839. [Google Scholar] [CrossRef] [Green Version]
- Arvanitakis, G.; Temmerman, R.; Spök, A. Development and use of microbial-based cleaning products (MBCPs): Current issues and knowledge gaps. Food Chem. Toxicol. 2018, 116, 3–9. [Google Scholar] [CrossRef]
- Subasinghe, R.M.; Samarajeewa, A.D.; Meier, M.; Coleman, G.; Clouthier, H.; Crosthwait, J.; Tayabali, A.F.; Scroggins, R.; Shwed, P.S.; Beaudette, L.A. Bacterial and fungal composition profiling of microbial based cleaning products. Food Chem. Toxicol. 2018, 116, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Tarricone, R.; Rognoni, C.; Arnoldo, L.; Mazzacane, S.; Caselli, E. A Probiotic-Based Sanitation System for the Reduction of Healthcare Associated Infections and Antimicrobial Resistances: A Budget Impact Analysis. Pathogens 2020, 9, 502. [Google Scholar] [CrossRef]
Reference | Built Environment | Location | Duration | Outcome (PBS vs. Chemical Disinfectants) |
---|---|---|---|---|
Vandini et al. (2014) [69] | One in-patient and one out-patient general medicine ward (samples collected from the corridor floor, room floor, toilet and sink) | Ferrara, Italy | 4 months | 80% reduction in pathogen burden (S. aureus, coliforms, Pseudomonas spp. and Candida spp.) |
Vandini et al. (2014) [71] | Three independent hospitals—severe brain-damaged and rehabilitation ward, in-patient general medicine ward and geriatric unit (samples collected from corridor floor, room floor, toilet and rehabilitation gymnasiums) | Italy & Belgium | 24 weeks | 50–89% reduction in HAI-related pathogens (S. aureus, coliforms, C. difficile and C. albicans) |
La Fauci et al. (2015) [70] | University hospital—thoracic and vascular surgical ward (samples collected from corridor floor, inpatient room and dispensary washbasin) | Messina, Italy | 3 months | 92.2–99.9% reduction in pathogen burden (E. faecalis, Pseudomonas spp., Acinetobacter spp., K. pneumoniae and C. albicans) |
Caselli et al. (2016) [72] | Private hospital—four randomized rooms located on two floors (samples collected from the floor, bed footboard and bathroom sink) | Ferrara, Italy | 6 months | 98% reduction in bacterial and fungal pathogen burden (Staphylococcus spp., S. aureus, Enterobacter spp., Pseudomonas spp., Clostridium difficile; Candida spp. and Aspergillus spp.) Decrease in AMR genes (84 antibiotic resistance genes analyzed) |
Afinogenova et al. (2017) [78] | Pasteur Institute Medical Centre (samples collected from treatment rooms in the gynecologist office) | Saint Petersburg, Russia | 30 days | Reduction in Staphylococcus spp. and Enterobacteriaceae |
Caselli et al. (2018) [73] | Six public hospitals—general medicine wards (samples collected from the floor, bed footboard and sink) | Italy | 18 months | 83% reduction in pathogen burden (Staphylococcus spp., Enterobacter spp., Acinetobacter spp., Pseudomonas spp., Clostridium difficile) 59% reduction in HAI-related pathogens 52% decrease in the incidence of HAIs 2 Log decrease in AMR genes (84 antibiotic resistance genes analyzed) |
Al-Marzooq et al. (2018) [79] | University dental clinic (samples collected from floor, keyboards, spittoon, patient headrest, patient chair, dentist chair, drain, wires of handpieces and sink) | United Arab Emirates | 3 weeks | Reduction in Staphylococcus spp. and Streptococcus spp. |
Caselli et al. (2019) [74] | Five public hospitals (samples collected from the floor, bed footboard and bathroom sink) | Ferrara, Italy | 6 months | 99% decrease in AMR genes (84 antibiotic resistance genes analyzed) Decrease in S. aureus-resistant strains 60.3% decrease in antimicrobial drug consumption associated with HAIs 75.4% decrease in patientcare associated costs |
D’Accolti et al. (2019) [80] | Private hospital internal medicine ward—four patient rooms (samples taken from bathroom floor, sink, shower plate, room floor and bed footboard) | Ferrara, Italy | 23 days | Reduction in Staphylococcus spp. |
Kleintjes et al. (2020) [81] | Western Cape Provincial—tertiary adult burn unit | Cape Town, South Africa | 3 months | 56% reduction in the incidence of HAIs |
Soffritti et al. (2022) [77] | Maternal and child health institute—emergency rooms (samples collected from floor, bed footboard and sink) | Trieste, Italy | 9 weeks | 80% reduction in pathogen burden (Staphylococcus spp., Enterobacter spp., Acinetobacter spp., Pseudomonas spp., Clostridium difficile, Enterococcus spp.) 2 Log decrease in AMR genes (84 antibiotic resistance genes analyzed) No detection of SARS-CoV-2 |
Klassert et al. (2022) [82] | Neurological ward—nine independent patient rooms (samples collected from the floor, door handle and sink) | Berlin, Germany | 3 months | Overall reduction in bioburden (Staphylococcus spp., Streptococcus spp., Moraxella spp. Enterobacter spp. and Veillonella spp.) Increase in microbial diversity Decrease in AMR genes (12 antibiotic genes analyzed) |
D’Accolti et al. (2023) [76] | Two Italian hospitals—general medicine wards (samples collected from bathroom floor, sink and shower, room floor and bed footboard) | Rome & Ferrara, Italy | 14 weeks | Reduction in Staphylococcus spp. Decrease in Staphylococcus-resistant strains |
Leistner et al. (2023) [83] | University hospital—18 non-ICU wards | Berlin, Germany | 4 months | No change in the incidence of HAIs |
D’Accolti et al. (2023) [75] | Subway system—two underground driverless trains (samples collected from train floors, seats, handrails, doors and air filters) | Milan, Italy | 12 weeks | Reduction in bacterial and fungal pathogen burden (Staphylococcus spp., Enterobacter spp., Pseudomonas spp., Clostridium difficile; Candida spp. and Aspergillus spp.) Decreased detection of SARS-CoV-2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos, A.M.; Frantz, A.L. Probiotic-Based Sanitation in the Built Environment—An Alternative to Chemical Disinfectants. Appl. Microbiol. 2023, 3, 536-548. https://doi.org/10.3390/applmicrobiol3020038
Ramos AM, Frantz AL. Probiotic-Based Sanitation in the Built Environment—An Alternative to Chemical Disinfectants. Applied Microbiology. 2023; 3(2):536-548. https://doi.org/10.3390/applmicrobiol3020038
Chicago/Turabian StyleRamos, Ashley M., and Aubrey L. Frantz. 2023. "Probiotic-Based Sanitation in the Built Environment—An Alternative to Chemical Disinfectants" Applied Microbiology 3, no. 2: 536-548. https://doi.org/10.3390/applmicrobiol3020038
APA StyleRamos, A. M., & Frantz, A. L. (2023). Probiotic-Based Sanitation in the Built Environment—An Alternative to Chemical Disinfectants. Applied Microbiology, 3(2), 536-548. https://doi.org/10.3390/applmicrobiol3020038