Application of Solution Calorimetry to Determining the Fusion Enthalpy of an Arylaliphatic Compound at 298.15 K: n-Octadecanophenone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Differential Scanning Calorimetry
2.3. Solution Calorimetry
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Weir, R.D.; de Loos, T.W. Measurement of the Thermodynamic Properties of Multiple Phases; Gulf Professional Publishing: Woburn, MA, USA, 2005. [Google Scholar]
- Dannenfelser, R.-M.; Yalkowsky, S.H. Estimation of Entropy of Melting from Molecular Structure: A Non-Group Contribution Method. Ind. Eng. Chem. Res. 1996, 35, 1483–1486. [Google Scholar] [CrossRef]
- Jain, A.; Yang, G.; Yalkowsky, S.H. Estimation of Melting Points of Organic Compounds. Ind. Eng. Chem. Res. 2004, 43, 7618–7621. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Yalkowsky, S. Estimation of the molar heat capacity change on melting of organic compounds. Ind. Eng. Chem. Res. 2008, 48, 1063–1066. [Google Scholar] [CrossRef]
- Chickos, J.S.; Acree, W.E. Total phase change entropies and enthalpies. An update on fusion enthalpies and their estimation. Thermochim. Acta 2009, 495, 5–13. [Google Scholar] [CrossRef]
- Bondi, A. A Correlation of the Entropy of Fusion of Molecular Crystals with Molecular Structure. Chem. Rev. 1967, 67, 565–580. [Google Scholar] [CrossRef]
- Naef, R.; Acree, W.E. Calculation of five thermodynamic molecular descriptors by means of a general computer algorithm based on the group-additivity method: Standard enthalpies of vaporization, sublimation and solvation, and entropy of fusion of ordinary organic molecules and total phase-change entropy of liquid crystals. Molecules 2017, 22, 1059. [Google Scholar] [PubMed] [Green Version]
- Gharagheizi, F.; Babaie, O.; Mazdeyasna, S. Prediction of vaporization enthalpy of pure compounds using a group contribution-based method. Ind. Eng. Chem. Res. 2011, 50, 6503–6507. [Google Scholar] [CrossRef]
- Mulero, A.; Cachadina, I.; Parra, M.I. Comparison of corresponding-states-based correlations for the prediction of the vaporization enthalpy of fluids. Ind. Eng. Chem. Res. 2008, 47, 7903–7916. [Google Scholar] [CrossRef]
- Solomonov, B.N.; Yagofarov, M.I. An approach for the calculation of vaporization enthalpies of aromatic and heteroaromatic compounds at 298.15 K applicable to supercooled liquids. J. Mol. Liq. 2020, 319, 114330. [Google Scholar] [CrossRef]
- Solomonov, B.N.; Yagofarov, M.I. Compensation relationship in Thermodynamics of solvation and vaporization: Features and applications. I. Non-hydrogen-bonded systems. J. Mol. Liq. 2022. submitted. [Google Scholar] [CrossRef]
- Abraham, M.H.; Acree Jr, W.E. Estimation of enthalpies of sublimation of organic, organometallic and inorganic compounds. Fluid Phase Equilibria 2020, 515, 112575. [Google Scholar] [CrossRef]
- Bustamante, P.; Peña, M.A.; Barra, J. Partial-solubility Parameters of Naproxen and Sodium Diclofenac. J. Pharm. Pharmacol. 2011, 50, 975–982. [Google Scholar] [CrossRef] [PubMed]
- Cheuk, D.; Svärd, M.; Rasmuson, Å.C. Thermodynamics of the Enantiotropic Pharmaceutical Compound Benzocaine and Solubility in Pure Organic Solvents. J. Pharm. Sci. 2020, 109, 3370–3377. [Google Scholar] [CrossRef] [PubMed]
- Neau, S.H.; Bhandarkar, S.V.; Hellmuth, E.W. Differential molar heat capacities to test ideal solubility estimations. Pharm. Res. 1997, 14, 601–605. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, P.A.; Paruta, A.N. Solution thermodynamics of alkyl p-aminobenzoates. J. Pharm. Sci. 1976, 65, 252–257. [Google Scholar] [CrossRef]
- Pappa, G.D.; Voutsas, E.C.; Magoulas, K.; Tassios, D.P. Estimation of the differential molar heat capacities of organic compounds at their melting point. Ind. Eng. Chem. Res. 2005, 44, 3799–3806. [Google Scholar] [CrossRef]
- Hoffman, J.D. Thermodynamic driving force in nucleation and growth processes. J. Chem. Phys. 1958, 29, 1192–1193. [Google Scholar] [CrossRef]
- Huang, C.; Chen, Z.; Gui, Y.; Shi, C.; Zhang, G.G.; Yu, L. Crystal nucleation rates in glass-forming molecular liquids: D-sorbitol, d-arabitol, d-xylitol, and glycerol. J. Chem. Phys. 2018, 149, 054503. [Google Scholar] [CrossRef]
- Yagofarov, M.I.; Solomonov, B.N. Calculation of the fusion enthalpy temperature dependence of polyaromatic hydrocarbons from the molecular structure: Old and new approaches. J. Chem. Thermodyn. 2021, 152, 106278. [Google Scholar] [CrossRef]
- Yagofarov, M.I.; Nagrimanov, R.N.; Solomonov, B.N. New aspects in the thermochemistry of solid-liquid phase transitions of organic non-electrolytes. J. Mol. Liq. 2018, 256, 58–66. [Google Scholar] [CrossRef]
- Yagofarov, M.I.; Lapuk, S.E.; Mukhametzyanov, T.A.; Ziganshin, M.A.; Valiakhmetov, T.F.; Solomonov, B.N. The fusion thermochemistry of self-associated aromatic compounds at 298.15 K studied by solution calorimetry. J. Chem. Thermodyn. 2019, 137, 43–47. [Google Scholar] [CrossRef]
- Nagrimanov, R.N.; Samatov, A.A.; Solomonov, B.N. Additive scheme of solvation enthalpy for linear, cyclic and branched-chain aliphatic compounds at 298.15 K. J. Mol. Liq. 2019, 292, 111365. [Google Scholar] [CrossRef]
- Yagofarov, M.I.; Sokolov, A.A.; Gerasimov, A.V.; Solomonov, B.N.; Stepurko, E.N.; Yurkshtovich, Y.N. Thermodynamic Properties of Thioxanthone between 80 and 540 K. J. Chem. Eng. Data 2022, in press. [Google Scholar] [CrossRef]
- Yagofarov, M.I.; Bolmatenkov, D.N.; Solomonov, B.N. Relationship between the vaporization enthalpies of aromatic compounds and the difference between liquid and ideal gas heat capacities. J. Chem. Thermodyn. 2021, 158, 106443. [Google Scholar] [CrossRef]
- Solomonov, B.N.; Varfolomeev, M.A.; Nagrimanov, R.N.; Novikov, V.B.; Zaitsau, D.H.; Verevkin, S.P. Solution calorimetry as a complementary tool for the determination of enthalpies of vaporization and sublimation of low volatile compounds at 298.15 K. Thermochim. Acta 2014, 589, 164–173. [Google Scholar] [CrossRef]
- Bolmatenkov, D.N.; Notfullin, A.A.; Yagofarov, M.I.; Nagrimanov, R.N.; Italmasov, A.R.; Solomonov, B.N. Vaporization thermodynamics of normal alkyl phenones. J. Mol. Liq. 2023, 370, 121000. [Google Scholar] [CrossRef]
- Lu, J.Z.; Acree, W.E.; Abraham, M.H. Updated Abraham model correlations for enthalpies of solvation of organic solutes dissolved in benzene and acetonitrile. Phys. Chem. Liq. 2019, 57, 84–99. [Google Scholar] [CrossRef]
- Varfolomeev, M.A.; Rakipov, I.T.; Acree, W.E., Jr.; Brumfield, M.; Abraham, M.H. Examination of hydrogen-bonding interactions between dissolved solutes and alkylbenzene solvents based on Abraham model correlations derived from measured enthalpies of solvation. Thermochim. Acta 2014, 594, 68–79. [Google Scholar] [CrossRef]
- Solomonov, B.N.; Yagofarov, M.I.; Nagrimanov, R.N. Additivity of vaporization enthalpy: Group and molecular contributions exemplified by alkylaromatic compounds and their derivatives. J. Mol. Liq. 2021, 342, 117472. [Google Scholar] [CrossRef]
m/mg | Tm/K | ΔcrlH(Tm)/(kJ·mol−1) |
---|---|---|
8.54 | 337.6 | 70.65 |
8.54 | 337.6 | 70.84 |
10.31 | 337.5 | 71.82 |
10.31 | 337.5 | 71.95 |
Average b | 337.6 ± 0.1 | 71.3 ± 2.1 |
Compound | m/mg b | b/(mmol·kg−1) c | ΔsolnH/(kJ·mol−1) d |
---|---|---|---|
n-Octanophenone | 49.8 | 3.15 | −0.28 |
50.6 | 3.20 | −0.48 | |
51.0 | 6.37 | −0.34 | |
49.7 | 6.34 | −0.51 | |
Average e | −0.40 ± 0.11 | ||
n-Octadecanophenone | 37.2 | 1.39 | 71.54 |
48.9 | 1.83 | 70.78 | |
43.8 | 3.03 | 71.07 | |
43.9 | 3.48 | 70.72 | |
Average e | 71.0 ± 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yagofarov, M.I.; Balakhontsev, I.S.; Sokolov, A.A.; Solomonov, B.N. Application of Solution Calorimetry to Determining the Fusion Enthalpy of an Arylaliphatic Compound at 298.15 K: n-Octadecanophenone. Liquids 2023, 3, 1-6. https://doi.org/10.3390/liquids3010001
Yagofarov MI, Balakhontsev IS, Sokolov AA, Solomonov BN. Application of Solution Calorimetry to Determining the Fusion Enthalpy of an Arylaliphatic Compound at 298.15 K: n-Octadecanophenone. Liquids. 2023; 3(1):1-6. https://doi.org/10.3390/liquids3010001
Chicago/Turabian StyleYagofarov, Mikhail I., Ilya S. Balakhontsev, Andrey A. Sokolov, and Boris N. Solomonov. 2023. "Application of Solution Calorimetry to Determining the Fusion Enthalpy of an Arylaliphatic Compound at 298.15 K: n-Octadecanophenone" Liquids 3, no. 1: 1-6. https://doi.org/10.3390/liquids3010001
APA StyleYagofarov, M. I., Balakhontsev, I. S., Sokolov, A. A., & Solomonov, B. N. (2023). Application of Solution Calorimetry to Determining the Fusion Enthalpy of an Arylaliphatic Compound at 298.15 K: n-Octadecanophenone. Liquids, 3(1), 1-6. https://doi.org/10.3390/liquids3010001