Determination of Abraham Model Solute Descriptors for 62 Additional C10 through C13 Methyl- and Ethyl-Branched Alkanes
Abstract
:1. Introduction
2. Computational Methodology for Calculation of Abraham Model Solute Descriptors
3. Calculation of Air-to-Polydimethylsiloxane Partition Coefficients
4. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, K.; Shanmugam, N.; Xu, A.; Varadharajan, A.; Cai, S.K.; Huang, E.; Acree, W.E., Jr. Abraham model correlations for describing solute transfer into anisole based on measured activity coefficients and molar solubilities. Phys. Chem. Liq. 2022, 60, 452–462. [Google Scholar] [CrossRef]
- Longacre, L.; Wu, E.; Yang, C.; Zhang, M.; Sinha, S.; Varadharajan, A.; Acree, W.E., Jr. Development of Abraham model correlations for solute transfer into the tert-butyl acetate mono-solvent and updated equations for both ethyl acetate and butyl acetate. Liquids 2022, 2, 258–288. [Google Scholar] [CrossRef]
- Varadharajan, A.; Sinha, S.; Xu, A.; Daniel, A.; Kim, K.; Shanmugam, N.; Wu, E.; Yang, C.; Zhang, M.; Acree, W.E., Jr. Development of Abraham model correlations for describing solute transfer into transcutol based on molar solubility ratios for pharmaceutical and other organic compounds. J. Solut. Chem. 2022, 52, 70–90. [Google Scholar] [CrossRef]
- Sinha, S.; Yang, C.; Wu, E.; Acree, W.E., Jr. Abraham solvation parameter model: Examination of possible intramolecular hydrogen-bonding using calculated solute descriptors. Liquids 2022, 2, 131–146. [Google Scholar] [CrossRef]
- Abraham, M.H. Scales of solute hydrogen-bonding: Their construction and application to physicochemical and biochemical processes. Chem. Soc. Rev. 1993, 22, 73–83. [Google Scholar] [CrossRef]
- Abraham, M.H.; Ibrahim, A.; Zissimos, A.M. Determination of sets of solute descriptors from chromatographic measurements. J. Chromatogr. A 2004, 1037, 29–47. [Google Scholar] [CrossRef]
- Abraham, M.H.; Smith, R.E.; Luchtefeld, R.; Boorem, A.J.; Luo, R.; Acree, W.E., Jr. Prediction of solubility of drugs and other compounds in organic solvents. J. Pharm. Sci. 2010, 99, 1500–1515. [Google Scholar] [CrossRef]
- Abraham, M.H.; Acree, W.E., Jr. Descriptors for the prediction of partition coefficients of 8-hydroxyquinoline and its derivatives. Sep. Sci. Technol. 2014, 49, 2135–2141. [Google Scholar] [CrossRef]
- Abraham, M.H.; Ibrahim, A.; Zhao, Y.; Acree, W.E., Jr. A data base for partition of volatile organic compounds and drugs from blood/plasma/serum to brain, and an LFER analysis of the data. J. Pharm. Sci. 2006, 95, 2091–2100. [Google Scholar] [CrossRef]
- Abraham, M.H.; Ibrahim, A. Air to fat and blood to fat distribution of volatile organic compounds and drugs: Linear free energy analyses. Eur. J. Med. Chem. 2006, 41, 1430–1438. [Google Scholar] [CrossRef]
- Twu, P.; Zhao, Q.; Pitner, W.R.; Acree, W.E., Jr.; Baker, G.A.; Anderson, J.L. Evaluating the solvation properties of functionalized ionic liquids with varied cation/anion composition using the solvation parameter model. J. Chromatogr. A 2011, 1218, 5311–5318. [Google Scholar] [CrossRef] [PubMed]
- Poole, C.F.; Lenca, N. Applications of solvation parameter model in reversed-phase liquid chromatography. J. Chromatogr. A 2017, 1486, 2–19. [Google Scholar] [CrossRef]
- Poole, C.F. Gas chromatography system constant database for 52 wall-coated, open-tubular columns covering the temperature range 60–140 °C. J. Chromatogr. A 2019, 1604, 460482. [Google Scholar] [CrossRef] [PubMed]
- Magsumov, T.I.; Sedov, I.A.; Acree, W.E., Jr. Development of Abraham model correlations for enthalpies of solvation of solutes dissolved in N-methylformamide, 2-pyrrolidone and N-methylpyrrolidone. J. Mol. Liq. 2021, 323, 1–17. [Google Scholar]
- Stolov, M.A.; Zaitseva, K.V.; Varfolomeev, M.A.; Acree, W.E., Jr. Enthalpies of solution and enthalpies of solvation of organic solutes in ethylene glycol at 298.15 K: Prediction and analysis of intermolecular interaction contributions. Thermochim. Acta 2017, 648, 91–99. [Google Scholar] [CrossRef]
- Varfolomeev, M.A.; Stolov, M.A.; Nagrimanov, R.N.; Rakipov, I.T.; Acree, W.E., Jr.; Abraham, M.H. Analysis of solute-pyridine intermolecular interactions based on experimental enthalpies of solution and enthalpies of solvation of solutes dissolved in pyridine. Thermochim. Acta 2018, 660, 11–17. [Google Scholar] [CrossRef]
- Abraham, M.H.; Sanchez-Moreno, R.; Cometto-Muniz, J.E.; Cain, W.S. A quantitative structure-activity analysis on the relative sensitivity of the olfactory and the nasal trigeminal chemosensory systems. Chem. Senses 2007, 32, 711–719. [Google Scholar] [CrossRef]
- Abraham, M.H.; Gola, J.M.R.; Cometto-Muniz, J.E. An assessment of air quality reflecting the chemosensory irritation impact of mixtures of volatile organic compounds. Environ. Int. 2016, 86, 84–91. [Google Scholar]
- Abraham, M.H.; Acree, W.E., Jr.; Mintz, C.; Payne, S. Effect of anesthetic structure on inhalation anesthesia: Implications for the mechanism. J. Pharm. Sci. 2008, 97, 2373–2384. [Google Scholar]
- Endo, S.; Goss, K.-U. Applications of polyparameter linear free energy relationships in environmental chemistry. Environ. Sci. Technol. 2014, 48, 12477–12491. [Google Scholar]
- Poole, C.F.; Ariyasena, T.C.; Lenca, N. Estimation of the environmental properties of compounds from chromatographic measurements and the solvation parameter model. J Chromatogr. A 2013, 1317, 85–104. [Google Scholar] [CrossRef] [PubMed]
- Jalan, A.; Ashcraft, R.W.; West, R.H.; Green, W.H. Predicting solvation energies for kinetic modeling. Ann. Rep. Prog. Chem. Sect. C Phys. Chem. 2010, 106, 211–258. [Google Scholar] [CrossRef]
- Poole, C.F.; Atapattu, S.N. Recent advances for estimating environmental properties for small molecules from chromatographic measurements and the solvation parameter model. J. Chromatogr. A 2023, 1687, 463682. [Google Scholar] [CrossRef]
- Jalali-Heravi, M.; Ebrahimi-Najafabadi, H. Modeling of retention behaviors of most frequent components of essential oils in polar and non-polar stationary phases. J. Sep. Sci. 2011, 34, 1538–1546. [Google Scholar] [CrossRef] [PubMed]
- Babushok, V.I.; Zenkevich, I.G. Retention indices for most frequently reported essential oil compounds in GC. Chromatographia 2008, 69, 257–269. [Google Scholar] [CrossRef]
- Qin, L.-T.; Liu, S.-S.; Chen, F.; Wu, Q.-S. Development of validated quantitative structure-retention relationship models for retention indices of plant essential oils. J. Sep. Sci. 2013, 36, 1553–1560. [Google Scholar] [CrossRef]
- Cunha, S.C.; Faria, M.A.; Fernandes, J.O. Solid phase extraction in combination with comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry for the detailed investigation of volatiles in South African red wines. Anal. Chim. Acta 2011, 701, 98–111. [Google Scholar]
- Kotseridis, Y.; Baumes, R. Identification of impact odorants in Bordeaux red grape juice, in the commercial yeast used for its fermentation, and in the produced wine. J. Agric. Food Chem. 2000, 48, 400–406. [Google Scholar] [CrossRef]
- Antle, P.; Zeigler, C.; Robbat, A. Retention behavior of alkylated polycyclic aromatic sulfur heterocycles on immobilized ionic liquid stationary phases. J. Chromatogr. A 2014, 1361, 255–264. [Google Scholar] [CrossRef]
- Woloszyn, T.F.; Jurs, P.C. Prediction of gas chromatographic retention data for hydrocarbons from naphthas. Anal. Chem. 1993, 65, 582–587. [Google Scholar] [CrossRef]
- Pomonis, J.G.; Hakk, H.; Fatland, C.L. Synthetic methyl- and dimethylalkanes. Kovats indexes, carbon-13 NMR and mass spectra of some methylpentacosanes and 2,X-dimethylheptacosanes. J. Chem. Ecol. 1989, 15, 2319–2333. [Google Scholar]
- Junkes, B.S.; Amboni, R.D.M.C.; Heinzen, V.E.F.; Yunes, R.A. Quantitative structure-retention relationships (QSRR), using the optimum semi-empirical topological index, for methyl-branched alkanes produced by insects. Chromatographia 2002, 55, 707–713. [Google Scholar] [CrossRef]
- de Lima Morais da Silva, P.; de Lima, L.S.; Caetano, I.K.; Torres, Y.R. Comparative analysis of the volatile composition of honeys from Brazilian stingless bees by static headspace GC-MS. Food Res. Int. 2017, 102, 536–543. [Google Scholar] [CrossRef] [PubMed]
- Heinzen, V.E.F.; Soares, M.F.; Yunes, R.A. Semi-empirical topological method for the prediction of the chromatographic retention of cis- and trans-alkene isomers and alkanes. J. Chromatogr. A 1999, 849, 495–506. [Google Scholar] [CrossRef] [PubMed]
- Abraham, M.H.; McGowan, J.C. The use of characteristic volumes to measure cavity terms in reversed phase liquid chromatography. Chromatographia 1987, 23, 243–246. [Google Scholar] [CrossRef]
- Baltazar, Q.Q.; Leininger, S.K.; Anderson, J.L. Binary ionic liquid mixtures as gas chromatography stationary phases for improving the separation selectivity of alcohols and aromatic compounds. J. Chromatogr. A 2008, 1182, 119–127. [Google Scholar] [CrossRef]
- Garcia-Dominguez, J.A.; Lebron-Aguilar, R.; Quintanilla-Lopez, J.E. An accurate and easy procedure to obtain isothermal Kovats retention indices in gas chromatography. J. Sep. Sci. 2006, 29, 2785–2792. [Google Scholar] [CrossRef]
- Poole, C.F.; Atapattu, S.N. Analysis of the solvent strength parameter (linear solvent strength model) for isocratic separations in reversed-phase liquid chromatography. J. Chromatogr. A 2022, 1675, 463153. [Google Scholar] [CrossRef]
- Poole, C.F. Gas chromatography system constant database over an extended temperature range for nine open-tubular columns. J. Chromatogr. A 2019, 1590, 130–145. [Google Scholar] [CrossRef]
- Poole, C.F.; Lenca, N. Gas chromatography on wall-coated open-tubular columns with ionic liquid stationary phases. J. Chromatogr. A 2014, 1357, 87–109. [Google Scholar] [CrossRef]
- Liu, G.; Eddula, S.; Jiang, C.; Huang, J.; Tirumala, P.; Xu, A.; Acree, W.E., Jr.; Abraham, M.H. Abraham solvation parameter model: Prediction of enthalpies of vaporization and sublimation of mono-methyl branched alkanes using measured gas chromatographic data. Eur. Chem. Bull. 2020, 9, 273–284. [Google Scholar] [CrossRef]
- Tirumala, P.; Huang, J.; Eddula, S.; Jiang, C.; Xu, A.; Liu, G.; Acree, W.E., Jr.; Abraham, M.H. Calculation of Abraham model L-descriptor and standard molar enthalpies of vaporization and sublimation for C9–C26 mono-alkyl alkanes and polymethyl alkanes. Eur. Chem. Bull. 2020, 9, 317–328. [Google Scholar] [CrossRef]
- Wu, E.; Sinha, S.; Yang, C.; Zhang, M.; Acree, W.E., Jr. Abraham solvation parameter model: Calculation of L solute descriptors for large C11 to C42 methylated alkanes from measured gas-liquid chromatographic retention data. Liquids 2022, 2, 85–105. [Google Scholar] [CrossRef]
- Sprunger, L.M.; Proctor, A.; Acree, W.E., Jr.; Abraham, M.H. Characterization of the sorption of gaseous and organic solutes onto polydimethylsiloxane solid-phase microextraction surfaces using the Abraham model. J. Chromatogr. A 2007, 1175, 162–173. [Google Scholar] [CrossRef]
- Martos, P.A.; Saraullo, A.; Pawliszyn, J. Estimation of air/coating distribution coefficients for solid phase microextraction using retention indexes from linear temperature-programmed capillary gas chromatography. application to the sampling and analysis of total petroleum hydrocarbons in air. Anal. Chem. 1997, 69, 402–408. [Google Scholar] [CrossRef]
- Legind, C.N.; Karlson, U.; Burken, J.G.; Reichenberg, F.; Mayer, P. Determining chemical activity of (semi)volatile compounds by headspace solid-phase microextraction. Anal. Chem. 2007, 79, 2869–2876. [Google Scholar] [CrossRef] [PubMed]
- Martos, P.A.; Pawliszyn, J. Calibration of solid phase microextraction for air analyses based on physical chemical properties of the coating. Anal. Chem. 1997, 69, 206–215. [Google Scholar] [CrossRef]
- Pawliszyn, J. Solid Phase Microextraction: Theory and Practice; John Wiley & Sons: Hoboken, NJ, USA, 1997. [Google Scholar]
- Chung, Y.; Vermeire, F.H.; Wu, H.; Walker, P.J.; Abraham, M.H.; Green, W.H. Group contribution and machine learning approaches to predict Abraham solute parameters, solvation free energy, and solvation enthalpy. J. Chem. Inf. Model 2022, 62, 433–446. [Google Scholar] [CrossRef]
- Ulrich, N.; Ebert, A. Can deep learning algorithms enhance the prediction of solute descriptors for linear solvation energy relationship approaches? Fluid Phase Equilib. 2022, 555, 113349. [Google Scholar] [CrossRef]
- Ulrich, N.; Endo, S.; Brown, T.N.; Watanabe, N.; Bronner, G.; Abraham, M.H.; Goss, K.-U. UFZ-LSER Database v 3.2.1, Leipzig, Germany, Helmholtz Centre for Environmental Research-UFZ. 2017. Available online: http://www.ufz.de/lserd (accessed on 1 December 2022).
- Xiao, Z.J.; Chen, J.W.; Wang, Y.; Wang, Z.Y. In silico package models for deriving values of solute parameters in linear solvation energy relationships. SAR QSAR Environ. Res. 2023; in press. [Google Scholar] [CrossRef]
- Acree, W.E., Jr.; Smart, K.; Abraham, M.H. Abraham model solute descriptors reveal strong intramolecular hydrogen bonding in 1,4-dihydroxyanthraquinone and 1,8-dihydroxyanthraquinone. Phys. Chem. Liq. 2018, 56, 416–420. [Google Scholar] [CrossRef]
- Sinha, S.; Varadharajan, A.; Xu, A.; Wu, E.; Acree, W.E., Jr. Determination of Abraham model solute descriptors for hippuric acid from measured molar solubilities in several organic mono-solvents of varying polarity and hydrogen-bonding ability. Phys. Chem. Liq. 2022, 60, 563–571. [Google Scholar] [CrossRef]
- Yao, E.; Zhou, A.; Wu, S.; Shanmugam, N.; Varadharajan, A.; Sinha, S.; Wu, E.; Acree, W.E., Jr. Determination of Abraham model solute descriptors for N-hydroxyphthalimide: An organic compound having a N-hydroxy (N-OH) functional group. J. Solut. Chem. 2023; submitted for publication. [Google Scholar]
Solute | KRI | L (Database) | L (Calculated) |
---|---|---|---|
Ethane | 200.0 | 0.492 | 0.604 |
Propane | 300.0 | 1.050 | 1.112 |
Butane | 400.0 | 1.615 | 1.620 |
2,2-Dimethylpropane | 412.6 | 1.820 | 1.684 |
2-Methylbutane | 475.5 | 2.013 | 2.004 |
Pentane | 500.0 | 2.162 | 2.128 |
2,2-Dimethylbutane | 537.6 | 2.352 | 2.319 |
2,3-Dimethylbutane | 568.1 | 2.495 | 2.474 |
2-Methylpentane | 569.8 | 2.503 | 2.483 |
3-Methylpentane | 584.6 | 2.581 | 2.558 |
Hexane | 600.0 | 2.668 | 2.636 |
2,2-Dimethylpentane | 626.3 | 2.796 | 2.770 |
2,4-Dimethylpentane | 630.1 | 2.809 | 2.789 |
2,2,3-Trimethylbutane | 641.1 | 2.918 | 2.845 |
3,3-Dimethylpentane | 660.2 | 2.946 | 2.942 |
2-Methylhexane | 666.8 | 3.001 | 2.975 |
2,3-Dimethylpentane | 672.5 | 3.016 | 3.004 |
3-Methylhexane | 676.5 | 3.044 | 3.025 |
3-Ethylpentane | 686.6 | 3.091 | 3.076 |
2,2,4-Trimethylpentane | 690.9 | 3.106 | 3.098 |
Heptane | 700.0 | 3.173 | 3.144 |
2,2-Dimethylhexane | 719.9 | 3.261 | 3.245 |
2,2,3-Trimethylpentane | 738.6 | 3.325 | 3.340 |
2,3-Dimethylhexane | 760.8 | 3.451 | 3.453 |
2,3,3-Trimethylpentane | 761.4 | 3.428 | 3.456 |
3-Ethyl-2-methylpentane | 762.4 | 3.459 | 3.461 |
2-Methylheptane | 765.0 | 3.480 | 3.474 |
4-Methylheptane | 767.4 | 3.483 | 3.486 |
3,4-Dimethylhexane | 771.6 | 3.559 | 3.508 |
3-Methylheptane | 772.6 | 3.510 | 3.513 |
2,2,4,4-Tetramethylpentane | 774.6 | 3.512 | 3.523 |
3,3-Dimethylhexane | 775.7 | 3.359 | 3.529 |
2,2,4-Trimethylhexane | 777.3 | 3.605 | 3.537 |
2,2,5-Trimethylhexane | 790.7 | 3.567 | 3.605 |
Octane | 800.0 | 3.677 | 3.652 |
2,4,4-Trimethylhexane | 809.7 | 3.683 | 3.701 |
2,3,5-Trimethylhexane | 813.2 | 3.724 | 3.719 |
2,2-Dimethylheptane | 816.2 | 3.739 | 3.734 |
2,2,5,5-Tetramethylhexane | 820.1 | 3.754 | |
2,4-Dimethylheptane | 821.2 | 3.758 | 3.760 |
2,2,3,4-Tetramethylpentane | 821.9 | 3.738 | 3.763 |
2,2,3-Trimethylhexane | 823.3 | 3.762 | 3.770 |
2,2-Diemthyl-3-ethylpentane | 824.4 | 3.740 | 3.776 |
4-Ethyl-2-methylhexane | 824.9 | 3.760 | 3.778 |
2,6-Dimethylheptane | 827.5 | 3.780 | 3.792 |
4,4-Dimethylheptane | 828.6 | 3.770 | 3.797 |
2,5-Dimethylheptane | 833.7 | 3.822 | 3.823 |
3,5-Dimethylheptane | 834.4 | 3.826 | 3.827 |
3,3-Dimethylheptane | 837.5 | 3.833 | 3.843 |
2,4-Dimethyl-3-ethylpentane | 838.4 | 3.828 | 3.847 |
2,3,3-Trimethylhexane | 841.7 | 3.832 | 3.864 |
3-Ethyl-2-methylhexane | 844.4 | 3.850 | 3.878 |
2,3,4-Trimethylhexane | 849.7 | 3.882 | 3.904 |
3,3,4-Trimethylhexane | 855.1 | 3.891 | 3.932 |
2,3-Dimethylheptane | 855.5 | 3.925 | 3.934 |
3-Ethyl-4-methylhexane | 855.6 | 3.900 | 3.934 |
2,2,3,3-Tetramethylpentane | 855.8 | 3.880 | 3.935 |
3-Ethyl-3-methylhexane | 856.0 | 3.890 | 3.936 |
3,4-Dimethylheptane | 858.0 | 3.935 | 3.947 |
4-Ethylheptane | 858.2 | 3.944 | 3.948 |
2,3,3,4-Tetramethylpentane | 861.1 | 3.910 | 3.962 |
4-Methyloctane | 863.3 | 3.961 | 3.974 |
2-Methyloctane | 864.8 | 3.966 | 3.981 |
3-Ethylheptane | 867.4 | 3.992 | 3.994 |
2,4,6-Trimethylheptane | 870.1 | 4.008 | |
3-Methyloctane | 870.8 | 3.998 | 4.012 |
2,2,4,5-Tetramethylhexane | 872.1 | 4.018 | |
2,2,6-Trimethylheptane | 873.0 | 4.023 | |
2,2,3,5-Tetramethylhexane | 873.3 | 4.024 | |
2,3-Dimethyl-3-ethylpentane | 875.0 | 4.033 | |
2,2,4-Trimethylheptane | 875.7 | 4.037 | |
2,2,5-Trimethylheptane | 878.1 | 4.049 | |
3,3-Diethylpentane | 880.2 | 4.065 | 4.059 |
2,2-Dimethyl-4-ethylhexane | 881.3 | 4.065 | |
2,2,4,4-Tetramethylhexane | 886.6 | 4.092 | |
2,4,4-Trimethylheptane | 899.4 | 4.157 | |
2,5-Dimethyl-3-ethylhexane | 891.4 | 4.116 | |
2,5,5-Trimethylheptane | 891.7 | 4.118 | |
Nonane | 900.0 | 4.182 | 4.160 |
2,2-Dimethyl-3-ethylhexane | 902.1 | 4.171 | |
2,3,3,5-Tetramethylhexane | 903.3 | 4.177 | |
3-Ethyl-2,2,4-trimethylpentane | 903.9 | 4.180 | |
2,4,5-Trimethylheptane | 906.7 | 4.194 | |
4-Ethyl-2-methylheptane | 907.4 | 4.198 | |
3,3,5-Trimethylheptane | 907.7 | 4.199 | |
2,2,3,4-Tetramethylhexane | 908.8 | 4.205 | |
2,3,5-Trimethylheptane | 912.9 | 4.226 | |
2,2,3-Trimethylheptane | 914.4 | 4.233 | |
2,2-Dimethyloctane | 914.9 | 4.225 | 4.236 |
2,4-Dimethyl-3-isopropylpentane | 915.1 | 4.237 | |
3-lsopropyl-2-methylhexane | 915.5 | 4.239 | |
2,4-Dimethyloctane | 915.8 | 4.265 | 4.240 |
4,4-Dimethyloctane | 918.0 | 4.236 | 4.251 |
2,3,6-Trimethylheptane | 919.0 | 4.257 | |
2,4-Dimethyl-4-ethylhexane | 920.7 | 4.265 | |
2,2,3,4,4-Pentamethylpentane | 921.7 | 4.270 | |
3,5-Dimethyloctane | 921.8 | 4.259 | 4.271 |
2,5-Dimethyloctane | 921.8 | 4.300 | 4.271 |
2,3,4,5-Tetramethylhexane | 923.1 | 4.277 | |
5-Ethyl-2-methylheptane | 924.8 | 4.286 | |
4-lsopropylheptane | 925.0 | 4.287 | |
2,7-Dimethyloctane | 928.5 | 4.282 | 4.305 |
2,2,3,3-Tetramethylhexane | 928.8 | 4.306 | |
3,6-Dimethyloctane | 929.0 | 4.331 | 4.307 |
2,4-Dimethyl-3-ethylhexane | 929.8 | 4.311 | |
2,6-Dimethyloctane | 931.5 | 4.304 | 4.320 |
2,3,3-Trimethylheptane | 931.7 | 4.321 | |
3,3-Dimethyloctane | 932.0 | 4.307 | 4.323 |
3,4,4-Trimethylheptane | 932.2 | 4.324 | |
2,3,4-Trimethylheptane | 933.4 | 4.330 | |
2,3,4,4-Tetramethylhexane | 935.0 | 4.338 | |
4-Ethyl-3-methylheptane | 935.7 | 4.341 | |
3,4-Dimethyloctane | 936.0 | 4.324 | 4.343 |
3,3,4-Trimethylheptane | 936.6 | 4.346 | |
4-Ethyl-4-methylheptane | 937.6 | 4.351 | |
3,3-Dimethyl-4-ethylhexane | 937.8 | 4.352 | |
3-Ethyl-4-methylheptane | 940.5 | 4.366 | |
3-Ethyl-2-methylheptane | 941.0 | 4.337 | 4.368 |
4,5-Dimethyloctane | 943.1 | 4.407 | 4.379 |
3,4,5-Trimethylheptane | 945.0 | 4.361 | 4.389 |
3,4-Diethylhexane | 945.8 | 4.393 | |
2,3,3,4-Tetramethylhexane | 949.1 | 4.409 | |
2,3-Dimethyl-4-ethylhexane | 949.4 | 4.411 | |
4-Ethyloctane | 951.5 | 4.409 | 4.422 |
2,3-Dimethyloctane | 952.1 | 4.401 | 4.425 |
2-Ethyl-2-methylheptane | 953.0 | 4.429 | |
2,2,3,3,4-Pentamethylpentane | 953.4 | 4.431 | |
3,3-Diethylhexane | 954.1 | 4.435 | |
5-Methylnonane | 957.4 | 4.432 | 4.452 |
4-Methylnonane | 960.0 | 4.441 | 4.465 |
2-Methylnonane | 963.9 | 4.453 | 4.485 |
3-Ethyloctane | 964.0 | 4.467 | 4.485 |
3,4-Dimethyl-3-ethylhexane | 964.6 | 4.488 | |
3-Ethyl-2,2,3-trimethylpentane | 965.7 | 4.494 | |
3-Ethyl-2,3,4-trimethylpentane | 969.4 | 4.513 | |
3-Methylnonane | 969.6 | 4.486 | 4.514 |
3,3,4,4-Tetramethylhexane | 983.7 | 4.585 | |
Decane | 1000.0 | 4.686 | 4.668 |
Undecane | 1100.0 | 5.191 | 5.176 |
6-Methylundecane | 1151.8 | 5.469 | 5.439 |
4-Methylundecane | 1158.6 | 5.495 | 5.474 |
2-Methylundecane | 1164.0 | 5.516 | 5.501 |
3-Methylundecane | 1169.6 | 5.550 | 5.530 |
Dodecane | 1200.0 | 5.696 | 5.684 |
5,7-Dimethylundecane | 1190.4 | 5.635 | |
4,6-Dimethylundecane | 1193.0 | 5.648 | |
3,5-Dimethylundecane | 1207.2 | 5.721 | |
2,4-Dimethylundecane | 1208.2 | 5.726 | |
2,5-Dimethylundecane | 1210.4 | 5.737 | |
2,6-Dimethylundecane | 1210.4 | 5.771 | 5.737 |
2,7-Dimethylundecane | 1215.8 | 5.764 | |
5,6-Dimethylundecane | 1223.4 | 5.803 | |
4,5-Dimethylundecane | 1230.4 | 5.838 | |
2,9-Dimethylundecane | 1232.6 | 5.850 | |
3,4-Dimethylundecane | 1247.0 | 5.923 | |
2,3-Dimethylundecane | 1251.4 | 5.945 | |
Tridecane | 1300.0 | 6.200 | 6.192 |
Solute | L Value | Log KPDMS-aircalc | Log KPDMS-airexp |
---|---|---|---|
Ethane | 0.492 | 0.380 | 0.370 |
Propane | 1.050 | 0.842 | 0.880 |
Butane | 1.615 | 1.310 | 1.410 |
2,2-Dimethylpropane | 1.820 | 1.480 | 1.390 |
2-Methylbutane | 2.013 | 1.640 | |
Pentane | 2.162 | 1.763 | 1.770 |
2,2-Dimethylbutane | 2.352 | 1.920 | |
2,3-Dimethylbutane | 2.495 | 2.039 | |
2-Methylpentane | 2.503 | 2.045 | |
3-Methylpentane | 2.581 | 2.110 | 2.200 |
Hexane | 2.668 | 2.182 | 2.200 |
2,2-Dimethylpentane | 2.796 | 2.288 | |
2,4-Dimethylpentane | 2.809 | 2.299 | 2.420 |
2,2,3-Trimethylbutane | 2.918 | 2.389 | 2.450 |
3,3-Dimethylpentane | 2.946 | 2.412 | |
2-Methylhexane | 3.001 | 2.458 | 2.590 |
2,3-Dimethylpentane | 3.016 | 2.470 | 2.610 |
3-Methylhexane | 3.044 | 2.493 | |
3-Ethylpentane | 3.091 | 2.532 | |
2,2,4-Trimethylpentane | 3.106 | 2.545 | |
Heptane | 3.173 | 2.600 | 2.650 |
2,2-Dimethylhexane | 3.261 | 2.673 | |
2,2,3-Trimethylpentane | 3.325 | 2.726 | 2.760 |
2,3-Dimethylhexane | 3.451 | 2.830 | 2.990 |
2,3,3-Trimethylpentane | 3.428 | 2.811 | |
3-Ethyl-2-methylpentane | 3.459 | 2.837 | |
2-Methylheptane | 3.480 | 2.854 | 3.000 |
4-Methylheptane | 3.483 | 2.857 | 3.030 |
3,4-Dimethylhexane | 3.559 | 2.920 | |
3-Methylheptane | 3.510 | 2.879 | 3.040 |
2,2,4,4-Tetramethylpentane | 3.512 | 2.881 | |
3,3-Dimethylhexane | 3.359 | 2.754 | |
2,2,4-Trimethylhexane | 3.605 | 2.958 | |
2,2,5-Trimethylhexane | 3.567 | 2.926 | |
Octane | 3.677 | 3.018 | 3.170 |
2,4,4-Trimethylhexane | 3.683 | 3.023 | |
2,3,5-Trimethylhexane | 3.724 | 3.056 | |
2,2-Dimethylheptane | 3.739 | 3.069 | |
2,2,5,5-Tetramethylhexane | 3.754 | 3.081 | |
2,4-Dimethylheptane | 3.758 | 3.085 | |
2,2,3,4-Tetramethylpentane | 3.738 | 3.068 | |
2,2,3-Trimethylhexane | 3.762 | 3.088 | |
2,2-Diemthyl-3-ethylpentane | 3.740 | 3.070 | |
4-Ethyl-2-methylhexane | 3.760 | 3.086 | |
2,6-Dimethylheptane | 3.780 | 3.103 | |
4,4-Dimethylheptane | 3.770 | 3.095 | |
2,5-Dimethylheptane | 3.822 | 3.138 | |
3,5-Dimethylheptane | 3.826 | 3.141 | 3.290 |
3,3-Dimethylheptane | 3.833 | 3.147 | |
2,4-Dimethyl-3-ethylpentane | 3.828 | 3.143 | |
2,3,3-Trimethylhexane | 3.832 | 3.146 | |
3-Ethyl-2-methylhexane | 3.850 | 3.161 | |
2,3,4-Trimethylhexane | 3.882 | 3.187 | |
3,3,4-Trimethylhexane | 3.891 | 3.195 | |
2,3-Dimethylheptane | 3.925 | 3.223 | 3.380 |
3-Ethyl-4-methylhexane | 3.900 | 3.202 | |
2,2,3,3-Tetramethylpentane | 3.880 | 3.186 | |
3-Ethyl-3-methylhexane | 3.890 | 3.194 | |
3,4-Dimethylheptane | 3.935 | 3.231 | 3.380 |
4-Ethylheptane | 3.944 | 3.239 | |
2,3,3,4-Tetramethylpentane | 3.910 | 3.210 | |
4-Methyloctane | 3.961 | 3.253 | |
2-Methyloctane | 3.966 | 3.257 | |
3-Ethylheptane | 3.992 | 3.278 | |
2,4,6-Trimethylheptane | 4.008 | 3.292 | |
3-Methyloctane | 3.998 | 3.283 | |
2,2,4,5-Tetramethylhexane | 4.018 | 3.300 | |
2,2,6-Trimethylheptane | 4.023 | 3.304 | |
2,2,3,5-Tetramethylhexane | 4.024 | 3.305 | |
2,3-Dimethyl-3-ethylpentane | 4.033 | 3.312 | |
2,2,4-Trimethylheptane | 4.037 | 3.315 | |
2,2,5-Trimethylheptane | 4.049 | 3.325 | |
3,3-Diethylpentane | 4.065 | 3.339 | 3.420 |
2,2-Dimethyl-4-ethylhexane | 4.065 | 3.339 | |
2,2,4,4-Tetramethylhexane | 4.092 | 3.361 | |
2,4,4-Trimethylheptane | 4.157 | 3.415 | |
2,5-Dimethyl-3-ethylhexane | 4.116 | 3.381 | |
2,5,5-Trimethylheptane | 4.118 | 3.383 | |
Nonane | 4.182 | 3.436 | 3.250 |
2,2-Dimethyl-3-ethylhexane | 4.171 | 3.426 | |
2,3,3,5-Tetramethylhexane | 4.177 | 3.431 | |
3-Ethyl-2,2,4-trimethylpentane | 4.180 | 3.434 | |
2,4,5-Trimethylheptane | 4.194 | 3.446 | |
4-Ethyl-2-methylheptane | 4.198 | 3.449 | |
3,3,5-Trimethylheptane | 4.199 | 3.450 | |
2,2,3,4-Tetramethylhexane | 4.205 | 3.454 | |
2,3,5-Trimethylheptane | 4.226 | 3.472 | |
2,2,3-Trimethylheptane | 4.233 | 3.478 | |
2,2-Dimethyloctane | 4.225 | 3.471 | 3.640 |
2,4-Dimethyl-3-isopropylpentane | 4.237 | 3.481 | |
3-lsopropyl-2-methylhexane | 4.239 | 3.483 | |
2,4-Dimethyloctane | 4.265 | 3.504 | |
4,4-Dimethyloctane | 4.236 | 3.480 | |
2,3,6-Trimethylheptane | 4.257 | 3.497 | |
2,4-Dimethyl-4-ethylhexane | 4.265 | 3.505 | |
2,2,3,4,4-Pentamethylpentane | 4.270 | 3.509 | |
3,5-Dimethyloctane | 4.259 | 3.499 | |
2,5-Dimethyloctane | 4.300 | 3.533 | |
2,3,4,5-Tetramethylhexane | 4.277 | 3.515 | |
5-Ethyl-2-methylheptane | 4.286 | 3.522 | |
4-lsopropylheptane | 4.287 | 3.523 | |
2,7-Dimethyloctane | 4.282 | 3.518 | |
2,2,3,3-Tetramethylhexane | 4.306 | 3.539 | |
3,6-Dimethyloctane | 4.331 | 3.559 | |
2,4-Dimethyl-3-ethylhexane | 4.311 | 3.543 | |
2,6-Dimethyloctane | 4.304 | 3.537 | |
2,3,3-Trimethylheptane | 4.321 | 3.551 | |
3,3-Dimethyloctane | 4.307 | 3.539 | 3.700 |
3,4,4-Trimethylheptane | 4.324 | 3.553 | |
2,3,4-Trimethylheptane | 4.330 | 3.558 | |
2,3,4,4-Tetramethylhexane | 4.338 | 3.565 | |
4-Ethyl-3-methylheptane | 4.341 | 3.568 | |
3,4-Dimethyloctane | 4.324 | 3.553 | |
3,3,4-Trimethylheptane | 4.346 | 3.571 | |
4-Ethyl-4-methylheptane | 4.351 | 3.576 | |
3,3-Dimethyl-4-ethylhexane | 4.352 | 3.576 | |
3-Ethyl-4-methylheptane | 4.366 | 3.588 | |
3-Ethyl-2-methylheptane | 4.337 | 3.564 | |
4,5-Dimethyloctane | 4.407 | 3.622 | |
3,4,5-Trimethylheptane | 4.361 | 3.584 | |
3,4-Diethylhexane | 4.393 | 3.610 | |
2,3,3,4-Tetramethylhexane | 4.409 | 3.624 | |
2,3-Dimethyl-4-ethylhexane | 4.411 | 3.625 | |
4-Ethyloctane | 4.409 | 3.624 | |
2,3-Dimethyloctane | 4.401 | 3.617 | |
2-Ethyl-2-methylheptane | 4.429 | 3.640 | |
2,2,3,3,4-Pentamethylpentane | 4.431 | 3.642 | |
3,3-Diethylhexane | 4.435 | 3.645 | |
5-Methylnonane | 4.432 | 3.643 | |
4-Methylnonane | 4.441 | 3.650 | |
2-Methylnonane | 4.453 | 3.660 | |
3-Ethyloctane | 4.467 | 3.672 | 3.840 |
3,4-Dimethyl-3-ethylhexane | 4.488 | 3.689 | |
3-Ethyl-2,2,3-trimethylpentane | 4.494 | 3.694 | |
3-Ethyl-2,3,4-trimethylpentane | 4.513 | 3.709 | |
3-Methylnonane | 4.486 | 3.687 | 3.850 |
3.3.4.4-Tetramethylhexane | 4.585 | 3.770 | |
Decane | 4.686 | 3.853 | 3.500 |
Undecane | 5.191 | 4.271 | 3.890 |
6-Methylundecane | 5.469 | 4.501 | |
4-Methylundecane | 5.495 | 4.523 | |
2-Methylundecane | 5.516 | 4.540 | |
3-Methylundecane | 5.550 | 4.568 | |
Dodecane | 5.696 | 4.689 | 4.290 |
5,7-Dimethylundecane | 5.635 | 4.639 | |
4,6-Dimethylundecane | 5.648 | 4.650 | |
3,5-Dimethylundecane | 5.721 | 4.710 | |
2,4-Dimethylundecane | 5.726 | 4.714 | |
2,5-Dimethylundecane | 5.737 | 4.723 | |
2,6-Dimethylundecane | 5.771 | 4.751 | |
2,7-Dimethylundecane | 5.764 | 4.746 | |
5,6-Dimethylundecane | 5.803 | 4.778 | |
4,5-Dimethylundecane | 5.838 | 4.807 | |
2,9-Dimethylundecane | 5.850 | 4.816 | |
3,4-Dimethylundecane | 5.923 | 4.877 | |
2,3-Dimethylundecane | 5.945 | 4.896 | |
Tridecane | 6.200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Motati, R.; Acree, W.E., Jr. Determination of Abraham Model Solute Descriptors for 62 Additional C10 through C13 Methyl- and Ethyl-Branched Alkanes. Liquids 2023, 3, 118-131. https://doi.org/10.3390/liquids3010010
Motati R, Acree WE Jr. Determination of Abraham Model Solute Descriptors for 62 Additional C10 through C13 Methyl- and Ethyl-Branched Alkanes. Liquids. 2023; 3(1):118-131. https://doi.org/10.3390/liquids3010010
Chicago/Turabian StyleMotati, Ramya, and William E. Acree, Jr. 2023. "Determination of Abraham Model Solute Descriptors for 62 Additional C10 through C13 Methyl- and Ethyl-Branched Alkanes" Liquids 3, no. 1: 118-131. https://doi.org/10.3390/liquids3010010
APA StyleMotati, R., & Acree, W. E., Jr. (2023). Determination of Abraham Model Solute Descriptors for 62 Additional C10 through C13 Methyl- and Ethyl-Branched Alkanes. Liquids, 3(1), 118-131. https://doi.org/10.3390/liquids3010010