Dissolution Thermodynamics and Preferential Solvation of Phenothiazine in Some Aqueous Cosolvent Systems
Abstract
:1. Introduction
2. Results and Discussion
2.1. Ideal Mole Fraction Solubility and Asymmetrical Activity Coefficients of Phenothiazine in Neat Solvents
2.2. Apparent Thermodynamic Properties of the Dissolution, Mixing and Solvation of Phenothiazine in Mono-Solvents
2.2.1. Apparent Thermodynamic Functions of Phenothiazine Dissolution in Mono-Solvents
2.2.2. Apparent Thermodynamic Quantities of Phenothiazine Mixing in Mono-Solvents
2.2.3. Apparent Thermodynamic Quantities of Phenothiazine Solvation in Mono-Solvents
2.3. Effect of Mixed Solvents Polarity on Phenothiazine Solubility in Aqueous Cosolvent Mixtures
2.4. Preferential Solvation Analysis of Phenothiazine in Aqueous Cosolvent Mixtures
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Neil, M.J. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals, 13th ed.; Merck & Co., Inc.: Whitehouse Station, NJ, USA, 2001. [Google Scholar]
- Sweetman, S.C. Martindale: The Complete Drug Reference, 36th ed.; Pharmaceutical Press: London, UK, 2009. [Google Scholar]
- Ohlow, M.J.; Moosmann, B. Phenothiazine: The seven lives of pharmacology’s first lead structure. Drug Discov. Today 2011, 16, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Levy, L.B. Inhibition of acrylic acid polymerization by phenothiazine and p-methoxyphenol. II. Catalytic inhibition by phenothiazine. J. Polymer Sci. A Polymer Chem. 1992, 30, 569–576. [Google Scholar] [CrossRef]
- Hoover, K.R.; Acree, W.E., Jr.; Abraham, M.H. Mathematical correlation of phenothiazine solubilities in organic solvents with the Abraham solvation parameter model. Phys. Chem. Liq. 2006, 44, 367–376. [Google Scholar] [CrossRef]
- Ahmadian, S.; Panahi-Azar, V.; Fakhree, M.A.A.; Acree, W.E., Jr.; Jouyban, A. Solubility of phenothiazine in water, ethanol, and propylene glycol at (298.2 to 338.2) K and their binary and ternary mixtures at 298.2 K. J. Chem. Eng. Data 2011, 56, 4352–4355. [Google Scholar] [CrossRef]
- Rubino, J.T. Cosolvents and cosolvency. In Encyclopedia of Pharmaceutical Technology; Swarbrick, J., Boylan, J.C., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 1988; Volume 3, pp. 375–398. [Google Scholar]
- Martin, A.; Bustamante, P.; Chun, A.H.C. Physical Pharmacy: Physical Chemical Principles in the Pharmaceutical Sciences, 4th ed.; Lea & Febiger: Philadelphia, PA, USA, 1993. [Google Scholar]
- Yalkowsky, S.H. Solubility and Solubilization in Aqueous Media; American Chemical Society and Oxford University Press: New York, NY, USA, 1999. [Google Scholar]
- Jouyban, A. Handbook of Solubility Data for Pharmaceutical; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Delgado, D.R.; Martínez, F. Solution thermodynamics and preferential solvation of sulfamerazine in methanol + water mixtures. J. Solution Chem. 2015, 44, 360–377. [Google Scholar] [CrossRef]
- Sabbah, R.; El Watik, L. Etude thermodynamique de la phénoxazine et de la phenothiazine. Thermochim. Acta 1992, 197, 381–390. [Google Scholar] [CrossRef]
- Zarghampour, A.; Jouyban, K.; Jouyban-Gharamaelki, V.; Jouyban, A.; Rahimpour, E. A description on the shake-flask and laser monitoring-based techniques for determination of the drug’s solubility. Pharm. Sci. 2024, 30, 274–278. [Google Scholar] [CrossRef]
- Kristl, A.; Vesnaver, G. Thermodynamic investigation of the effect of octanol–water mutual miscibility on the partitioning and solubility of some guanine derivatives. J. Chem. Soc. Faraday Trans. 1995, 91, 995–998. [Google Scholar] [CrossRef]
- Barton, A.F.M. Handbook of Solubility Parameters and Other Cohesion Parameters, 2nd ed.; CRC Press: Boca Raton, FL, USA, 1991. [Google Scholar]
- Marcus, Y. The Properties of Solvents; John Wiley & Sons: Chichester, UK, 1998. [Google Scholar]
- Jouyban, A.; Acree, W.E., Jr.; Martínez, F. Solution Thermodynamics and preferential solvation of atenolol in {ethanol (1) + water (2)} cosolvent mixtures. J. Appl. Solution Chem. Model. 2018, 7, 1–8. [Google Scholar] [CrossRef]
- Bevington, P.R. Data Reduction and Error Analysis for the Physical Sciences; McGraw-Hill Book, Co.: New York, NY, USA, 1969; pp. 56–65. [Google Scholar]
- Carstensen, J.T. Modeling and Data Treatment in the Pharmaceutical Sciences; Technomic Publishing Co., Inc.: Lancaster, PA, USA, 1996; pp. 127–159. [Google Scholar]
- Barrante, J.R. Applied Mathematics for Physical Chemistry, 2nd ed.; Prentice Hall, Inc.: Upper Saddle River, NJ, USA, 1998; 227p. [Google Scholar]
- Perlovich, G.L.; Kurkov, S.V.; Kinchin, A.N.; Bauer-Brandl, A. Thermodynamics of solutions III: Comparison of the solvation of (+)-naproxen with other NSAIDs. Eur. J. Pharm. Biopharm. 2004, 57, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Delgado, D.R.; Almanza, O.A.; Martínez, F.; Peña, M.A.; Jouyban, A.; Acree, W.E., Jr. Solution thermodynamics and preferential solvation of sulfamethazine in (methanol + water) mixtures. J. Chem. Thermodyn. 2016, 97, 264–276. [Google Scholar] [CrossRef]
- Jouyban, K.; Agha, E.M.H.; Hemmati, S.; Martinez, F.; Kuentz, M.; Jouyban, A. Solubility of 5-aminosalicylic acid in N-methyl-2-pyrrolidone + water mixtures at various temperatures. J. Mol. Liq. 2020, 310, 113143. [Google Scholar] [CrossRef]
- Romero, S.; Reillo, A.; Escalera, B.; Bustamante, P. The behaviour of paracetamol in mixtures of aprotic and amphiprotic-aprotic solvents. Relationship of solubility curves to specific and nonspecific interactions. Chem. Pharm. Bull. 1996, 44, 1061–1066. [Google Scholar] [CrossRef]
- Jiménez, J.A.; Martínez, F. Temperature dependence of solubility of acetaminophen in propylene glycol + ethanol mixtures. J. Solution Chem. 2006, 35, 335–352. [Google Scholar] [CrossRef]
- Connors, K.A. Thermodynamics of Pharmaceutical Systems: An Introduction for Students of Pharmacy; Wiley–Interscience: Hoboken, NJ, USA, 2002. [Google Scholar]
- Fedors, R.F. A method for estimating both the solubility parameters and molar volumes of liquids. Polym. Eng. Sci. 1974, 14, 147–154. [Google Scholar] [CrossRef]
- Marcus, Y. Solvent Mixtures: Properties and Selective Solvation; Marcel Dekker, Inc.: New York, NY, USA, 2002. [Google Scholar]
- Marcus, Y. On the preferential solvation of drugs and PAHs in binary solvent mixtures. J. Mol. Liq. 2008, 140, 61–67. [Google Scholar] [CrossRef]
- Marcus, Y. Preferential solvation of drugs in binary solvent mixtures. Pharm. Anal. Acta 2017, 8, 1000537. [Google Scholar] [CrossRef]
- Jiménez, D.M.; Cárdenas, Z.J.; Delgado, D.R.; Martínez, F.; Jouyban, A. Preferential solvation of methocarbamol in aqueous binary co-solvent mixtures at 298.15 K. Phys. Chem. Liq. 2014, 52, 726–737. [Google Scholar] [CrossRef]
- Ben–Naim, A. Preferential solvation in two- and in three-component systems. Pure Appl. Chem. 1990, 62, 25–34. [Google Scholar] [CrossRef]
- Marcus, Y. Solubility and solvation in mixed solvent systems. Pure Appl. Chem. 1990, 62, 2069–2076. [Google Scholar] [CrossRef]
T/K b | |||||
---|---|---|---|---|---|
298.2 | 308.2 | 318.2 | 328.2 | 338.2 | |
5.52 × 10−2 | 6.90 × 10−2 | 8.55 × 10−2 | 0.1053 | 0.1289 | |
Solvent a,b | γs | ||||
EtOH | 6.31 | 6.90 | 7.01 | 7.27 | |
PG | 13.28 | 12.78 | 13.04 | 13.81 | 15.13 |
Water | 3.54 × 105 | 3.48 × 105 | 3.39 × 105 | 2.94 × 105 | 2.63 × 105 |
Solvent a,b | Intercept | Slope | Adjusted r2 | Typical Error | F |
---|---|---|---|---|---|
EtOH | −4.758 ± 0.023 | −1671 ± 116 | 0.986 | 0.026 | 207.6 |
PG | −5.444 ± 0.033 | −1804 ± 132 | 0.979 | 0.041 | 187.7 |
Water | −15.729 ± 0.050 | −2899 ± 202 | 0.981 | 0.063 | 205.9 |
Solvent a,b | ∆solnG°/ kJ·mol−1 b | ∆solnH°/ kJ·mol−1 b | ∆solnS°/ J·mol−1·K−1 b | T∆solnS°/ kJ·mol−1 b | ζH c | ζTS c |
---|---|---|---|---|---|---|
EtOH | 11.80 | 13.89 | 7.03 | 2.10 | 0.869 | 0.131 |
PG | 13.50 | 15.00 | 5.05 | 1.50 | 0.909 | 0.091 |
Water | 38.99 | 24.11 | −49.93 | −14.89 | 0.618 | 0.382 |
Ideal | 7.20 | 17.76 | 35.42 | 10.56 | 0.627 | 0.373 |
Solvent a,b | ∆mixG°/ kJ·mol−1 b | ∆mixH°/ kJ·mol−1 b | ∆mixS°/ J·mol−1·K−1 b | T∆mixS°/ kJ·mol−1 b | ζH c | ζTS c |
---|---|---|---|---|---|---|
EtOH | 4.60 | −3.87 | −28.39 | −8.47 | 0.313 | 0.687 |
PG | 6.30 | −2.76 | −30.38 | −9.06 | 0.233 | 0.767 |
Water | 31.80 | 6.35 | −85.35 | −25.45 | 0.200 | 0.800 |
Sublimation | ||||||
∆sublG°/ kJ·mol−1 | ∆sublH°/ kJ·mol−1 | ∆sublS°/ J·mol−1·K−1 | T∆sublS°/ kJ·mol−1 | ζH | ζTS | |
53.57 | 111.45 | 194.15 | 57.88 | 0.658 | 0.342 | |
Solvation | ||||||
Solvent a,b | ∆solvG°/ kJ·mol−1 b | ∆solvH°/ kJ·mol−1 b | ∆solvS°/ J·mol−1·K−1 b | T∆solvS°/ kJ·mol−1 b | ζH c | ζTS c |
EtOH | −41.77 | −97.56 | −187.12 | −55.79 | 0.636 | 0.364 |
PG | −40.07 | −96.45 | −189.10 | −56.38 | 0.631 | 0.369 |
Water | −14.57 | −87.34 | −244.07 | −72.77 | 0.546 | 0.454 |
Group | Group Number | ΔU°/kJ·mol−1 | V/cm3·mol−1 |
---|---|---|---|
Phenylene | 2 | 2 × 31.9 = 63.8 | 2 × 52.4 = 104.8 |
Ring closure of 6 atoms | 1 | 1.05 | 16 |
(-NH-) | 1 | 8.4 | 4.5 |
(-S-) | 1 | 14.15 | 12 |
∑ ΔU° = 87.4 | ∑ V = 137.3 | ||
δ3 = (87,400/137.3)1/2 = 25.2 MPa1/2 |
Coefficient or Parameter | Ethanol (1) + Water (2) | Propylene Glycol (1) + Water (2) |
---|---|---|
a | 0.24 ± 0.91 | −0.13 ± 0.54 |
b | −63.63 ± 7.89 | −47.22 ± 4.97 |
c | 73.10 ± 18.65 | 57.85 ± 11.95 |
d | −37.09 ± 12.07 | −35.85 ± 7.64 |
Adjusted r2 | 0.985 | 0.994 |
Statistical error | 0.938 | 0.545 |
F-statistical | 254.6 | 613.3 |
x1 a | D/ kJ·mol−1 | G1,3/ cm3·mol−1 | G2,3/ cm3·mol−1 | Vcor/ cm3·mol−1 | 100 δx1,3 |
---|---|---|---|---|---|
0.00 | −63.63 | −600.1 | −136.2 | 698 | 0.00 |
0.05 | −56.60 | −573.1 | −204.4 | 708 | −3.61 |
0.10 | −50.12 | −534.1 | −269.7 | 731 | −5.47 |
0.15 | −44.20 | −488.0 | −327.1 | 772 | −4.87 |
0.20 | −38.84 | −440.3 | −374.3 | 827 | −2.41 |
0.25 | −34.03 | −395.1 | −411.6 | 885 | 0.64 |
0.30 | −29.78 | −354.9 | −441.0 | 942 | 3.43 |
0.35 | −26.09 | −320.9 | −465.7 | 994 | 5.70 |
0.40 | −22.95 | −293.2 | −489.7 | 1042 | 7.48 |
0.45 | −20.37 | −271.5 | −517.2 | 1088 | 8.93 |
0.50 | −18.34 | −255.0 | −552.9 | 1132 | 10.23 |
0.55 | −16.88 | −243.0 | −602.6 | 1176 | 11.53 |
0.60 | −15.96 | −234.4 | −672.0 | 1221 | 12.94 |
0.65 | −15.61 | −227.7 | −764.5 | 1266 | 14.37 |
0.70 | −15.81 | −220.5 | −875.2 | 1307 | 15.44 |
0.75 | −16.57 | −210.1 | −981.9 | 1342 | 15.42 |
0.80 | −17.88 | −195.0 | −1048.3 | 1365 | 13.66 |
0.85 | −19.75 | −176.9 | −1048.5 | 1377 | 10.39 |
0.90 | −22.17 | −159.3 | −990.6 | 1386 | 6.54 |
0.95 | −25.16 | −145.0 | −903.7 | 1395 | 2.97 |
1.00 | −28.69 | −134.4 | −813.4 | 1409 | 0.00 |
x1 a | D/ kJ·mol−1 | G1,3/ cm3·mol−1 | G2,3/ cm3·mol−1 | Vcor/ cm3·mol−1 | 100 δx1,3 |
---|---|---|---|---|---|
0.00 | −47.22 | −480.7 | −136.2 | 698 | 0.00 |
0.05 | −41.71 | −426.2 | −195.4 | 730 | −2.10 |
0.10 | −36.73 | −377.9 | −241.7 | 780 | −2.34 |
0.15 | −32.29 | −335.9 | −276.3 | 842 | −1.36 |
0.20 | −28.39 | −300.1 | −301.1 | 907 | 0.03 |
0.25 | −25.02 | −270.1 | −318.1 | 970 | 1.36 |
0.30 | −22.20 | −245.5 | −329.5 | 1029 | 2.43 |
0.35 | −19.91 | −225.8 | −337.7 | 1084 | 3.24 |
0.40 | −18.16 | −210.4 | −345.0 | 1137 | 3.82 |
0.45 | −16.94 | −198.5 | −353.9 | 1188 | 4.25 |
0.50 | −16.27 | −189.7 | −366.8 | 1238 | 4.62 |
0.55 | −16.13 | −183.1 | −385.8 | 1286 | 4.96 |
0.60 | −16.53 | −178.3 | −413.3 | 1335 | 5.31 |
0.65 | −17.47 | −174.7 | −451.7 | 1383 | 5.67 |
0.70 | −18.94 | −171.7 | −503.3 | 1430 | 6.01 |
0.75 | −20.96 | −168.8 | −570.9 | 1476 | 6.25 |
0.80 | −23.51 | −165.5 | −657.8 | 1519 | 6.28 |
0.85 | −26.60 | −161.3 | −767.8 | 1558 | 5.92 |
0.90 | −30.22 | −155.6 | −906.1 | 1593 | 4.96 |
0.95 | −34.39 | −147.5 | −1079.6 | 1619 | 3.11 |
1.00 | −39.09 | −136.1 | −1297.9 | 1635 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez, F.; Peña, M.Á.; Jouyban, A. Dissolution Thermodynamics and Preferential Solvation of Phenothiazine in Some Aqueous Cosolvent Systems. Liquids 2024, 4, 443-455. https://doi.org/10.3390/liquids4020024
Martínez F, Peña MÁ, Jouyban A. Dissolution Thermodynamics and Preferential Solvation of Phenothiazine in Some Aqueous Cosolvent Systems. Liquids. 2024; 4(2):443-455. https://doi.org/10.3390/liquids4020024
Chicago/Turabian StyleMartínez, Fleming, María Ángeles Peña, and Abolghasem Jouyban. 2024. "Dissolution Thermodynamics and Preferential Solvation of Phenothiazine in Some Aqueous Cosolvent Systems" Liquids 4, no. 2: 443-455. https://doi.org/10.3390/liquids4020024
APA StyleMartínez, F., Peña, M. Á., & Jouyban, A. (2024). Dissolution Thermodynamics and Preferential Solvation of Phenothiazine in Some Aqueous Cosolvent Systems. Liquids, 4(2), 443-455. https://doi.org/10.3390/liquids4020024