Photodegradation of Tropaeolin O in the Presence of Ag-Doped ZnO Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis/Preparation of Ag-Doped ZnO Nanoparticles
2.3. Characterization of Ag-Doped ZnO Nanoparticles
2.4. Photocatalytic Experiments of Tropaeolin O
3. Results and Discussion
3.1. Morphological, Compositional, and Optical Characterization
3.2. Photodegradation of Tropaeolin O
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hemdan, S.; Mansour, A.; Ali, F. The Behavior and Properties of Some Acid-Base Indicators: A Review. J. Sci. Hum. Stu. 2020, 66, 1–22. [Google Scholar]
- Heydari, R.; Bastami, F.; Hosseini, M.; Alimoradi, M. Simultaneous Determination of Tropaeolin O and Brilliant Blue in Food Samples after Cloud Point Extraction. Iran. Chem. Commun. 2017, 5, 242–251. [Google Scholar]
- Tarao, S. On the Nature of Cytoplasmic Constituents in Amoeba Diploidea Examined by Means of Staining and Chemical Reactions. Hokkaido Univ. Collect. Sch. Acad. Pap. 1942, 8, 9–30. [Google Scholar]
- Bumpus, J.A. Microbial Degradation of Azo Dyes. In Progress in Industrial Microbiology; Biotransformations; Singh, V.P., Ed.; Elsevier: Amsterdam, The Netherlands, 1995; Volume 32, pp. 157–176. [Google Scholar]
- Kumar, L.; Bharadvaja, N. 12—Microorganisms: A Remedial Source for Dye Pollution. In Removal of Toxic Pollutants through Microbiological and Tertiary Treatment; Shah, M.P., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 309–333. ISBN 978-0-12-821014-7. [Google Scholar]
- Alaton, I.A.; Teksoy, S. Acid Dyebath Effluent Pretreatment Using Fenton’s Reagent: Process Optimization, Reaction Kinetics and Effects on Acute Toxicity. Dye. Pigment. 2007, 73, 31–39. [Google Scholar] [CrossRef]
- Amat, A.M.; Arques, A.; Miranda, M.A.; Seguí, S.; Vercher, R.F. Degradation of Rosolic Acid by Advanced Oxidation Processes: Ozonation vs. Solar Photocatalysis. Desalination 2007, 212, 114–122. [Google Scholar] [CrossRef]
- Hama Aziz, K.H.; Mahyar, A.; Miessner, H.; Mueller, S.; Kalass, D.; Moeller, D.; Khorshid, I.; Rashid, M.A.M. Application of a Planar Falling Film Reactor for Decomposition and Mineralization of Methylene Blue in the Aqueous Media via Ozonation, Fenton, Photocatalysis and Non-Thermal Plasma: A Comparative Study. Process Saf. Environ. Prot. 2018, 113, 319–329. [Google Scholar] [CrossRef]
- Bal, G.; Thakur, A. Distinct Approaches of Removal of Dyes from Wastewater: A Review. Mater. Today Proc. 2022, 50, 1575–1579. [Google Scholar] [CrossRef]
- Wazir, M.B.; Daud, M.; Ali, F.; Al-Harthi, M.A. Dendrimer Assisted Dye-Removal: A Critical Review of Adsorption and Catalytic Degradation for Wastewater Treatment. J. Mol. Liq. 2020, 315, 113775. [Google Scholar] [CrossRef]
- Fan, L.; Zhou, Y.; Yang, W.; Chen, G.; Yang, F. Electrochemical Degradation of Aqueous Solution of Amaranth Azo Dye on ACF under Potentiostatic Model. Dye. Pigment. 2008, 76, 440–446. [Google Scholar] [CrossRef]
- Reza, K.M.; Kurny, A.; Gulshan, F. Parameters Affecting the Photocatalytic Degradation of Dyes Using TiO2: A Review. Appl. Water Sci. 2017, 7, 1569–1578. [Google Scholar] [CrossRef] [Green Version]
- Saeed, M.; Muneer, M.; Haq, A.U.; Akram, N. Photocatalysis: An Effective Tool for Photodegradation of Dyes—A Review. Environ. Sci. Pollut. Res. 2022, 29, 293–311. [Google Scholar] [CrossRef] [PubMed]
- Torres-Torres, K.; Nash-Montes, V.I.; Luciano-Velázquez, J.; Bailón-Ruiz, S.J. Degradation of Amaranth and Tropaeolin O in the Presence of ZnO Nanoparticles. Int. Nano Lett. 2022, 12, 295–300. [Google Scholar] [CrossRef]
- Luciano-Velázquez, J.; Xin, Y.; Su, Y.; Quiles-Vélez, C.I.; Cruz-Romero, S.A.; Torres-Mejías, G.E.; Rivera-De Jesús, J.; Bailón-Ruiz, S.J. Synthesis, Characterization, and Photocatalytic Activity of ZnS and Mn-Doped ZnS Nanostructures. MRS Adv. 2021, 6, 252–258. [Google Scholar] [CrossRef]
- Singh, P.; Kumar, R.; Singh, R.K. Progress on Transition Metal-Doped ZnO Nanoparticles and Its Application. Ind. Eng. Chem. Res. 2019, 58, 17130–17163. [Google Scholar] [CrossRef]
- Saleh, R.; Djaja, N.F. Transition-Metal-Doped ZnO Nanoparticles: Synthesis, Characterization and Photocatalytic Activity under UV Light. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 130, 581–590. [Google Scholar] [CrossRef] [PubMed]
- Gopal, P.; Spaldin, N.A. Magnetic Interactions in Transition-Metal-Doped ZnO: An Ab Initio Study. Phys. Rev. B 2006, 74, 094418. [Google Scholar] [CrossRef] [Green Version]
- Sanakousar, F.M.; Vidyasagar, C.C.; Jiménez-Pérez, V.M.; Prakash, K. Recent Progress on Visible-Light-Driven Metal and Non-Metal Doped ZnO Nanostructures for Photocatalytic Degradation of Organic Pollutants. Mater. Sci. Semicond. Process 2022, 140, 106390. [Google Scholar] [CrossRef]
- Dutta, R.K.; Nenavathu, B.P.; Talukdar, S. Anomalous Antibacterial Activity and Dye Degradation by Selenium Doped ZnO Nanoparticles. Colloids Surf. B Biointerfaces 2014, 114, 218–224. [Google Scholar] [CrossRef]
- Ismail, A.F.M.; Ali, M.M.; Ismail, L.F.M. Photodynamic Therapy Mediated Antiproliferative Activity of Some Metal-Doped ZnO Nanoparticles in Human Liver Adenocarcinoma HepG2 Cells under UV Irradiation. J. Photochem. Photobiol. B 2014, 138, 99–108. [Google Scholar] [CrossRef]
- Singh, P.; Kumar Singh, R.; Kumar, R. Journey of ZnO Quantum Dots from Undoped to Rare-Earth and Transition Metal-Doped and Their Applications. RSC Adv. 2021, 11, 2512–2545. [Google Scholar] [CrossRef]
- Cerrato, E.; Zickler, G.A.; Paganini, M.C. The Role of Yb Doped ZnO in the Charge Transfer Process and Stabilization. J. Alloys Compd. 2020, 816, 152555. [Google Scholar] [CrossRef]
- Yibi, Y.; Chen, J.; Xue, J.; Song, J.; Zeng, H. Enhancement of Adjustable Localized Surface Plasmon Resonance in ZnO Nanocrystals via a Dual Doping Approach. Sci. Bull. 2017, 62, 693–699. [Google Scholar] [CrossRef]
- Pathak, T.K.; Swart, H.C.; Kroon, R.E. Structural and Plasmonic Properties of Noble Metal Doped ZnO Nanomaterials. Phys. B Condens. Matter 2018, 535, 114–118. [Google Scholar] [CrossRef]
- Lee, G.J.; Deshpande, N.G.; Lee, Y.P.; Cheong, H.; Swami, N.; Bhat, J.S. Optical and Structural Properties of Al-ZnO Nanocomposites. J. Nanosci. Nanotechnol. 2014, 14, 3661–3666. [Google Scholar] [CrossRef]
- Ersöz, E.; Altintas Yildirim, O. Green Synthesis and Characterization of Ag-Doped ZnO Nanofibers for Photodegradation of MB, RhB and MO Dye Molecules. J. Korean Ceram. Soc. 2022, 59, 655–670. [Google Scholar] [CrossRef]
- Aydin, E.B. Preparation, Characterization and Immobilization of Ag-Doped ZnO-Nanorods into Ca and Cu Alginate Beads and Their Application in the Photodegradation of Methylene Blue. ChemistrySelect 2021, 6, 11653–11663. [Google Scholar] [CrossRef]
- Vallejo, W.; Cantillo, A.; Díaz-Uribe, C. Methylene Blue Photodegradation under Visible Irradiation on Ag-Doped ZnO Thin Films. Int. J. Photoenergy 2020, 2020, e1627498. [Google Scholar] [CrossRef] [Green Version]
- Babu, A.T.; Antony, R. Green Synthesis of Silver Doped Nano Metal Oxides of Zinc & Copper for Antibacterial Properties, Adsorption, Catalytic Hydrogenation & Photodegradation of Aromatics. J. Environ. Chem. Eng. 2019, 7, 102840. [Google Scholar] [CrossRef]
- Al-Ariki, S.; Yahya, N.A.A.; Al-A’nsi, S.A.; Jumali, M.H.H.; Jannah, A.N.; Abd-Shukor, R. Synthesis and Comparative Study on the Structural and Optical Properties of ZnO Doped with Ni and Ag Nanopowders Fabricated by Sol Gel Technique. Sci. Rep. 2021, 11, 11948. [Google Scholar] [CrossRef]
- Shabaaz Begum, J.P.; Manjunath, K.; Pratibha, S.; Dhananjaya, N.; Sahu, P.; Kashaw, S. Bioreduction Synthesis of Zinc Oxide Nanoparticles Using Delonix Regia Leaf Extract (Gul Mohar) and Its Agromedicinal Applications. J. Sci. Adv. Mater. Devices 2020, 5, 468–475. [Google Scholar] [CrossRef]
- Bagabas, A.; Alshammari, A.; Aboud, M.F.; Kosslick, H. Room-Temperature Synthesis of Zinc Oxide Nanoparticles in Different Media and Their Application in Cyanide Photodegradation. Nanoscale Res. Lett. 2013, 8, 516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mintcheva, N.; Aljulaih, A.A.; Wunderlich, W.; Kulinich, S.A.; Iwamori, S. Laser-Ablated ZnO Nanoparticles and Their Photocatalytic Activity toward Organic Pollutants. Materials 2018, 11, 1127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Qin, J.; Xue, Y.; Yu, P.; Zhang, B.; Wang, L.; Liu, R. Effect of Aspect Ratio and Surface Defects on the Photocatalytic Activity of ZnO Nanorods. Sci. Rep. 2014, 4, 4596. [Google Scholar] [CrossRef] [Green Version]
- Herzi, A.; Sebais, M.; Boudine, B.; Halimi, O.; Rahal, B.; Guerbous, L. Fabrication and Characterization of Highly Textured Thin Films of Undoped and Ag-Doped ZnO. Acta Phys. Pol. A 2019, 135, 526–531. [Google Scholar] [CrossRef]
- Arunachalam, A.; Dhanapandian, S.; Rajasekaran, M. Morphology Controllable Flower like Nanostructures of Ag Doped ZnO Thin Films and Its Application as Photovoltaic Material. J. Anal. Appl. Pyrolysis 2017, 123, 107–117. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, V.; Tanwar, A. Structural, Morphological, Optical and Photocatalytic Properties of Ag-Doped ZnO Nanoparticles. J. Mater. Sci. Mater. Electron. 2016, 27, 2166–2173. [Google Scholar] [CrossRef]
- Tsai, Y.-T.; Chang, S.-J.; Ji, L.-W.; Hsiao, Y.-J.; Tang, I.-T.; Lu, H.-Y.; Chu, Y.-L. High Sensitivity of NO Gas Sensors Based on Novel Ag-Doped ZnO Nanoflowers Enhanced with a UV Light-Emitting Diode. ACS Omega 2018, 3, 13798–13807. [Google Scholar] [CrossRef] [Green Version]
- Ortega, Y.; Fernández, P.; Piqueras, J. Growth and Luminescence of Oriented Nanoplate Arrays in Tin Doped ZnO. Nanotechnology 2007, 18, 115606. [Google Scholar] [CrossRef]
- Kareem, M.A.; Bello, I.T.; Shittu, H.A.; Sivaprakash, P.; Adedokun, O.; Arumugam, S. Synthesis, Characterization, and Photocatalytic Application of Silver Doped Zinc Oxide Nanoparticles. Clean. Mater. 2022, 3, 100041. [Google Scholar] [CrossRef]
- Joe, A.; Park, S.-H.; Kim, D.-J.; Lee, Y.-J.; Jhee, K.-H.; Sohn, Y.; Jang, E.-S. Antimicrobial Activity of ZnO Nanoplates and Its Ag Nanocomposites: Insight into an ROS-Mediated Antibacterial Mechanism under UV Light. J. Solid State Chem. 2018, 267, 124–133. [Google Scholar] [CrossRef]
- Si, J.; Yang, X.; Luan, H.; Shao, Y.; Yao, K. Cheap, Fast and Durable Degradation of Azo Dye Wastewater by Zero-Valent Iron Structural Composites. J. Environ. Chem. Eng. 2021, 9, 106314. [Google Scholar] [CrossRef]
- Zyoud, A.; Zubi, A.; Zyoud, S.; Hilal, M.; Zyoud, S.; Qamhieh, N.; Hajamohideen, A.; Hilal, H. Kaolin-supported ZnO nanoparticle catalysts in self-sensitized tetracycline photodegradation: Zero-point charge and pH effects. Appl. Clay Sci. 2019, 182, 105294. [Google Scholar] [CrossRef]
- Alamo-Nole, L.; Bailon-Ruiz, S.; Luna-Pineda, T.; Perales-Perez, O.; Roman, F.R. Photocatalytic Activity of Quantum Dot–Magnetite Nanocomposites to Degrade Organic Dyes in the Aqueous Phase. J. Mater. Chem. A 2013, 1, 5509–5516. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bailon-Ruiz, S.J.; Cedeño-Mattei, Y.; Torres-Torres, K.; Alamo-Nole, L. Photodegradation of Tropaeolin O in the Presence of Ag-Doped ZnO Nanoparticles. Micro 2023, 3, 643-652. https://doi.org/10.3390/micro3030045
Bailon-Ruiz SJ, Cedeño-Mattei Y, Torres-Torres K, Alamo-Nole L. Photodegradation of Tropaeolin O in the Presence of Ag-Doped ZnO Nanoparticles. Micro. 2023; 3(3):643-652. https://doi.org/10.3390/micro3030045
Chicago/Turabian StyleBailon-Ruiz, Sonia J., Yarilyn Cedeño-Mattei, Kerianys Torres-Torres, and Luis Alamo-Nole. 2023. "Photodegradation of Tropaeolin O in the Presence of Ag-Doped ZnO Nanoparticles" Micro 3, no. 3: 643-652. https://doi.org/10.3390/micro3030045
APA StyleBailon-Ruiz, S. J., Cedeño-Mattei, Y., Torres-Torres, K., & Alamo-Nole, L. (2023). Photodegradation of Tropaeolin O in the Presence of Ag-Doped ZnO Nanoparticles. Micro, 3(3), 643-652. https://doi.org/10.3390/micro3030045