Properties and Preparation of Alumina Nanomaterials and Their Application in Catalysis
Abstract
1. Introduction
2. Preparation and Applications of One-Dimensional Nano-Alumina
2.1. Preparation Methods of One-Dimensional Nano-Alumina
2.1.1. Template Method
2.1.2. Electrospinning Method
2.1.3. Hydrothermal Method
2.1.4. Precipitation Deposition Method
2.1.5. High-Energy Ball Milling Method
2.1.6. Sol–Gel Method
2.1.7. Other Methods
- Pyrolysis Method
- 2.
- Vapor-Phase Method
- 3.
- Combustion Method
2.2. Applications of One-Dimensional Nano-Alumina in the Field of Catalysis
3. Preparation and Applications of Two-Dimensional Nano-Alumina
3.1. Preparation Methods for Two-Dimensional Nanostructured Alumina
3.1.1. Sol–Gel Method
3.1.2. Hydrothermal Method
3.1.3. Wet Chemistry Method
3.1.4. Molten Salt Method
3.1.5. Pyrolysis
3.1.6. Subsubsection
- Carbonation Method
- 2.
- Burning Method
- 3.
- High-Energy Ball Milling Method
- 4.
- Microemulsion Method
- 5.
- Chemical Vapor Synthesis
3.2. Applications of Two-Dimensional Nano-Alumina in the Catalysis Field
4. Preparation and Applications of 3D Nano-Alumina
4.1. Methods for Preparing 3D Nano-Alumina
4.1.1. Sol–Gel Method
4.1.2. Hydrothermal Method
4.1.3. Template Method
4.2. Three-Dimensional Nanostructured Alumina in Catalysis
Serial Number | Catalyst | Role of Alumina | Morphology | Preparation Method | Catalytic Application Reaction | Ref. |
---|---|---|---|---|---|---|
1 | SiO2-Al2O3/Cu | Active component | Three-dimensional nanospheres | Wet chemical method | Oxidation decomposition of N2O | [118] |
2 | RuCo/γ-Al2O3 | Support | Three-dimensional nanocluster | Template method | Fischer–Tropsch | [125] |
3 | Al2O3-S | Active component | Three-dimensional nanospheres | Wet chemical method | Glycolaldehyde is converted into sugar alcohol | [152] |
4 | Ni/Al2O3 | Support | Three-dimensional nanospheres | Microemulsion method | Hydrogen production through the decomposition of methane | [155] |
5 | Al(NO3)3 | Support | Three-dimensional nanocluster | Hydrothermal method | Catalytic reduction of NO | [156] |
6 | KW/Al2O3 | Support | Three-dimensional nanospheres | Hydrothermal method | Catalysis of the production of methyl mercaptan from thiothiol | [157] |
5. Conclusions and Prospectives
Author Contributions
Funding
Conflicts of Interest
References
- Zheng, P.; Guo, Q.; Chun, L.; Gui, C.; Feng, Q. Dissolution characteristics of black aluminum dross in Na3AlF6-AlF3-Al2O3 molten salt system. Rare Met. 2023, 42, 2747–2756. [Google Scholar]
- Wang, R.; Bai, S.; Chen, X.; Xie, L.; Yu, Z.; Kang, Y.; Li, Y.; Hu, Y.; Shi, Z.; Yan, Z. Effect of titanium on the wettability between Fe-P-Ti alloy and Al2O3 substrate. Prog. Nat. Sci.-Mater. 2024, 34, 555–561. [Google Scholar] [CrossRef]
- Kutepov, M.E.; Kaydashev, V.E.; Stryukov, D.V.; Konstantinov, A.S.; Mikheykin, A.S.; Nikolskiy, A.V.; Kozakov, A.T.; Morozov, A.D.; Kashchenko, M.A.; Alymov, G.V.; et al. Optimizing deposition regimes to fabricate VO2/TiO2/c-Al2O3 thin films for active metasurfaces. J. Adv. Dielectr. 2024, 14, 2340011. [Google Scholar] [CrossRef]
- Gangwar, J.; Dey, K.K.; Tripathi, S.K.; Srivastava, A.K. Microstructure, phase formations and optical bands in nanostructured alumina. Adv. Mater. Lett. 2011, 2, 402–408. [Google Scholar] [CrossRef]
- Thomas, J.K. Physical aspects of radiation-induced processes on SiO2, gamma-Al2O3, zeolites, and clays. Chem. Rev. 2005, 105, 1683–1734. [Google Scholar] [CrossRef]
- Zhang, J.; Wei, S.; Lin, J.; Luo, J.; Liu, S.; Song, H.; Elawad, E.; Ding, X.; Gao, J.; Qi, S.; et al. Template-Free Preparation of Bunches of Aligned Boehmite Nanowires. J. Phys. Chem. B 2006, 110, 21680–21683. [Google Scholar] [CrossRef] [PubMed]
- Suchanek, W.L.; Garcés, J.M.; Fulvio, P.F.; Jaroniec, M. Hydrothermal Synthesis and Surface Characteristics of Novel Alpha Alumina Nanosheets with Controlled Chemical Composition. Chem. Mater. 2010, 22, 6564–6574. [Google Scholar] [CrossRef]
- Suchanek, W.L.; Garcés, J.M. Hydrothermal synthesis of novel alpha alumina nano-materials with controlled morphologies and high thermal stabilities. CrystEngComm 2010, 12, 2996–3002. [Google Scholar] [CrossRef]
- Miao, S.; Shen, Z.; Ling, F.; Zhang, Z. Synthesis and characterization of one-dimensional alumina nanocarriers. Ind. Catal. 2012, 20, 38–42. [Google Scholar]
- Zhao, Z.; Shen, X.; Yao, H.; Wang, J.; Chen, J.; Li, Z. Alumina nanofibers obtained via electrospinning of pseudo-boehmite sol/PVP solution. J. Sol-Gel Sci. Techn. 2014, 70, 72–80. [Google Scholar] [CrossRef]
- Tang, X.; Yu, Y. Electrospinning preparation and characterization of alumina nanofibers with high aspect ratio. Ceram. Int. 2015, 41, 9232–9238. [Google Scholar] [CrossRef]
- Díaz-de-León, J.N.; Petranovskii, V.; Reyes, J.A.; Alonso-Nuñez, G.; Zepeda, T.A.; Fuentes, S.; García-Fierro, J.L. One dimensional (1D) γ-alumina nanorod linked networks: Synthesis, characterization and application. Appl. Catal. A-Gen. 2014, 472, 1–10. [Google Scholar] [CrossRef]
- Urs, K.M.B.; Sahoo, K.; Bhat, N.; Kamble, V. Complementary Metal Oxide Semiconductor-Compatible Top-Down Fabrication of a Ni/NiO Nanobeam Room Temperature Hydrogen Sensor Device. ACS Appl. Electron. Mater. 2022, 4, 87–91. [Google Scholar] [CrossRef]
- Lee, S.C.; Neumann, A.; Jiang, Y.; Artyushkova, K.; Brueck, S.R.J. Top-down, in-plane GaAs nanowire MOSFETs on an Al2O3 buffer with a trigate oxide from focused ion-beam milling and chemical oxidation. Nanotechnology 2016, 27, 375707. [Google Scholar] [CrossRef]
- Liu, R.; Cao, K.; Clark, A.H.; Lu, P.; Anjass, M.; Biskupek, J.; Kaiser, U.; Zhang, G.; Streb, C. Top-down synthesis of polyoxometalate-like sub-nanometer molybdenum-oxo clusters as high-performance electrocatalysts. Chem. Sci. 2020, 11, 1043–1051. [Google Scholar] [CrossRef]
- D’Addato, S.; Spadaro, M.C. Low pressure bottom-up synthesis of metal@oxide and oxide nanoparticles: Control of structure and functional properties. Phys. Scr. 2018, 93, 033001. [Google Scholar] [CrossRef]
- Zhang, L.; Lei, T.; Lv, X.; Yan, Q.; Ding, Y.; Wang, Y.; Liang, H. A Top-Down Templating Strategy toward Functional Porous Carbons. Small 2022, 18, 2201838. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.K. Oxide Nanostructures: Growth, Microstructures, and Properties; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Gazit, E. Self-assembled peptide nanostructures: The design of molecular building blocks and their technological utilization. Chem. Soc. Rev. 2007, 36, 1263–1269. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Rashkeev, S.N.; Pantelides, S.T.; Sohlberg, K.S. Phase transformation mechanism between γ- and θ-alumina. Phys. Rev. B 2003, 67, 224104. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, D.; Wang, F.; Zhang, D.; Zhong, J.; Liang, B.; Gui, X.; Sun, L. A new strategy to prepare carbon nanotube thin film by the combination of top-down and bottom-up approaches. Carbon 2020, 161, 563–569. [Google Scholar] [CrossRef]
- Chowdhury, M.; Sui, R.; Lucky, R.; Charpentier, P.A. One-Pot Procedure to Synthesize High Surface Area Alumina Nanofibers Using Supercritical Carbon Dioxide. Langmuir 2010, 26, 2707–2713. [Google Scholar] [CrossRef]
- Liu, J.; Liang, H.; Yu, S. Macroscopic-Scale Assembled Nanowire Thin Films and Their Functionalities. Chem. Rev. 2012, 112, 4770–4799. [Google Scholar] [CrossRef]
- Sajanlal, P.R.; Sreeprasad, T.S.; Samal, A.K.; Pradeep, T. Anisotropic nanomaterials: Structure, growth, assembly, and functions. Nano Rev. 2011, 2, 5883. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Jiang, Y.; Yang, S.; Zheng, R.; Yang, W.; Liu, Z.; Ringer, S.P. Direct synthesis and strong cathodoluminescence of Al2O3 nanotubes. Mater. Chem. Phys. 2010, 120, 240–243. [Google Scholar] [CrossRef]
- Proost, J.; Steven, V.B. Large-scale synthesis of high-purity, one-dimensional α-Al2O3 structures. J. Mater. Chem. 2004, 14, 3058–3062. [Google Scholar] [CrossRef]
- Cai, W.; Hu, Y.; Chen, J.; Zhang, G.; Xia, T. Synthesis of nanorod-like mesoporous γ-Al2O3 with enhanced affinity towards Congo red removal: Effects of anions and structure-directing agents. CrystEngComm 2012, 14, 972–977. [Google Scholar] [CrossRef]
- Rodriguez-Olguin, M.A.; Atia, H.; Bosco, M.; Aguirre, A.; Eckelt, R.; Asuquo, E.D.; Vandichel, M.; Gardeniers, J.G.E.; Susarrey-Arce, A. Al2O3 nanofibers prepared from aluminum Di(sec-butoxide) acetoacetic ester chelate exhibits high surface area and acidity. J. Catal. 2022, 405, 520–533. [Google Scholar] [CrossRef]
- Chen, N.; Zeng, X.; Gao, G. Process study on the preparation of flaky alumina by citric acid gel-flux method. Jiangsu Sci. Technol. Inf. 2017, 28, 32–34. [Google Scholar]
- Chen, N.; Zeng, X.; Gao, G. Preparation of flaky alumina by organic matter gel-molten salt method. Fine Chem. 2017, 34, 619–624+632. [Google Scholar]
- Wu, Q.; Yan, J.; Jiang, M.; Dai, Q.; Wu, J.; Ha, M.; Ke, Q.; Wang, X.; Zhan, W. Phosphate-assisted synthesis of ultrathin and thermally stable alumina nanosheets as robust Pd support for catalytic combustion of propane. Appl. Catal. B Environ. 2021, 286, 119949. [Google Scholar] [CrossRef]
- Chang, C.; Wu, J.; Yang, N.; Lin, S.; Chang, S. Synthesis and growth twinning of γ-Al2O3 nanowires by simple evaporation of Al–Si alloy powder. CrystEngComm 2012, 14, 1117–1121. [Google Scholar] [CrossRef]
- Cai, W.; Li, H.; Zhang, Y. Influences of processing techniques of the H2O2-precipitated pseudoboehmite on the structural and textural properties of γ-Al2O3. Colloids Surfaces A Physicochem. Eng. Asp. 2007, 295, 185–192. [Google Scholar] [CrossRef]
- Dewangan, N.; Ashok, J.; Sethia, M.; Das, S.; Pati, S.; Kus, H.; Kawi, S. Cobalt-Based Catalyst Supported on Different Morphologies of Alumina for Non-oxidative Propane Dehydrogenation: Effect of Metal Support Interaction and Lewis Acidic Sites. ChemCatChem. 2019, 11, 4923–4934. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, Y.; Li, W. Efficient removal of hexavalent chromium by high surface area Al2O3 rods. RSC Adv. 2015, 5, 25896–25903. [Google Scholar] [CrossRef]
- Xu, Q.; Wang, Y.; Zhang, H.; Liu, Z.; Wu, W. Preparation of Palladium Catalyst for Anthraquinone Hydrogenation Reaction. 118162130 A, 11 June 2024. [Google Scholar]
- Ying, Z.; Gevert, B.; Otterstedt, J.; Sterte, J. Hydrodemetallisation of residual oil with catalysts using fibrillar alumina as carrier material. Appl. Catal. A Gen. 1997, 153, 69–82. [Google Scholar] [CrossRef]
- Song, X.; Song, Y.; Wang, J.; Liu, Q.; Duan, Z. Insights into the pore-forming effect of polyvinyl butyral (PVB) as the polymer template to synthesize mesoporous alumina nanofibers via electrospinning. Ceram. Int. 2020, 46, 9952–9956. [Google Scholar] [CrossRef]
- Elishav, O.; Shener, Y.; Beilin, V.; Landau, M.V.; Grader, G.S. Electrospun Fe–Al–O Nanobelts for Selective CO2 Hydrogenation to Light Olefins. ACS Appl. Mater. Interfaces 2020, 12, 24855–24867. [Google Scholar] [CrossRef]
- Ghosh, S.; Naskar, M.K.; Estebanez, M. Solvothermal Conversion of Nanofiber to Nanorod-Like Mesoporous γ-Al2O3 Powders, and Study Their Adsorption Efficiency for Congo Red. J. Am. Ceram. Soc. 2013, 96, 1698–1701. [Google Scholar] [CrossRef]
- Feng, R.; Hu, X.; Yan, X.; Yan, Z.; Rood, M.J. A high surface area mesoporous γ-Al2O3 with tailoring texture by glucose template for ethanol dehydration to ethylene. Microporous Mesoporous Mater. 2017, 241, 89–97. [Google Scholar] [CrossRef]
- Meephoka, C.; Chaisuk, C.; Samparnpiboon, P.; Praserthdam, P. Effect of phase composition between nano γ- and χ-Al2O3 on Pt/Al2O3 catalyst in CO oxidation. Catal. Commun. 2008, 9, 546–550. [Google Scholar] [CrossRef]
- Cao, J.; Ma, X.; Ji, G.; Hou, H.; Zheng, M.; Lu, H. Solvothermal synthesis of γ-Al2O3 with nanopore structure. J. Inorg. Chem. 2005, 09, 1379–1382+1277. [Google Scholar]
- Qu, N.; Chan, K.; Zhu, D. Pulse co-electrodeposition of nano Al2O3 whiskers nickel composite coating. Scr. Mater. 2004, 50, 1131–1134. [Google Scholar] [CrossRef]
- Keshavarz, A.R.; Rezaei, M.; Yaripour, F. Nanocrystalline gamma-alumina: A highly active catalyst for dimethyl ether synthesis. Powder Technol. 2010, 199, 176–179. [Google Scholar] [CrossRef]
- Lukić, S.; Stijepović, I.; Ognjanović, S.; Srdić, V.V. Chemical vapour synthesis and characterisation of Al2O3 nanopowders. Ceram. Int. 2015, 41, 3653–3658. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, J.; Ling, X. Development status and application of electrostatic spinning technology. J. Text. Sci. Eng. 2024, 41, 88–99. [Google Scholar]
- Wang, B.; Han, J.; Yu, X.; Dang, X.; Liang, L. Synthesis of nickel cobaltate by solvothermal method and its electrochemical properties. Nonferrous Met. Sci. Eng. 2025, 16, 1–13. [Google Scholar]
- Wang, L. Preparation and Sintering Behaviour of Alumina Powder by Ammonia Precipitation Method. In MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2017; Volume 109. [Google Scholar]
- Gu, F.; Shen, Y.; Xu, C.; Xia, Y.; Zhang, J. The influence of polymerization degree of dispersing agent on the power properties of nano alumina. J. Funct. Mater. 2005, 36, 318–320. [Google Scholar]
- Zhang, L.; Fischer, J.M.T.A.; Jia, Y.; Yan, X.; Xu, W.; Wang, X.; Chen, J.; Yang, D.; Liu, H.; Zhuang, L.; et al. Coordination of Atomic Co–Pt Coupling Species at Carbon Defects as Active Sites for Oxygen Reduction Reaction. J. Am. Chem. Soc. 2018, 140, 10757–10763. [Google Scholar] [CrossRef] [PubMed]
- Reid, C.B.; Forrester, J.S.; Goodshaw, H.J.; Kisi, E.H.; Suaning, G.J. A study in the mechanical milling of alumina powder. Ceram. Int. 2008, 34, 1551–1556. [Google Scholar] [CrossRef]
- Li, L.; Yang, H.; Zhao, L.; Li, Y.; Shen, B.; Mukhtar, M.; Li, J. Disperse alumina nanoparticles prepared by ball milling and acid corrosion. J. Ceram. Soc. Jpn. 2022, 130, 341–350. [Google Scholar] [CrossRef]
- Lu, Y.; Ganguli, R.; Drewien, C.A.; Anderson, M.T.; Brinker, C.J.; Gong, W.; Guo, Y.; Soyez, H.; Dunn, B.; Huang, M. Continuous formation of supported cubic and hexagonal mesoporous films by sol–gel dip-coating. Nature 1997, 389, 364–368. [Google Scholar] [CrossRef]
- Ji, Y.; Yu, Z.; Yan, L.; Song, W. Progress in the preparation and modification of biomass-based single-atom catalysts and their applications. China Powder Technol. 2023, 29, 100–107. [Google Scholar]
- Laine, R.M.; Marchal, J.C.; Sun, H.P.; Pan, X. Nano-α-Al2O3 by liquid-feed flame spray pyrolysis. Nat. Mater. 2006, 5, 710–712. [Google Scholar] [CrossRef]
- Kathirvel, P.; Chandrasekaran, J.; Manoharan, D.; Kumar, S. Preparation and characterization of alpha alumina nanoparticles by in-flight oxidation of flame synthesis. J. Alloys Compd. 2014, 590, 341–345. [Google Scholar] [CrossRef]
- Zhou, Y.; Wei, S.; Wang, L.; Xu, L. Preparation of iron matrix composites reinforced by autogenous alumina particles. Therm. Process. Technol. 2011, 40, 100–102. [Google Scholar]
- Li, G.; Li, W.; Zhang, M.; Tao, K. Characterization and catalytic application of homogeneous nano-composite oxides ZrO2–Al2O3. Catal. Today 2004, 93, 595–601. [Google Scholar] [CrossRef]
- Wang, X.; Cui, J.; Zhang, N.; Song, J.; Fan, X.; Zhao, Z.; Kong, L.; Xiao, X.; Xie, Z. Propane Dehydrogenation over PtSn/Al2O3 Catalysts: Influence of Urea to Al(NO3)3·9H2O Ratio. Catalysts 2022, 12, 157. [Google Scholar] [CrossRef]
- Gong, N.; Zhao, Z. Efficient supported Pt-Sn catalyst on carambola-like alumina for direct dehydrogenation of propane to propene. Mol. Catal. 2019, 477, 110543. [Google Scholar] [CrossRef]
- Pan, Z.; Dai, Z.; Wang, Z. Nanobelts of Semiconducting Oxides. Science 2001, 291, 1947–1949. [Google Scholar] [CrossRef] [PubMed]
- Koski, K.J.; Cui, Y. The New Skinny in Two-Dimensional Nanomaterials. ACS Nano 2013, 7, 3739–3743. [Google Scholar] [CrossRef]
- Wu, Z. A study of the relationship between the morphology and properties of aluminum oxide nanoparticles. J. Artif. Cryst. 2020, 49, 353–357. [Google Scholar]
- Wang, L.; Wang, Q.; Liu, C.; Xiong, Y. Development history and application prospect of flake alumina. J. Ceram. 2016, 37, 608–612. [Google Scholar]
- Wang, L. Research on the Preparation and Formation Mechanism of Flake Alumina. Master’s Thesis, Hubei University of Technology, Wuhan, China, 2017. [Google Scholar]
- Huang, S.; Wu, H.; Hong, L.; Chen, L. Preparation of titanium dioxide-coated silver-white pearlescent pigments based on single-crystal flake alumina. J. Ceram. 2018, 39, 48–52. [Google Scholar]
- Hill, R.F.; Danzer, R.; Paine, R.T. Synthesis of Aluminum Oxide Platelets. J. Am. Ceram. Soc. 2001, 84, 514–520. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, W.; Wu, A.; Wang, C.; Hu, F. Preparation of alumina nano-powders by ultrasonic-sol-gel self-propagation. J. Artif. Cryst. 2013, 42, 172–176. [Google Scholar]
- Hashimoto, S.; Yamaguchi, A. Synthesis of α-Al2O3 platelets using sodium sulfate flux. J. Mater. Res. 1999, 14, 4667–4672. [Google Scholar] [CrossRef]
- Fair, G.E.; Lange, F.F. Effect of Interparticle Potential on Forming Solid, Spherical Agglomerates during Drying. J. Am. Ceram. Soc. 2004, 87, 4–9. [Google Scholar] [CrossRef]
- Wang, B.; Tian, M.; Shi, E.; Zhong, W.; Guo, J. Morphological characteristics of α-Al2O3 microcrystals prepared directly under hydrothermal conditions. Sci. Bull. 1997, 24, 2663–2667. [Google Scholar]
- Ma, X. Application and preparation of flaky alumina. Shandong Ceram. 2011, 34, 18–21. [Google Scholar]
- Wang, Y.; Zhu, S.; Dong, W. Preparation of nanoscale flaky alumina by hydrothermal method. J. Mater. Sci. Eng. 2015, 33, 401–404. [Google Scholar]
- Zhang, Q.; Zhu, L.; Liu, W.; Huang, Q. Preparation and application of flaky alumina powder. Mater. Guide 2007, S1, 384–387. [Google Scholar]
- Li, X.; Liu, X.; Gou, Z.; Peng, Z.; Liu, G.; Zhou, Q.; Ding, A.; Li, M.; Liu, Y. Thermodynamics of carbonation decomposition of sodium aluminate solutions. Chin. J. Nonferrous Met. 2003, 1005–1010. [Google Scholar]
- Su, Z. Synthesis of Flaky Alumina Powder by Molten Salt Method. Master’s Thesis, South Central University, Changsha, China, 2004. [Google Scholar]
- Li, S. Preparation of Flaky α-Al2O3 Granular Powders. Master’s Thesis, Lanzhou University, Lanzhou, China, 2010. [Google Scholar]
- Zhang, Z.; Shen, Z.; Ling, X.; Xia, C. Effect of sodium nitrate additives on alumina morphology. Pet. Refin. Chem. Ind. 2013, 44, 47–50. [Google Scholar]
- Lu, H.; Sun, H.; Mao, A.; Yang, H.; Wang, H.; Hu, X. Preparation of plate-like nano α-Al2O3 using nano-aluminum seeds by wet-chemical methods. Mater. Sci. Eng. A 2005, 406, 19–23. [Google Scholar] [CrossRef]
- Wang, X.; Wu, F.; Zhang, M.; Sun, N.; Fang, H.; Xue, Z.; Li, X. Preparation of flaky α-Al2O3 from sodium sulfate molten salt. J. Artif. Cryst. 2017, 46, 495–500. [Google Scholar]
- Wu, Z.; Chen, Z.; Jiang, R.; Luo, B.; Yan, Y. Synthesis and characterization of flaky alumina powder. J. Hechi Coll. 2017, 37, 50–54. [Google Scholar]
- Ding, J.; Tsuzuki, T.; Mccormick, P.G. Ultrafine Alumina Particles Prepared by Mechanochemical/Thermal Processing. J. Am. Ceram. Soc. 1996, 79, 2956–2958. [Google Scholar] [CrossRef]
- Bharthasaradhi, R.; Nehru, L.C. Thermoluminescence property of nano scale Al2O3: C by combustion method. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2016; Volume 1731. [Google Scholar]
- Wu, Y.; Zhang, Y.; Pezzotti, G.; Guo, J. Influence of AlF3 and ZnF2 on the phase transformation of gamma to alpha alumina. Mater. Lett. 2002, 52, 366–369. [Google Scholar] [CrossRef]
- Su, X.; Li, S.; Li, J. Effect of Potassium Sulfate on the Low-Temperature Formation of Alpha Alumina Platelets from Bayerite. J. Am. Ceram. Soc. 2010, 93, 1904–1908. [Google Scholar] [CrossRef]
- Dhonge, B.P.; Mathews, T.; Tyagi, A.K. Synthesis of meso-crystalline Al2O3 nano-platelet coatings using combustion chemical vapor deposition (C-CVD). Surf. Coat. Technol. 2014, 254, 418–422. [Google Scholar] [CrossRef]
- Wang, H.; Lai, F.; Zhang, X.; Li, Q.; Huang, Y.; Wu, Q. Study on the electrochemical properties of two-dimensional alumina nanocoated capped lithium manganate materials. Min. Metall. Eng. 2015, 35, 123–126+130. [Google Scholar]
- Jung, H.; Park, J.; Oh, I.; Choi, T.; Lee, S.; Hong, J.; Lee, T.; Kim, S.; Kim, H. Fabrication of Transferable Al2O3 Nanosheet by Atomic Layer Deposition for Graphene FET. ACS Appl. Mater. Interfaces 2014, 6, 2764–2769. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, S.; Wang, B. Preparation of alumina nanopowder by sol-gel method. Diam. Abras. Eng. 2002, 22–25. [Google Scholar]
- Chen, T.; Liao, Q. Preparation of flaky alumina. Chin. Ceram. 2012, 48, 46–48. [Google Scholar]
- Zhou, Z.; Yang, Z.; Yuan, Q.; Li, X. Synthesis of small-sized plate-like alumina by sol-gel method. Silic. Bull. 2003, 11–15+45. [Google Scholar]
- Li, D.; Yang, H.; Ge, H.; Hu, X.; Wu, Q.; Wang, Z.; Lian, J. Influence of water addition on the morphology of alumina nanopowders prepared by sol-gel method. Rare Met. Mater. Eng. 2010, 39, 490–492. [Google Scholar]
- Chen, C.; Chen, Z. Wet preparation of Al2O3nanopowders by ultrasonic radiation. Rare Met. 2007, 2, 257–260. [Google Scholar]
- Chen, H. Preparation of Flaky Alumina by Molten Salt Method and Its Morphology Control. Master’s Thesis, Fuzhou University, Fuzhou, China, 2018. [Google Scholar]
- Chandrashekara, H.D.; Angadi, B.; Ravikiran, Y.T.; Poornima, P.; Shashidhar, R.; Murthy, L.C.S. Nano porous Al2O3-TiO2 thin film based humidity sensor prepared by spray pyrolysis technique. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2016; Volume 1728. [Google Scholar]
- Sun, J.; Yin, J.; Qing, P.; Xu, J. Preparation of ultrafine flaky alumina powder by carbon fractionation. J. Artif. Cryst. 2019, 48, 122–126+136. [Google Scholar]
- Yang, Q.; Li, D.; Zhuang, F.; Kang, X.; Shi, Y.; Zhu, L. Study on the preparation pattern of proposed thin hydrotalcites by NaAlO2-CO2 method. Pet. Refin. Chem. Ind. 1999, 4, 61–65. [Google Scholar]
- Hsiang, H.I.; Chen, T.H.; Chuang, C. Synthesis of α-alumina hexagonal platelets using a mixture of boehmite and potassium sulfate. J. Am. Ceram. Soc. 2007, 90, 4070–4072. [Google Scholar] [CrossRef]
- Li, Y.; Chen, W.; Zhou, X.; Gu, Z.; Chen, C. Synthesis of CeO2 nanoparticles by mechanochemical processing and the inhibiting action of NaCl on particle agglomeration. Mater. Lett. 2005, 59, 48–52. [Google Scholar] [CrossRef]
- Liu, W.; Liu, X.; Zhang, P.; Wang, Z.; Li, X.; Hu, M. Nano-sized plate-like alumina synthesis via solution combustion. Ceram. Int. 2019, 45, 9919–9925. [Google Scholar] [CrossRef]
- Su, X.; Li, J. Low Temperature Synthesis of Single-crystal Alpha Alumina Platelets by Calcining Bayerite and Potassium Sulfate. J. Mater. Sci. Technol. 2011, 27, 5. [Google Scholar] [CrossRef]
- Liu, D.; Huang, H.; Zheng, Y.; Liu, Z. Preparation of Core-shell TiO2/Al2O3 Nano-material with Microemulsion-hydrothermal Method. Bull. Chin. Ceram. Soc. 2008, 27, 1225–1229. [Google Scholar]
- Jiang, Y.; Li, Z.; Jia, C.; Zhao, B.; Liu, D. Controlled synthesis and characterization of flaky alumina powders. J. Xi’an Univ. Archit. Technol. Nat. Sci. Ed. 2011, 43, 725–729. [Google Scholar]
- Gangar, B.V.; Nagarajan, K.; Venkata Krishnan, R.; Pandit, A.B. Preparation of Alumina and Alumina-Ceria Microspheres using an Internal Gelation Process and their Characterization. Trans. Indian Ceram. Soc. 2012, 71, 101–109. [Google Scholar] [CrossRef]
- Sathiyakumar, M.; Gnanam, F.D. Influence of additives on density, microstructure and mechanical properties of alumina. J. Mater. Process. Technol. 2003, 133, 282–286. [Google Scholar] [CrossRef]
- Zhu, L.; Huang, Q.; Liu, W. Synthesis of plate-like α-Al2O3 single-crystal particles in NaCl–KCl flux using Al(OH)3 powders as starting materials. Ceram. Int. 2008, 34, 1729–1733. [Google Scholar] [CrossRef]
- Dai, Y.; Gu, J.; Tian, S.; Wu, Y.; Chen, J.; Li, F.; Du, Y.; Peng, L.; Ding, W.; Yang, Y. γ-Al2O3 sheet-stabilized isolate Co2+ for catalytic propane dehydrogenation. J. Catal. 2020, 381, 482–492. [Google Scholar] [CrossRef]
- Yang, Y.; Ge, T.; Jiang, Y.; Zhang, X.; Liu, Y. In situ growth of nickel-based catalysts on macroporous alumina surfaces for carbon dioxide methanation. J. Fuel Chem. 2024, 52, 1664–1673. (In English) [Google Scholar] [CrossRef]
- Hao, Y.; Zhao, D.; Zhou, Y.; Yin, M.; Wang, Z.; Xi, G.; Song, S.; Tang, Q.; Yang, J. Hierarchical leaf-like alumina-carbon nanosheets with ammonia water modification for ethanol dehydration to ethylene. Fuel 2023, 333, 126128. [Google Scholar] [CrossRef]
- Pochamoni, R.; Kondeboina, M.; Varkolu, M.; Burri, D.R.; Kamaraju Seetha, R.R. Modification of Al2O3 by activated carbon-supported vanadia catalyst studies for ODH of ethylbenzene in presence of CO2 as a soft oxidant. Emergent Mater. 2022, 5, 1767–1777. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, S.; Yu, J.; Shu, Z. Novel hollow microspheres of hierarchical zinc–aluminum layered double hydroxides and their enhanced adsorption capacity for phosphate in water. J. Hazard. Mater. 2011, 192, 1114–1121. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Wang, D.; Hu, Z.; Gu, G. Synthesis of γ-AlOOH (γ-Al2O3) self-encapsulated and hollow architectures. Mater. Chem. Phys. 2008, 109, 560–564. [Google Scholar] [CrossRef]
- Buchold, D.H.M.; Feldmann, C. Nanoscale -AlO(OH) Hollow Spheres: Synthesis and Container-Type Functionality. Nano Lett. 2007, 7, 3489–3492. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, D.; Han, X.; Bao, X.; Frandsen, W.; Wang, D.; Su, D. Hydrothermal synthesis of microscale boehmite and gamma nanoleaves alumina. Mater. Lett. 2008, 62, 1297–1301. [Google Scholar] [CrossRef]
- Li, G.; Liu, Y.; Liu, D.; Liu, L.; Liu, C. Synthesis of flower-like Boehmite (AlOOH) via a simple solvothermal process without surfactant. Mater. Res. Bull. 2010, 45, 1487–1491. [Google Scholar] [CrossRef]
- Li, B.; Huang, J.; Wang, X. Copper-cobalt Bimetallic Oxides-doped Alumina Hollow Spheres: A Highly Efficient Catalyst for Epoxidation of Styrene. Chem. Res. Chin. Univ. 2019, 35, 125–132. [Google Scholar] [CrossRef]
- Umegaki, T.; Dobashi, M.; Komuro, T.; Kojima, Y. Fabrication of copper supported porous silica–alumina hollow spheres for catalytic decomposition of nitrous oxide. New J. Chem. 2022, 46, 11166–11173. [Google Scholar] [CrossRef]
- Zhang, Y.; Jia, Y. Preparation of porous alumina hollow spheres as an adsorbent for fluoride removal from water with low aluminum residual. Ceram. Int. 2016, 42, 17472–17481. [Google Scholar] [CrossRef]
- Xiu, F.; Li, W. Morphologically controlled synthesis of mesoporous alumina using sodium lauroyl glutamate surfactant. Mater. Lett. 2010, 64, 1858–1860. [Google Scholar] [CrossRef]
- Tang, R.; Zhang, Z.; Yang, X.; Wang, Y. Solvothermal synthesis of graded blade cluster nano-alumina. J. Inorg. Chem. 2011, 27, 251–258. [Google Scholar]
- Zhang, J.; Liu, S.; Lin, J.; Song, H.; Luo, J.; Elssfah, E.M.; Ammar, E.; Huang, Y.; Ding, X.; Gao, J. Self-Assembly of Flowerlike AlOOH (Boehmite) 3D Nanoarchitectures. J. Phys. Chem. B 2006, 110, 14249–14252. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, A.; Wang, X.; Zhang, T. Morphologically controlled synthesis of mesoporous alumina. Microporous Mesoporous Mater. 2007, 100, 35–44. [Google Scholar] [CrossRef]
- Martínez, A.; Prieto, G.; Rollán, J. Nanofibrous γ-Al2O3 as support for Co-based Fischer–Tropsch catalysts: Pondering the relevance of diffusional and dispersion effects on catalytic performance. J. Catal. 2009, 263, 292–305. [Google Scholar] [CrossRef]
- Lan, W.; Xue, J.; Fang, J.; Wang, Q.; Ding, J. Synthesis of three-dimensional alumina nano-powders by hydrothermal method. Light Met. 2012, 1, 20–23. [Google Scholar]
- Cai, W.; Yu, J.; Cheng, B.; Su, B.; Jaroniec, M. Synthesis of Boehmite Hollow Core/Shell and Hollow Microspheres via Sodium Tartrate-Mediated Phase Transformation and Their Enhanced Adsorption Performance in Water Treatment. J. Phys. Chem. C 2009, 113, 14739–14746. [Google Scholar] [CrossRef]
- Cai, W.; Yu, J.; Mann, S. Template-free hydrothermal fabrication of hierarchically organized γ-AlOOH hollow microspheres. Microporous Mesoporous Mater. 2009, 122, 42–47. [Google Scholar] [CrossRef]
- Sui, R.; Charpentier, P. Synthesis of Metal Oxide Nanostructures by Direct Sol–Gel Chemistry in Supercritical Fluids. Chem. Rev. 2012, 112, 3057–3082. [Google Scholar] [CrossRef] [PubMed]
- Emanuela, D.G.; Lucilla, D.A.; Antonio, C. A percolation dynamic approach to the sol-gel transition. J. Phys. A Math. Gen. 1998, 31, 1901. [Google Scholar]
- Pinna, N.; Niederberger, M. Surfactant-Free Nonaqueous Synthesis of Metal Oxide Nanostructures. Angew. Chem. Int. Ed. 2008, 47, 5292–5304. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Park, S. Porous Anodic Aluminum Oxide: Anodization and Templated Synthesis of Functional Nanostructures. Chem. Rev. 2014, 114, 7487–7556. [Google Scholar] [CrossRef] [PubMed]
- Gai, S.; Li, C.; Yang, P.; Lin, J. Recent Progress in Rare Earth Micro/Nanocrystals: Soft Chemical Synthesis, Luminescent Properties, and Biomedical Applications. Chem. Rev. 2014, 114, 2343–2389. [Google Scholar] [CrossRef]
- Kundu, D.; Manna, T.; De, G. Preparation and Characterization of Thin Optically Transparent Alumina and Ce-doped Alumina. J. Sol-Gel Sci. Technol. 2002, 23, 145–150. [Google Scholar] [CrossRef]
- Sharma, Y.C.; Srivastava, V.; Mukherjee, A.K. Synthesis and Application of Nano-Al2O3 Powder for the Reclamation of Hexavalent Chromium from Aqueous Solutions. J. Chem. Eng. Data 2010, 55, 2390–2398. [Google Scholar] [CrossRef]
- Teoh, G.; Liew, K.; Mahmood, W.A.K. Ynthesis and characterization of sol–gel alumina nanofibers. J. Sol-Gel Sci. Technol. 2007, 44, 177–186. [Google Scholar] [CrossRef]
- Bian, S.; Baltrusaitis, J.; Galhotra, P.; Grassian, V.H. A template-free, thermal decomposition method to synthesize mesoporous MgO with a nanocrystalline framework and its application in carbon dioxide adsorption. J. Mater. Chem. 2010, 20, 8705–8710. [Google Scholar] [CrossRef]
- Shen, S.; Ng, W.; Chia, L.S.O.; Dong, Y.; Tan, R.B.H. Morphology Controllable Synthesis of Nanostructured Boehmite and γ-Alumina by Facile Dry Gel Conversion. Cryst. Growth Des. 2012, 12, 4987–4994. [Google Scholar] [CrossRef]
- Li, Z.; Ciobanu, C.V.; Hu, J.; Palomares-Báez, J.; Rodríguez-López, J.; Richards, R. Experimental and DFT studies of gold nanoparticles supported on MgO (111) nano-sheets and their catalytic activity. Phys. Chem. Chem. Phys. 2011, 13, 2582–2589. [Google Scholar] [CrossRef]
- Ning, G.; Chang, Y.; Liu, Y.; Teng, F.; Lin, Y. Morphological regulation of alumina particles by organic molecules containing carboxyl/ester groups. J. High. Educ. Chem. 2002, 23, 345–348. [Google Scholar]
- Qu, Y.; Zhou, W.; Ren, Z.; Pan, K.; Tian, C.; Liu, Y.; Feng, S.; Dong, Y.; Fu, H. Fabrication of a 3D Hierarchical Flower-Like MgO Microsphere and Its Application as Heterogeneous Catalyst. Eur. J. Inorg. Chem. 2012, 2012, 954–960. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, L.; Tian, G.; Wang, R.; Zhang, H.; Piao, X.; Zhang, Q. Flux and surfactant directed facile thermal conversion synthesis of hierarchical porous MgO for efficient adsorption and catalytic growth of carbon nanotubes. CrystEngComm 2014, 16, 308–318. [Google Scholar] [CrossRef]
- Yan, L.; Zhuang, J.; Sun, X.; Deng, Z.; Li, Y. Formation of rod-like Mg(OH)2 nanocrystallites under hydrothermal conditions and the conversion to MgO nanorods by thermal dehydration. Mater. Chem. Phys. 2002, 76, 119–122. [Google Scholar] [CrossRef]
- Yang, L.; Zhu, Y.; Tong, H.; Liang, Z.; Wang, W. Hierarchical β-Ni(OH)2 and NiO Carnations Assembled from Nanosheet Building Blocks. Cryst. Growth Des. 2007, 7, 2716–2719. [Google Scholar] [CrossRef]
- Dong, L.; Chu, Y.; Sun, W. Controllable Synthesis of Nickel Hydroxide and Porous Nickel Oxide Nanostructures with Different Morphologies. Chem. Eur. J. 2008, 14, 5064–5072. [Google Scholar] [CrossRef] [PubMed]
- Lepleux, L.; Chavillon, B.; Pellegrin, Y.; Blart, E.; Cario, L.; Jobic, S.; Odobel, F. Simple and Reproducible Procedure to Prepare Self-Nanostructured NiO Films for the Fabrication of P-Type Dye-Sensitized Solar Cells. Inorg. Chem. 2009, 48, 8245–8250. [Google Scholar] [CrossRef]
- Zhao, B.; Ke, X.; Bao, J.; Wang, C.; Dong, L.; Chen, Y.; Chen, H. Synthesis of Flower-Like NiO and Effects of Morphology on Its Catalytic Properties. J. Phys. Chem. C 2009, 113, 14440–14447. [Google Scholar] [CrossRef]
- Zhang, X.; Shi, W.; Zhu, J.; Zhao, W.; Ma, J.; Mhaisalkar, S.; Maria, T.L.; Yang, Y.; Zhang, H.; Hng, H.H.; et al. Synthesis of porous NiO nanocrystals with controllable surface area and their application as supercapacitor electrodes. Nano Res. 2010, 3, 643–652. [Google Scholar] [CrossRef]
- Shang, S.; Xue, K.; Chen, D.; Jiao, X. Preparation and characterization of rose-like NiO nanostructures. CrystEngComm 2011, 13, 5094–5099. [Google Scholar] [CrossRef]
- Gao, H.; Xiao, F.; Ching, C.; Duan, H. High-Performance Asymmetric Supercapacitor Based on Graphene Hydrogel and Nanostructured MnO2. ACS Appl. Mater. Interfaces 2012, 4, 2801–2810. [Google Scholar] [CrossRef]
- Zhang, G.; Tang, Z.; Guo, F.; Zong, Z. Hydrothermal and hard template assisted preparation of alumina hollow spheres. J. Beijing Univ. Chem. Technol. Nat. Sci. Ed. 2010, 37, 83–87. [Google Scholar]
- Zhao, R.; Heng, M.; Chen, C.; Li, T.; Shi, Y.; Wang, J. Catalytic effects of Al2O3 nano-particles on thermal cracking of heavy oil during in-situ combustion process. J. Pet. Sci. Eng. 2021, 205, 108978. [Google Scholar] [CrossRef]
- Kim, M.S.; Simanjuntak, F.S.H.; Lim, S.; Jae, J.; Ha, J.; Lee, H. Synthesis of alumina–carbon composite material for the catalytic conversion of furfural to furfuryl alcohol. J. Ind. Eng. Chem. 2017, 52, 59–65. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, J.; Wang, K.; Wang, X. VMOF derived VOx/Al2O3 millimeter spherical catalyst for propane dehydrogenation with enhanced activity and stability. Appl. Catal. A Gen. 2025, 697, 120225. [Google Scholar] [CrossRef]
- Dong, A.; Wang, K.; Zhu, S.; Yang, G.; Wang, X. Facile preparation of PtSn-La/Al2O3 catalyst with large pore size and its improved catalytic performance for isobutane dehydrogenation. Fuel Process. Technol. 2017, 158, 218–225. [Google Scholar] [CrossRef]
- Ahmed, W.; Noor El-Din, M.R.; Aboul-Enein, A.A.; Awadallah, A.E. Effect of textural properties of alumina support on the catalytic performance of Ni/Al2O3 catalysts for hydrogen production via methane decomposition. J. Nat. Gas Sci. Eng. 2015, 25, 359–366. [Google Scholar] [CrossRef]
- Hu, J.; Zhou, X.; Qi, C. A Method for the Synthesis of Epoxy Compounds by Olefin Epoxidation Catalyzed by Alumina Nanoparticles. 111217769 B, 21 April 2023. [Google Scholar]
- Wang, W.; Peng, S.; Chen, X.; Chen, Y.; Peng, C.; Zeng, D.; Xiong, J.; Liu, H.; Yang, X.; Li, M. Template-free hydrothermal synthesis of hollow alumina microspheres and its excellent catalytic properties for thiolation. J. Ind. Eng. Chem. 2023, 118, 330–340. [Google Scholar] [CrossRef]
Synthesis Method | Definition | Advantage | Disadvantage |
---|---|---|---|
Template method (hard/soft template) | Using template agents to guide the growth of aluminum precursors in a specific direction, resulting in the formation of nanostructures | Advanced technology, strong controllability of morphology, suitable for large-scale production | Difficult to remove the template, not reusable, and may cause the structure to collapse |
Electrospinning method | Under a high-voltage electric field, the aluminum-containing solution is stretched into fibers and then calcined to obtain one-dimensional aluminum oxide | Uniform structure, continuous fiber length, capable of producing hollow structure | High equipment cost, high energy consumption, limited output, and low mechanical strength |
Hydrothermal/solvothermal method | Under high temperature and high pressure in a sealed reaction vessel, the precursor is made to self-assemble into a special structure | No template required, adjustable crystal phase, good product dispersion | Strict conditions, low yield, difficulty in scale-up, and limited ability to control morphology |
Precipitation–deposition method (including electro-deposition) | A precipitant is added to the metal salt solution and the conditions are adjusted to obtain the desired morphology | The process is simple, the cost is low, and it is suitable for industrial production | Poor morphology control, poor product stability, and low yield of the electro-deposition method |
High-energy ball mill method | In the ball mill, the bulk materials are ground into nanoparticles through intense mechanical action | Simple process, high output, easy to scale up | High energy consumption, uneven particle size, prone to contamination, and difficult to control the structure |
Sol–gel method | By forming a sol and then transforming it into a gel, and through drying and calcination, nano-alumina is obtained | Uniform composition, compatible with the template method | The synthesis process is lengthy, particles tend to agglomerate easily, and the calcination treatment is complex |
Pyrolysis method | The aluminum salt precursor undergoes high-temperature decomposition to produce aluminum oxide | Low-cost and suitable for mass production | It is prone to generating toxic gases (such as SO2) and the equipment requirements are high |
Chemical vapor synthesis method (CVS) | Nanometer-sized aluminum oxide particles are directly generated through chemical reactions in the gas phase | Narrow particle size distribution, not prone to agglomeration, and highly controllable | The equipment is complex, the raw material costs are high, and the yield is limited |
Combustion method | Melting the metal in the burning flame and oxidizing it into aluminum oxide | Low energy consumption, short time, high product purity | It is difficult to precisely control the particle size, prone to aggregation, and has a relatively high safety risk |
Wet chemical method | Liquid-phase precipitation reactions (such as aluminum salts + precipitating agent) can control the morphology through additives (nanoscale aluminum powder) or ultrasonic treatment | Low-temperature synthesis, with low energy consumption, high specific surface area and activity, great industrialization potential | Easy to stack/aggregate, poor process stability, difficult to fabricate ultra-large single wafers |
Sodium nitrate solution method | Using low-melting-point salts (such as Na2SO4) as the medium, the reactants dissolve and precipitate at high temperatures, forming sheet-like Al2O3 (with a thickness of 400–720 nm) | High crystallinity, controllable morphology (hexagonal lamellae), good high-temperature stability | High energy consumption, difficult to control uniformity, dependence on additives |
Carbon fractionation method | CO2/air was introduced into the aluminum salt solution, resulting in the formation of aluminum hydroxide precursors. After calcination, hexagonal plate-like Al2O3 (with a thickness of 150–200 nm) was obtained | Edge regularization, smooth surface, the morphology can be controlled by flow rate/pH | The process is complex, the gas flow rate is sensitive, the pH control is demanding |
Microemulsion method | Using two immiscible solvents (such as an oil phase and a water phase) under the action of surfactants, a thermodynamically stable nanoscale microemulsion is formed. The water-phase core serves as a “nanoreactor”, and the aluminum precursor undergoes hydrolysis/reaction in it to generate nanoparticles | Uniform particle size, good dispersibility, low-temperature synthesis, and adjustable morphology | High cost, contamination by organic solvents, low yield, and great difficulty in achieving industrialized continuous production |
Synthesis Method | Precursor | Template | Synthesis Temperature (°C) | Length-to- Diameter Ratio | Specific Surface Area (m2·g−1) | Morphology | Ref. |
---|---|---|---|---|---|---|---|
Template method | Al(NO3)3 | F127 | 165 | 5–10 | 123 | Nanorods | [27] |
Template method | Al2(SO4)3 | P123 | 165 | 5–20 | 218 | Nanorods | [27] |
Electrospinning method | Al2(SO4)3 | PVP | Room temperature | 0.6–2.1 | 217 | Nanofiber | [28] |
Hydrothermal method | Al(NO3)3 | - | 200 | 5 | 87 | Nanorods | [34] |
Hydrothermal method | Al(NO3)3 | - | 100 | 4–25 | 347 | Nanorods | [35] |
Template method | Boehmite sol | P123 | 100 | - | 88 | Nanorods | [40] |
Template method | Al(NO3)3 | Glucose | Room temperature | - | 429 | Nanoparticles | [41] |
Solvothermal method | C9H21AlO3 | - | 300 | - | 226 | Nanoparticles | [42] |
Solvothermal method | AlCl3 | - | 170 | - | - | Nanoparticles | [43] |
Electrodeposition method | C6H9AlO6 | - | 1200 | 10 | - | Nanocrystals | [44] |
Sol–gel method | C9H21AlO3 | - | Room temperature | 10–50 | - | Nanorods | [45] |
Chemical vapor-phase synthesis method | C12H27O3Al | - | 900 | - | - | Nanoparticles | [46] |
Serial Number | Catalyst | Role of Alumina | Morphology | Preparation Method | Catalytic Application Reaction | Ref. |
---|---|---|---|---|---|---|
1 | Co/Al2O3-NF | Support | One-dimensional nanorods | Hydrothermal method | Dehydrogenation of non-oxidized propane | [36] |
2 | Al(NO3)3 | Support | One-dimensional nanorods | Hydrothermal method | Anthraquinone hydrogenation reaction | [36] |
3 | Catalyst A | Support | One-dimensional nanorods | Hydrothermal method | Hydrogenation demetallization of residual oil | [37] |
4 | γ-Al2O3 | Active component | One-dimensional nanofibers | Soft template method | Ethylene is produced by dehydration of ethanol | [41] |
5 | Pt/Al2O3 | Support | One-dimensional nanoparticles | Solvothermal method | Oxidation of carbon monoxide | [42] |
6 | CoMo/ZrO2-Al2O3 | Support | One-dimensional nanorods | Chemical precipitation method | Hydrodesulfurization of dibenzothiophene (DBT) | [59] |
Synthesis Method | Precursor | Synthesis Temperature (°C) | Specific Surface Area (m2·g−1) | Morphology | Ref. |
---|---|---|---|---|---|
Spray thermal decomposition method | Al(C5H7O2)3 | 350 | - | Nanoporous thin film | [26] |
Citric acid gel–co-solvent method | Al2(SO4)3 | 1150 | - | Hexagonal nanosheets | [29] |
Organic gel–molten salt method | KAl(SO4)2·12H2O | 1150 | - | Nanosheet | [30] |
Hydrothermal method | C12H27O3 | 170 | 80 | Nanosheet | [31] |
Sol–gel method | Al2O3·H2O | 1100 | 20 | Hexagonal nanosheets | [68] |
Sol–gel method | Al2O3·H2O | 1200 | 0.32 | Hexagonal nanosheets | [78] |
Hydrothermal method | Al(NO3)3 | 200 | 113 | Hexagonal nanosheets | [79] |
Wet chemical method | Al(NO3)3 | 1100 | - | Nanosheet | [80] |
Molten salt method | Al2(SO4)3·18H2O | 1150 | - | Hexagonal nanosheets | [81] |
Carbon fraction method | Al(NO3)3 | 1200 | - | Nanosheet | [82] |
Combustion method | γ-AlOOH | 1000 | - | Hexagonal nanosheets | [83] |
Combustion method | Al(NO3)3 | 300 | - | Nanosheet | [84] |
High-energy ball milling method | Al(NO3)3 | Room temperature | - | Nanosheet | [85] |
High-energy ball milling method | Al(OH)3 | Room temperature | - | Hexagonal nanosheets | [86] |
Chemical vapor-phase synthesis method | Al(C5H7O2)3 | 1150 | - | Nanosheet | [87] |
Sol–gel method | Al(NO3)3 | 500 | - | Nanolayer | [88] |
Atomic layer deposition method | C3H9Al | 120 | - | Nanosheet | [89] |
Serial Number | Catalyst | Role of Alumina | Morphology | Preparation Method | Catalytic Application Reaction | Ref. |
---|---|---|---|---|---|---|
1 | 1%Pd/ANSx-T | Support | Two-dimensional nanosheet | Hydrothermal method | Catalytic combustion of propane | [31] |
2 | Co/Al2O3-NS | Support | Two-dimensional nanosheet | Hydrothermal method | Dehydrogenation of non-oxidized propane | [34] |
3 | catalyst E.1 | Active component | Two-dimensional nanosheet | Electrospinning method | Hydrogenation of carbon dioxide | [39] |
4 | Co-Al2O3-HT | Support | Two-dimensional nanosheet | Hydrothermal method | Propane dehydrogenation to produce propylene | [108] |
5 | NiMg/Al | Support | Two-dimensional nanosheet | Hydrothermal method | Methanation of carbon dioxide | [109] |
6 | ALC-NH3 | Active component | Two-dimensional nanosheet | Wet chemical method | Ethylene is produced by dehydration of ethanol | [110] |
7 | V2O5/Al-C | Support | Two-dimensional nanosheet | Sol–gel method | Ethylbenzene dehydrogenates to form styrene | [111] |
Synthesis Method | Precursor | Synthesis Temperature (°C) | Specific Surface Area (m2·g−1) | Morphology | Ref. |
---|---|---|---|---|---|
Hydrothermal method | Al(NO3)3 | 150 | >130 | Nano hollow sphere | [112] |
Hydrothermal method | Al2(SO4)3 | 150 | - | Nano hollow sphere | [113] |
Microemulsion method | C12H27O3Al | Room temperature | - | Nano hollow sphere | [114] |
Hydrothermal method | AlCl3 | 160 | - | Nano-flower-like | [115] |
Solvothermal method | AlCl3 | 200 | 166.8 | Nano-flower-like | [116] |
Sol–gel method | Na3AlO3 | 100 | 268 | Nano hollow sphere | [120] |
Hydrothermal method | Al(NO3)3 | 100 | 283 | Leaf cluster structure | [121] |
Sol–gel method | C9H21AlO3 | Room temperature | - | Nanosphere | [121] |
Hydrothermal method | AlCl3 | 200 | 137.2 | Nano-flower-like | [122] |
Hydrothermal method | Al(NO3)3 | 100 | 528 | Velvet–spherical cluster structure | [123] |
Hydrothermal method | Al(NO3)3 | 100 | 447 | π-bond-type cluster structure | [123] |
Hydrothermal–co-precipitation method | Al(NO3)3 | 150 | 250 | “Cross” shape | [125] |
Hydrothermal method | Al2(SO4)3 | 165 | 269 | Nano hollow sphere | [126] |
Hydrothermal method | KAl(SO4)2 | 180 | - | Nano hollow sphere | [127] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Liu, K.; Meng, Z.; Wang, H.; Li, Y. Properties and Preparation of Alumina Nanomaterials and Their Application in Catalysis. Micro 2025, 5, 38. https://doi.org/10.3390/micro5030038
Zhu H, Liu K, Meng Z, Wang H, Li Y. Properties and Preparation of Alumina Nanomaterials and Their Application in Catalysis. Micro. 2025; 5(3):38. https://doi.org/10.3390/micro5030038
Chicago/Turabian StyleZhu, Hairuo, Kangyu Liu, Zhaorui Meng, Huanhuan Wang, and Yuming Li. 2025. "Properties and Preparation of Alumina Nanomaterials and Their Application in Catalysis" Micro 5, no. 3: 38. https://doi.org/10.3390/micro5030038
APA StyleZhu, H., Liu, K., Meng, Z., Wang, H., & Li, Y. (2025). Properties and Preparation of Alumina Nanomaterials and Their Application in Catalysis. Micro, 5(3), 38. https://doi.org/10.3390/micro5030038