Enhanced External Counterpulsation Improves Dyspnea, Fatigue, and Functional Capacity in Patients with Long COVID
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. EECP Treatment
2.3. Inclusion and Exclusion Criteria
2.4. Matching
2.5. Endpoints
2.6. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cohen, J.; Rodgers, Y.v.d.M. An intersectional analysis of long COVID prevalence. Int. J. Equity Health 2023, 22, 261. [Google Scholar] [CrossRef] [PubMed]
- Ranucci, M.; Baryshnikova, E.; Anguissola, M.; Pugliese, S.; Ranucci, L.; Falco, M.; Menicanti, L. The Very Long COVID: Persistence of Symptoms after 12–18 Months from the Onset of Infection and Hospitalization. J. Clin. Med. 2023, 12, 1915. [Google Scholar] [CrossRef] [PubMed]
- Robertson, M.M.; A Qasmieh, S.; Kulkarni, S.G.; A Teasdale, C.; E Jones, H.; McNairy, M.; Borrell, L.N.; Nash, D. The Epidemiology of Long Coronavirus Disease in US Adults. Clin. Infect. Dis. 2023, 76, 1636–1645. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.; Williams, M.A. Confronting Our Next National Health Disaster—Long-Haul COVID. N. Engl. J. Med. 2021, 385, 577–579. [Google Scholar] [CrossRef]
- Brown, K.; Yahyouche, A.; Haroon, S.; Camaradou, J.; Turner, G. Long COVID and self-management. Lancet 2022, 399, 355. [Google Scholar] [CrossRef]
- Nikolich, J.Ž.; Rosen, C.J. Toward Comprehensive Care for Long COVID. N. Engl. J. Med. 2023, 388, 2113–2115. [Google Scholar] [CrossRef]
- Wise, J. Long COVID: WHO calls on countries to offer patients more rehabilitation. BMJ 2021, 372, n405. [Google Scholar] [CrossRef]
- Michaels, A.D.; A McCullough, P.; Soran, O.Z.; E Lawson, W.; Barsness, G.W.; Henry, T.D.; Linnemeier, G.; Ochoa, A.; Kelsey, S.F.; Kennard, E.D. Primer: Practical approach to the selection of patients for and application of EECP. Nat. Clin. Pract. Cardiovasc. Med. 2006, 3, 623–632. [Google Scholar] [CrossRef]
- Raza, A.; Steinberg, K.; Tartaglia, J.; Frishman, W.H.; Gupta, T. Enhanced External Counterpulsation Therapy: Past, Present, and Future. Cardiol. Rev. 2017, 25, 59–67. [Google Scholar] [CrossRef]
- Bonetti, P.O.; Holmes, D.R., Jr.; Lerman, A.; Barsness, G.W. Enhanced external counterpulsation for ischemic heart disease: What’s behind the curtain? J. Am. Coll. Cardiol. 2003, 41, 1918–1925. [Google Scholar] [CrossRef]
- Dayrit, J.K.; Verduzco-Gutierrez, M.; Teal, A.; Shah, S.A. Enhanced External Counterpulsation as a Novel Treatment for Post-acute COVID-19 Sequelae. Cureus 2021, 13, e14358. [Google Scholar] [CrossRef] [PubMed]
- Fox, J.; Verduzco-Gutierrez, M.; Sanchez, S.; Lopez, M.; Ali, F.; Quesada, O.; Henry, T.D.; Shah, S.A. Enhanced External Counterpulsation Improves Long COVID–Associated Symptoms. Am. J. Cardiol. 2024, 224, 12–13. [Google Scholar] [CrossRef] [PubMed]
- Sathyamoorthy, M.; Sevak, R.J.P.; Cabrera, J.; Lopez, M.; Fox, J.; Shah, S.A.P.; Verduzco-Gutierrez, M. Enhanced External Counterpulsation Improves Cognitive Function of Persons with Long COVID. Am. J. Phys. Med. Rehabil. 2024, 103, 734–739. [Google Scholar] [CrossRef] [PubMed]
- Wu, E.; Mahdi, A.; Nickander, J.; Bruchfeld, J.; Mellbin, L.; Haugaa, K.; Ståhlberg, M.; Desta, L. Enhanced External Counterpulsation for Management of Postacute Sequelae of SARS-CoV-2 Associated Microvascular Angina and Fatigue: An Interventional Pilot Study. Cardiol. Res. Pract. 2023, 2023, 6687803. [Google Scholar] [CrossRef] [PubMed]
- Patient-Reported Outcomes Measurement Information System Dynamic Tools to Measure Outcomes from the Patient Perspective. Available online: https://www.healthmeasures.net/images/PROMIS/manuals/PROMIS_Fatigue_Scoring_Manual.pdf (accessed on 21 March 2024).
- Wijeysundera, D.N.; Beattie, W.S.; Hillis, G.S.; Abbott, T.E.; Shulman, M.A.; Ackland, G.L.; Mazer, C.D.; Myles, P.S.; Pearse, R.M.; Cuthbertson, B.H.; et al. Integration of the Duke Activity Status Index into preoperative risk evaluation: A multicentre prospective cohort study. Br. J. Anaesth. 2020, 124, 261–270. [Google Scholar] [CrossRef]
- Lappalainen, L.; Stenvall, H.; Lavikainen, P.; Miettinen, H.; Martikainen, J.; Sintonen, H.; Tolppanen, A.-M.; Roine, R.P.; Hartikainen, J. Patient-reported outcomes in coronary artery disease: The relationship between the standard, disease-specific set by the International Consortium for Health Outcomes Measurement (ICHOM) and the generic health-related quality of life instrument 15D. Health Qual. Life Outcomes 2021, 19, 206. [Google Scholar] [CrossRef]
- Hlatky, M.A.; Rogers, W.J.; Johnstone, I.; Boothroyd, D.; Brooks, M.M.; Pitt, B.; Reeder, G.; Ryan, T.; Smith, H.; Whitlow, P.; et al. Medical care costs and quality of life after randomization to coronary angioplasty or coronary bypass surgery. Bypass Angioplasty Revascularization Investigation (BARI) Investigators. N. Engl. J. Med. 1997, 336, 92–99. [Google Scholar] [CrossRef]
- Smith, J.L.; Deighton, K.; Innes, A.Q.; Holl, M.; Mould, L.; Liao, Z.; Doherty, P.; Whyte, G.; King, J.A.; Deniszczyc, D.; et al. Improved clinical outcomes in response to a 12-week blended digital and community-based long-COVID-19 rehabilitation programme. Front. Med. 2023, 10, 1149922. [Google Scholar] [CrossRef]
- Pesola, G.R.; Ahsan, H. Dyspnea as an independent predictor of mortality. Clin. Respir. J. 2016, 10, 142–152. [Google Scholar] [CrossRef]
- Bonilla, H.; Peluso, M.J.; Rodgers, K.; Aberg, J.A.; Patterson, T.F.; Tamburro, R.; Baizer, L.; Goldman, J.D.; Rouphael, N.; Deitchman, A.; et al. Therapeutic trials for long COVID-19: A call to action from the interventions taskforce of the RECOVER initiative. Front. Immunol. 2023, 14, 1129459. [Google Scholar] [CrossRef]
- Varga, Z.; Flammer, A.J.; Steiger, P.; Haberecker, M.; Andermatt, R.; Zinkernagel, A.S.; Mehra, M.R.; Schuepbach, R.A.; Ruschitzka, F.; Moch, H. Endothelial cell infection and endotheliitis in COVID-19. Lancet 2020, 395, 1417–1418. [Google Scholar] [CrossRef] [PubMed]
- Aljadah, M.; Khan, N.; Beyer, A.M.; Chen, Y.; Blanker, A.; Widlansky, M.E. Clinical Implications of COVID-19-Related Endothelial Dysfunction. JACC Adv. 2024, 3, 101070. [Google Scholar] [CrossRef]
- Pelle, M.C.; Zaffina, I.; Lucà, S.; Forte, V.; Trapanese, V.; Melina, M.; Giofrè, F.; Arturi, F. Endothelial Dysfunction in COVID-19: Potential Mechanisms and Possible Therapeutic Options. Life 2022, 12, 1605. [Google Scholar] [CrossRef] [PubMed]
- Mclaughlin, M.; Sanal-Hayes, N.E.M.; Hayes, L.D.; Berry, E.C.; Sculthorpe, N.F. People with Long COVID and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Exhibit Similarly Impaired Vascular Function. Am. J. Med. 2023, S0002-9343(23)00609-5. [Google Scholar] [CrossRef]
- Aziz, D.; Yildiz, M.; Quesada, O.; Henry, T.D. COVID-19 STEMI related to microthrombi may lead to coronary microvascular dysfunction. Catheter. Cardiovasc. Interv. 2023, 102, 641–645. [Google Scholar] [CrossRef]
- Braith, R.W.; Casey, D.P.; Beck, D.T. Enhanced External Counterpulsation for Ischemic Heart Disease: A Look Behind the Curtain. Exerc. Sport. Sci. Rev. 2012, 40, 145. [Google Scholar] [CrossRef] [PubMed]
- Sharma, U.; Ramsey, H.K.; Tak, T. The Role of Enhanced External Counter Pulsation Therapy in Clinical Practice. Clin. Med. Res. 2013, 11, 226. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Xiao-ming, W.; Gui-fu, W. Expert consensus on the clinical application of enhanced external counterpulsation in elderly people (2019). Aging Med. 2020, 3, 16. [Google Scholar] [CrossRef]
- Braith, R.W.; Conti, C.R.; Nichols, W.W.; Choi, C.Y.; Khuddus, M.A.; Beck, D.T.; Casey, D.P. Enhanced external counterpulsation improves peripheral artery flow-mediated dilation in patients with chronic angina: A randomized sham-controlled study. Circulation 2010, 122, 1612–1620. [Google Scholar] [CrossRef]
- Prasannan, N.; Heightman, M.; Hillman, T.; Wall, E.; Bell, R.; Kessler, A.; Neave, L.; Doyle, A.J.; Devaraj, A.; Singh, D.; et al. Impaired exercise capacity in post–COVID-19 syndrome: The role of VWF-ADAMTS13 axis. Blood Adv. 2022, 6, 4041–4048. [Google Scholar] [CrossRef]
- Ashokprabhu, N.D.; Fox, J.; Henry, T.D.; Schmidt, C.W.; Tierney, D.; Gallatin, J.; Alvarez, Y.R.; Thompson, L.; Hamstra, M.; Shah, S.A.; et al. Enhanced External Counterpulsation for the Treatment of Angina With Nonobstructive Coronary Artery Disease. Am. J. Cardiol. 2024, 211, 89–93. [Google Scholar] [CrossRef] [PubMed]
Parameter | N | EECP Group | N | Control Group | p-Value |
---|---|---|---|---|---|
Age in years, median (IQR) | 33 | 57 (48, 65) | 33 | 55 (45, 65) | 0.574 |
Gender, % female | 33 | 72.7 | 33 | 72.7 | 1.0 |
Time since COVID-19 infection, months, median (IQR) | 33 | 7.5 (5.7, 16.6) | 33 | 8.8 (3.6, 11.7) | 0.841 |
Duration between pre- and post-assessment periods, weeks, mean ± SD | 33 | 7.3 ± 1.3 | 33 | 7.0 ± 1.3 | 0.510 |
PROMIS Fatigue T-Score, mean ± SD | 33 | 67.2 ± 7.2 | 33 | 67.2 ± 6.5 | 0.984 |
DASI, median (IQR) | 33 | 10.0 (4.5, 13.5) | 33 | 7.2 (2.7, 18.7) | 0.841 |
RDS, median (IQR) | 33 | 3 (2, 4) | 33 | 3 (2, 4) | 0.640 |
Parameter | Cohen’s d | N | EECP Treatment Group | N | Control Group | p-Value |
---|---|---|---|---|---|---|
PROMIS Fatigue | ||||||
Average change from baseline | 1.62 | 33 | −15.0 ± 8.9 * | 33 | −2.8 ± 5.9 * | <0.001 |
DASI | ||||||
Median change from baseline | 2.18 ^ | 33 | +17.8 (11.8, 26.8) * | 33 | +1.8 (−3.5, 5.5) | <0.001 |
RDS | ||||||
Improvement of ≥1 in RDS Class, n (%) | 33 | 25 (75.8) | 33 | 11 (33.3) | 0.001 | |
3-Point Composite | ||||||
Clinically meaningful improvement in all 3 endpoints, n (%) | 33 | 18 (54.6) | 33 | 0 (0.0) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fox, J.; Ali, F.; Lopez, M.; Shah, S.A.; Schmidt, C.W.; Quesada, O.; Henry, T.D.; Verduzco-Gutierrez, M. Enhanced External Counterpulsation Improves Dyspnea, Fatigue, and Functional Capacity in Patients with Long COVID. COVID 2024, 4, 1379-1385. https://doi.org/10.3390/covid4090098
Fox J, Ali F, Lopez M, Shah SA, Schmidt CW, Quesada O, Henry TD, Verduzco-Gutierrez M. Enhanced External Counterpulsation Improves Dyspnea, Fatigue, and Functional Capacity in Patients with Long COVID. COVID. 2024; 4(9):1379-1385. https://doi.org/10.3390/covid4090098
Chicago/Turabian StyleFox, Jessie, Farhan Ali, Marielisa Lopez, Sachin A. Shah, Christian W. Schmidt, Odayme Quesada, Timothy D. Henry, and Monica Verduzco-Gutierrez. 2024. "Enhanced External Counterpulsation Improves Dyspnea, Fatigue, and Functional Capacity in Patients with Long COVID" COVID 4, no. 9: 1379-1385. https://doi.org/10.3390/covid4090098
APA StyleFox, J., Ali, F., Lopez, M., Shah, S. A., Schmidt, C. W., Quesada, O., Henry, T. D., & Verduzco-Gutierrez, M. (2024). Enhanced External Counterpulsation Improves Dyspnea, Fatigue, and Functional Capacity in Patients with Long COVID. COVID, 4(9), 1379-1385. https://doi.org/10.3390/covid4090098