Chronobiological Changes in Biochemical Hemorrheological Parameters and Cytokine Levels in the Blood of Diabetic Patients on Hemodialysis: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Inclusion and Exclusion Criteria
2.3. Participants of Study
2.4. Sample Collection
2.5. Melatonin and Cortisol Determination
2.6. Biochemical Determination
2.7. Hematological Analysis
2.8. Hemorrheological Analysis
2.9. Cytokine Determination
2.10. Statistical Analysis
3. Results
3.1. General Characteristics of Patients
3.2. Melatonin and Cortisol Analysis
3.3. Biochemical Parameters
3.4. Hematological Parameters
3.5. Rheological Parameters
3.6. Cytokine Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mohan, V.; Khunti, K.; Chan, S.P.; Filho, F.F.; Tran, N.Q.; Ramaiya, K.; Joshi, S.; Mithal, A.; Mbaye, M.N.; Nicodemus, N.A.; et al. Management of Type 2 Diabetes in Developing Countries: Balancing Optimal Glycaemic Control and Outcomes with Affordability and Accessibility to Treatment. Diabetes Ther. 2020, 11, 15–35. [Google Scholar] [CrossRef] [PubMed]
- Tomic, D.; Shaw, J.E.; Magliano, D.J. The burden and risks of emerging complications of diabetes mellitus. Nat. Rev. Endocrinol. 2022, 18, 525–539. [Google Scholar] [CrossRef] [PubMed]
- Ho, H.J.; Shirakawa, H. Oxidative Stress and Mitochondrial Dysfunction in Chronic Kidney Disease. Cells 2022, 12, 88. [Google Scholar] [CrossRef] [PubMed]
- Suliman, M.E.; Stenvinkel, P. Contribution of inflammation to vascular disease in chronic kidney disease patients. Saudi J. Kidney Dis. Transpl. 2008, 19, 329–345. [Google Scholar]
- Mihai, S.; Codrici, E.; Popescu, I.D.; Enciu, A.M.; Albulescu, L.; Necula, L.G.; Mambet, C.; Anton, G.; Tanase, C. Inflammation-Related Mechanisms in Chronic Kidney Disease Prediction, Progression, and Outcome. J. Immunol. Res. 2018, 6, 2180373. [Google Scholar] [CrossRef]
- Icardi, A.; Paoletti, E.; de Nicola, L.; Mazzaferro, S.; Russo, R.; Cozzolino, M. Renal anemia and EPO hyporesponsiveness associated with vitamin D deficiency: The potential role of inflammation. Nephrol. Dial. Transplant. 2013, 28, 1672–1679. [Google Scholar] [CrossRef]
- Arkew, M.; Asmerom, H.; Gemechu, K.; Tesfa, T. Global Prevalence of Anemia Among Type 2 Diabetic Adult Patients: A Systematic Review and Meta-Analysis. Diabetes Metab. Syndr. Obes. 2023, 16, 2243–2254. [Google Scholar] [CrossRef]
- Bastos, M.G.; Bregman, R.; Kirsztajn, G.M. Chronic kidney diseases are common and harmful but also preventable and treatable. Rev. Assoc. Med. 2010, 56, 248–253. [Google Scholar] [CrossRef]
- Santos, E.J.F.; Dias, R.S.C.; Lima, J.F.B.; Salgado Filho, N.; Miranda Dos Santos, A. Erythropoietin Resistance in Patients with Chronic Kidney Disease: Current Perspectives. Int. J. Nephrol. Renovasc. Dis. 2020, 13, 231–237. [Google Scholar] [CrossRef]
- Williams, A.; Bissinger, R.; Shamaa, H.; Patel, S.; Bourne, L.; Artunc, F.; Qadri, S.M. Pathophysiology of Red Blood Cell Dysfunction in Diabetes and Its Complications. Pathophysiology 2023, 30, 327–345. [Google Scholar] [CrossRef]
- Sadek, K.; Macklon, N.; Bruce, K.; Cagampang, F.; Cheong, Y. Hypothesis: Role for the circadian Clock system and sleep in the pathogenesis of adhesions and chronic pelvic pain? Med. Hypotheses 2011, 76, 453–456. [Google Scholar] [CrossRef] [PubMed]
- França, E.L.; Ribeiro, E.B.; Scherer, E.F.; Cantarini, D.G.; Pessôa, R.S.; França, F.L.; Honorio-França, A.C. Effects of Momordica charantia L. on the blood rheological properties in diabetic patients. Biomed. Res. Int. 2014, 2014, 840379. [Google Scholar] [CrossRef] [PubMed]
- Piagnerelli, M.; Boudjeltia, K.Z.; Vanhaeverbeek, M.; Vincent, J.L. Red blood cell rheology in sepsis. Intensive Care Med. 2003, 29, 1052–1061. [Google Scholar] [CrossRef]
- Scherer, E.F.; Cantarini, D.G.; Siqueira, R.; Ribeiro, E.B.; Braga, E.M.; Honório-França, A.C.; França, E.L. Cytokine modulation of human blood viscosity from vivax malaria patients. Acta Trop. 2016, 158, 139–147. [Google Scholar] [CrossRef]
- Cotrim, A.; França, E.L.; Honorio-França, A.C.; Martins, J.S.; Silva, K.P.G.; Ghalfi, Y.C.; Machado, T.M.; Tozetti, I.A. Effect of Polyethylene Glycol Microspheres Adsorbed with Melatonin on Oxidative Stress and Viscosity of Cervical Mucus Samples Infected with Human Papillomavirus. Biointerface Res. Appl. Chem. 2020, 10, 6757–6772. [Google Scholar] [CrossRef]
- Buades, J.M.; Craver, L.; Del Pino, M.D.; Prieto-Velasco, M.; Ruiz, J.C.; Salgueira, M.; de Sequera, P.; Vega, N. Management of Kidney Failure in Patients with Diabetes Mellitus: What Are the Best Options? J. Clin. Med. 2021, 10, 2943. [Google Scholar] [CrossRef]
- Morais, T.C.; Honorio-França, A.C.; Silva, R.R.; Fujimori, M.; Fagundes, D.L.G.; França, E.L. Temporal fluctuations of cytokine concentrations in human milk. Biol. Rhythm. Res. 2015, 46, 811–821. [Google Scholar] [CrossRef]
- Zimmet, P.; Alberti, K.G.M.M.; Stern, N.; Bilu, C.; El-Osta, A.; Einat, H.; Kronfeld-Schor, N. The Circadian Syndrome: Is the Metabolic Syndrome and much more! J. Intern. Med. 2019, 286, 181–191. [Google Scholar] [CrossRef]
- Alicic, R.Z.; Rooney, M.T.; Tuttle, K.R. Diabetic Kidney Disease: Challenges, Progress, and Possibilities. Clin. J. Am. Soc. Nephrol. 2017, 12, 2032–2045. [Google Scholar] [CrossRef]
- Reiter, R.J.; Pandi-Perumal, S.R. Chronobiology and its implications for health and disease. J. Pineal Res. 2005, 39, 259–267. [Google Scholar] [CrossRef]
- Tiwari, R.; Tam, D.N.H.; Shah, J.; Moriyama, M.; Varney, J.; Huy, N.T. Effects of sleep intervention on glucose control: A narrative review of clinical evidence. Prim. Care Diabetes 2021, 15, 635–641. [Google Scholar] [CrossRef] [PubMed]
- Reutrakul, S.; Van Cauter, E. Interactions between sleep, circadian function, and glucose metabolism: Implications for risk and severity of diabetes. Ann. N. Y. Acad. Sci. 2014, 1311, 151–173. [Google Scholar] [CrossRef] [PubMed]
- França, E.L.; Nicomedes, T.R.; Calderon, I.M.P.; Honorio-França, A.C. Time-dependent alterations of soluble and cellular components in human milk. Biol. Rhythm. Res. 2010, 41, 333–347. [Google Scholar] [CrossRef]
- Phillips, T.M.; Simmens, S.J.; Peterson, R.A.; Weihs, K.L.; Alleyne, S.; Cruz, I.; Yanovski, J.A.; Veis, J.H. Immunologic function and survival in hemodialysis patients. Kidney Int. 1998, 54, 236–244. [Google Scholar] [CrossRef]
- Stenvinkel, P.; Ketteler, M.; Johnson, R.J.; Lindholm, B.; Pecoits-Filho, R.; Riella, M.; Heimbürger, O.; Cederholm, T.; Girndt, M. IL-10, IL-6, and TNF-alpha: Central factors in the altered cytokine network of uremia—The good, the bad, and the ugly. Kidney Int. 2005, 67, 1216–1233. [Google Scholar] [CrossRef]
- Cohen, G. Immune Dysfunction in Uremia 2020. Toxins 2020, 12, 439. [Google Scholar] [CrossRef]
- Gafter-Gvili, A.; Schechter, A.; Rozen-Zvi, B. Iron Deficiency Anemia in Chronic Kidney Disease. Acta Haematol. 2019, 142, 44–50. [Google Scholar] [CrossRef]
- Reiter, R.J.; Tan, D.X. Melatonin: A novel protective agent against oxidative injury of the kidney. Kidney Int. 2003, 63, 1098–1103. [Google Scholar] [CrossRef]
- Korkmaz, A.; Reiter, R.J. Melatonin and diabetes mellitus. J. Pineal Res. 2011, 51, 1–17. [Google Scholar] [CrossRef]
- Kaka, N.; Sethi, Y.; Patel, N.; Kaiwan, O.; Al-Inaya, Y.; Manchanda, K.; Uniyal, N. Endocrine manifestations of chronic kidney disease and their evolving management: A systematic review. Disease-a-Month 2022, 68, 101466. [Google Scholar] [CrossRef]
- Horne, R.; Baillie, C. Circadian rhythms and kidney function: The interplay of dialysis schedules and hormonal regulation. Nephrology 2013, 18, 1–9. [Google Scholar] [CrossRef]
- Karger, A.T.; Müller, L. Cortisol in chronic kidney disease and dialysis. Nephrol. Dial. Transpl. 2013, 28, 2875–2883. [Google Scholar] [CrossRef]
- Lim, C.K.; Yao, C.L. The role of melatonin and cortisol in diabetic nephropathy. Front. Endocrinol. 2014, 5, 178. [Google Scholar] [CrossRef]
- Arogundade, F.A.; Omotoso, B.A.; Adelakun, A.; Bamikefa, T.; Ezeugonwa, R.; Omosule, B.; Sanusi, A.A.; Balogun, R.A. Burden of end-stage renal disease in sub-Saharan Africa. Clin. Nephrol. 2020, 93, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Khoury, C.; Ziyadeh, F.N. Pathophysiology and Pathogenesis of Diabetic Nephropathy. In Seldin and Giebisch’s the Kidney, 5th ed.; Alpern, R.J., Caplan, M.J., Moe, O.W., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 2605–2632. [Google Scholar]
- Antia, M.; Herricks, T.; Rathod, P.K. Microfluidic modeling of cell-cell interactions in malaria pathogenesis. PLoS Pathog. 2007, 3, 939–948. [Google Scholar] [CrossRef]
- Elishkevitz, K.; Fusman, R.; Koffler, M.; Shapira, I.; Zeltser, D.; Avitzour, D.; Arber, N.; Berliner, S.; Rotstein, R. Rheological determinants of red blood cell aggregation in diabetic patients in relation to their metabolic control. Diabet. Med. 2002, 19, 152–156. [Google Scholar] [CrossRef]
- Sahakyan, K.; Klein, B.E.; Lee, K.E.; Tsai, M.Y.; Klein, R. Inflammatory and endothelial dysfunction markers and proteinuria in persons with type 1 diabetes mellitus. Eur. J. Endocrinol. 2010, 162, 1101–1105. [Google Scholar] [CrossRef]
- Borges, M.D.; França, E.L.; Fujimori, M.; Silva, S.M.C.; de Marchi, P.G.F.; Deluque, A.L.; Honorio-França, A.C.; de Abreu, L.C. Relationship between Pro-inflammatory Cytokines/Chemokines and Adipokines in Serum of Young Adults with Obesity. Endocr. Metab. Immune Disord. Drug Targets 2018, 18, 260–267. [Google Scholar] [CrossRef]
- Moss, R.B.; Moll, T.; El-Kalay, M.; Kohne, C.; Soo Hoo, W.; Encinas, J.; Carlo, D.J. Th1/Th2 cells in inflammatory disease states: Therapeutic implications. Expert. Opin. Biol. Ther. 2004, 4, 1887–1896. [Google Scholar] [CrossRef]
- Vrabie, C.D.; Petrescu, A.; Waller, M.; Cojocaru, M.; Ciocâlteu, A.; Dina, I. Inflammatory, degenerative and vascular lesions in long-term dialyzed patients. Rom. J. Intern. Med. 2009, 47, 149–159. [Google Scholar]
- Martínez-Pérez, B.; de la Torre-Díez, I.; López-Coronado, M. Mobile health applications for the most prevalent conditions by the World Health Organization: Review and analysis. J. Med. Internet Res. 2013, 15, e120. [Google Scholar] [CrossRef]
- Donate-Correa, J.; Ferri, C.M.; Sánchez-Quintana, F.; Pérez-Castro, A.; González-Luis, A.; Martín-Núñez, E.; Mora-Fernández, C.; Navarro-González, J.F. Inflammatory Cytokines in Diabetic Kidney Disease: Pathophysiologic and Therapeutic Implications. Front. Med. 2021, 22, 628289. [Google Scholar] [CrossRef] [PubMed]
- Adane, T.; Getawa, S. Anaemia and its associated factors among diabetes mellitus patients in Ethiopia: A systematic review and meta-analysis. Endocrinol. Diabetes Metab. 2021, 14, e00260. [Google Scholar] [CrossRef] [PubMed]
- Girndt, M.; Sester, U.; Sester, M.; Kaul, H.; Köhler, H. Impaired cellular immune function in patients with end-stage renal failure. Nephrol. Dial. Transplant. 1999, 14, 2807–2810. [Google Scholar] [CrossRef]
- Mosser, M.D.; Zhang, X. Interleukin-10: New perspectives on an old cytokine. Immunol. Rev. 2008, 226, 205–218. [Google Scholar] [CrossRef]
- Zhang, B.; Ramesh, G.; Norbury, C.C.; Reeves, W.B. Cisplatin-induced nephrotoxicity is mediated by tumor necrosis factor-alpha produced by renal parenchymal cells. Kidney Int. 2007, 72, 37–44. [Google Scholar] [CrossRef]
- Cano, P.; Lopez-Varela, S.; Jiménez, V.; Marcos, A.; Esquifino, A.I. Chronobiological features of the immune system. Effect of calorie restriction. Eur. J. Clin. Nutr. 2002, 56, 69–72. [Google Scholar] [CrossRef]
- Nosratabadi, R.; Arababadi, M.K.; Hassanshahi, G.; Yaghini, N.; Pooladvand, V.; Shamsizadeh, A.; Zarandi, E.R.; Hakimi, H. Evaluation of IFN-gamma serum level in nephropathic type 2 diabetic patients. Pak. J. Biol. Sci. 2009, 12, 746–749. [Google Scholar] [CrossRef]
- Avesani, C.M.; Mattos, L.D. Inflammation and its role in hemodialysis patients: Current perspectives. Nephrol. Dial. Transpl. 2014, 29, 1239–1247. [Google Scholar] [CrossRef]
- Vaziri, N.D. Cytokine dysregulation and inflammation in chronic kidney disease. Kidney Int. 2012, 82, 352–359. [Google Scholar] [CrossRef]
- McAdoo, S.P.; Cunningham, J. The role of cytokines in inflammation and immune regulation in CKD. Nephrol. Dial. Transpl. 2013, 28, 1687–1694. [Google Scholar] [CrossRef]
- Ding, J.; Chen, P.; Qi, C. Circadian rhythm regulation in the immune system. Immunology 2024, 171, 525–533. [Google Scholar] [CrossRef] [PubMed]
- Zorick, T.; Heron, M.L.; Richards, T. The effect of circadian rhythms on cytokine production and immune system function in chronic kidney disease. J. Pineal Res. 2019, 66, e12533. [Google Scholar] [CrossRef]
- Batchelor, E.K.; Kapitsinou, P.; Pergola, P.E.; Kovesdy, C.P.; Jalal, D.I. Iron Deficiency in Chronic Kidney Disease: Updates on Pathophysiology, Diagnosis, and Treatment. J. Am. Soc. Nephrol. 2020, 31, 456–468. [Google Scholar] [CrossRef] [PubMed]
- Galbo, H.; Kall, L. Circadian variations in clinical symptoms and concentrations of inflammatory cytokines, melatonin, and cortisol in polymyalgia rheumatica before and during prednisolone treatment: A controlled, observational, clinical experimental study. Arthritis Res. Ther. 2016, 18, 174. [Google Scholar] [CrossRef]
Parameters | Male | Female | Patients |
---|---|---|---|
Gender | 54% (n = 25) | 46% (n = 21) | 100% (n = 46) |
Age (years) | 67.1 ± 4.0 | 64.1 ± 5.3 | 65.4 ± 5.1 |
Smokers | 6.5% (n = 4) | 4.3% (n = 2) | 13.0% (n = 6) |
Ex-smokers | 13.5% (n = 5) | 8.1% (n = 3) | 21.6% (n = 8) |
Hypertension | 6.5% (n = 3) | 5.5% (n = 2) | 10.8% (n = 5) |
Biochemical Parameters | Morning | Afternoon | Statistical | |
---|---|---|---|---|
Urea (mg/dL) | F (1,36) = 0.5880; p = 0.5433 (time of day) F (1,36) = 8.2526; p = 0.0082 (gender) F (1,36) = 1.0211; p = 0.3237 (interaction) | |||
Male | 138.0 ± 30.4 | 123.7 ± 24.0 | ||
Female | 99.3 ± 21.4 * | 110.0 ± 25.9 * | ||
Creatinine (mg/dL) | ||||
Male | 13.42 ± 1.2 | 12.80 ± 2.8 | F (1,36) = 0.1738; p = 0.6822 (time of day) F (1,36) = 6.9088; p = 0.0458 (gender) F (1,36) = 2.9838; p = 0.0617 (interaction) | |
Female | 9.15 ± 2.62 * | 7.35 ± 2.4 * | ||
Glucose (mg/dL) | ||||
Male | 158.4 ± 66.01 | 174.8 ± 92.5 | F (1,36) = 0.6203; p = 0.5556 (time of day) F (1,36) = 2.9469; p = 0.0955 (gender) F (1,36) = 0.0174; p = 0. 8913 (interaction) | |
Female | 138.5 ± 25.80 | 202.7 ± 115.6 | ||
GPT (mg/dL) | ||||
Male | 19.7 ± 7.1 | 20.3 ± 17.9 | F (1,36) = 0.5550; p = 0.5301 (time of day) F (1,36) = 0.6314; p = 0.5597 (gender) F (1,36) = 1.3048; p = 0.2638 (interaction) | |
Female | 22.0 ± 14.6 | 16.3 ± 6.4 | ||
Potassium (mmol/L) | ||||
Male | 5.7 ± 0.7 | 5.64 ± 0.85 | F (1,36) = 2.3595; p = 0.1342 (time of day) F (1,36) = 0.8494; p = 0.6312 (gender) F (1,36) = 1.8144; p = 0. 1878 (interaction) | |
Female | 4.8 ± 0.6 | 5.32 ± 0.66 |
Hematological Parameters | Morning | Afternoon | |
---|---|---|---|
Hematocrit (%) | |||
Male | 27.1 ± 2.54 | 27.4 ± 2.15 | F(1,36) = 8.1114; p = 0.0087 (time of day) F (1,36) = 10.612; p = 0.0314 (gender) F (1,36) = 0.8262; p = 0.6243 (interaction) |
Female | 22.57 ± 1.67 * | 26.36 ± 5.33 # | |
Hemoglobin (g/dL) | |||
Male | 9.45 ± 1.03 | 10.02 ± 0.77 | F (1,36) = 0.6887; p = 0.5802 (time of day) F (1,36) = 6.1982; p = 0.0191 (gender) F (1,36) = 2.6607; p = 0.1124 (interaction) |
Female | 8.24 ± 0. 97 * | 9.72 ± 1.82 | |
Platelets (mm3) | |||
Male | 313. 857 ± 50.734 | 219.666 ± 52.902 * | F (1,36) = 4.0281; p = 0.0322 (time of day) F (1,36) = 2.0451; p = 0.1625 (gender) F (1,36) = 4.2742; p = 0.0471 (interaction) |
Female | 258. 857 ± 89.063 | 241.181 ± 69.719 |
Morning | Afternoon | Statistical | |||
---|---|---|---|---|---|
Cytokines | Male | Female | Male | Female | |
IL-2 (pg/mL) | 76.50 ± 4.5 | 75.60 ± 13.7 | 89.28 ± 2.8 # | 92.47 ± 7.3 # | F (1,36) = 8.7578; p = 0.0055 (time of day) F (1,36) = 0.6578; p = 0.5719 (gender) F (1,36) = 0. 9339; p = 0.6580 (interaction) |
IL-4 (pg/mL) | 60.40 ± 12.1 | 53.6 ± 22.4 | 82.22 ± 6.20 # | 85.7 ± 22. 9 # | F (1,36) = 14.6478; p = 0.0008 (time of day) F (1,36) = 0.0609; p = 0.8017 (gender) F (1,36) = 1.3485; p = 0.2520 (interaction) |
IL-6 (pg/mL) | 16. 86 ± 6.7 | 25.27 ± 7.3 | 19.21 ± 4.3 | 32.39 ± 11.7 | F (1,36) = 0.0945; p = 0.7581 (time of day) F (1,36) = 1.4550; p = 0.2338 (gender) F (1,36) = 0.1738; p = 0.6838 (interaction) |
IL-10 (pg/mL) | 32.89 ± 6.2 | 33. 94 ± 6.6 | 38.06 ± 4.0 | 49.62 ± 6.1 *# | F (1,36) = 5.2660; p = 0.0457 (time of day) F (1,36) = 4.7577; p = 0.0401 (gender) F (1,36) = 2.1505; p = 0.1477 (interaction) |
TNF-α (pg/mL) | 68.36 ± 7.5 | 51.52 ± 7.8 *# | 62.86 ± 7.0 | 53.54 ± 9.2 | F (1,36) = 0.0145; p = 0.007 (time of day) F (1,36) = 7. 9745; p = 0.0076 (gender) F (1,36) = 0.5798; p = 0.5424 (interaction) |
IFN-Ƴ (pg/mL) | 112.86 ± 11.4 | 69.70 ± 15.6 * | 106.82 ± 7.3 | 102.3 ± 10.2 # | F (1,36) = 4.6481; p = 0.0357 (time of day) F (1,36) = 14.1099; p = 0.0009 (gender) F (1,36) = 7.7171; p = 0.0085 (interaction) |
IL-17 (pg/mL) | 451.38 ± 100.5 | 251.9 ± 84.2 * | 352.55 ± 38.9 | 318.72 ± 47.4 | F (1,36) = 0.8164; p = 0.6244 (time of day) F (1,36) = 6.7056; p = 0.0132 (gender) F (1,36) = 0.1582; p = 0.6953 (interaction) |
Periods (M/V) | IL-2 (pg/mL) | IL-4 (pg/mL) | IL-6 (pg/mL) | IL-10 (pg/mL) | TNF-α (pg/mL) | IFN-γ (pg/mL) | IL-17 (pg/mL) |
---|---|---|---|---|---|---|---|
Male | r = 0.1675 p = 0.6437 | r = −0.4605 p = 0.1804 | r = −0.2431 p = 0.4986 | r = 0.4120 p = 0.2367 | r = −0.2448 p = 0.4954 | r = −0.3268 p = 0.3567 | r = 0.5340 p = 0.1118 |
Female | r = 0.4299 p = 0.2149 | r = −0.1374 p = 0.7050 | r = 0.6055 p = 0.0483 | r = 0.6741 p = 0.0325 | r = 0.2493 p = 0.4873 | r = 0.6148 p = 0.0480 | r = −0.3964 p = 0.2567 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, F.A.; Monção, J.S.; Honorio, M.S.; Fujimori, M.; França, D.C.H.; Cotrim, A.C.M.; França, E.C.H.; França-Botelho, A.C.; Fagundes-Triches, D.L.G.; Marchi, P.G.F.; et al. Chronobiological Changes in Biochemical Hemorrheological Parameters and Cytokine Levels in the Blood of Diabetic Patients on Hemodialysis: A Cross-Sectional Study. Kidney Dial. 2025, 5, 9. https://doi.org/10.3390/kidneydial5010009
Lima FA, Monção JS, Honorio MS, Fujimori M, França DCH, Cotrim ACM, França ECH, França-Botelho AC, Fagundes-Triches DLG, Marchi PGF, et al. Chronobiological Changes in Biochemical Hemorrheological Parameters and Cytokine Levels in the Blood of Diabetic Patients on Hemodialysis: A Cross-Sectional Study. Kidney and Dialysis. 2025; 5(1):9. https://doi.org/10.3390/kidneydial5010009
Chicago/Turabian StyleLima, Fernando A., Juliana S. Monção, Mariana S. Honorio, Mahmi Fujimori, Danielle C. H. França, Aron C. M. Cotrim, Emanuelle C. H. França, Aline C. França-Botelho, Danny Laura G. Fagundes-Triches, Patrícia G. F. Marchi, and et al. 2025. "Chronobiological Changes in Biochemical Hemorrheological Parameters and Cytokine Levels in the Blood of Diabetic Patients on Hemodialysis: A Cross-Sectional Study" Kidney and Dialysis 5, no. 1: 9. https://doi.org/10.3390/kidneydial5010009
APA StyleLima, F. A., Monção, J. S., Honorio, M. S., Fujimori, M., França, D. C. H., Cotrim, A. C. M., França, E. C. H., França-Botelho, A. C., Fagundes-Triches, D. L. G., Marchi, P. G. F., Honorio-França, A. C., & França, E. L. (2025). Chronobiological Changes in Biochemical Hemorrheological Parameters and Cytokine Levels in the Blood of Diabetic Patients on Hemodialysis: A Cross-Sectional Study. Kidney and Dialysis, 5(1), 9. https://doi.org/10.3390/kidneydial5010009