Background: Diabetic ketoacidosis (DKA) in patients with kidney failure receiving dialysis presents a formidable clinical challenge. Standard DKA protocols, designed for patients with preserved renal function, often fail in this cohort and can be unsafe when applied without modification. Patients are at risk of iatrogenic fluid overload, dyskalaemia, and hypoglycaemia due to altered insulin kinetics, impaired gluconeogenesis, and the absence of osmotic diuresis.
Purpose: This narrative review aims to synthesise current understanding of DKA pathophysiology in dialysis patients, delineate distinct clinical phenotypes, and propose individualised management strategies grounded in physiology-based reasoning, comparative guideline insights, and consensus-supported literature.
Methods: We searched PubMed/MEDLINE, Embase, and Google Scholar (January 2004–June 2024) for adult dialysis populations, using terms spanning DKA, kidney failure, insulin kinetics, fluid balance, and cerebral oedema. Reviews, observational cohorts, guidelines, consensus statements, and physiology papers were prioritised; case reports were used selectively for illustration. Evidence was weighted by physiological plausibility and practice relevance. Nephrology-led authors aimed for a pragmatic, safety-first synthesis, seeking and integrating contradictory recommendations.
Conclusions: Our findings highlight the critical need for a nuanced approach to fluid management, a tailored insulin strategy that accounts for glucose-insulin decoupling and prolonged insulin half-life, and careful consideration of potassium and acidosis correction. We emphasise the importance of recognising specific volume phenotypes (hypovolaemic, euvolaemic, hypervolaemic) to guide fluid therapy, and advocating the judicious use of variable-rate insulin infusions (‘dry insulin’) to mitigate fluid overload. We also show that service-level factors are critical. Dialysis-specific pathways, interdisciplinary training, and quality improvement metrics can reduce iatrogenic harm. By linking physiology with workflow adaptations, this review provides a physiologically sound, bedside-oriented map for navigating this complex emergency safely and effectively. In doing so, it advances an individualised model of DKA care for dialysis-dependent patients.
Full article