A 10 V Transfer Standard Based on Low-Noise Solid-State Zener Voltage Reference ADR1000
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of the Reference
2.2. Procedure and Equipment
3. Results
3.1. Temperature Coefficient
3.2. Noise Measurements
3.3. Long-Term Stability
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Elmquist, R.E.; Cage, M.E.; Tang, Y.H.; Jeffery, A.M.; Kinard, J.R., Jr.; Dziuba, R.F.; Oldham, N.M.; Williams, E.R. The ampere and electrical standards. J. Res. Natl. Inst. Stand. Technol. 2001, 106, 65. [Google Scholar] [CrossRef] [PubMed]
- Hamer, W.J. Standard Cells: Their Construction, Maintenance, and Characteristics; US Government Printing Office: Washington, DC, USA, 1965; Volume 84.
- Schlamminger, S.; Abbott, P.; Kubarych, Z.; Jarrett, D.; Elmquist, R. The units for mass, voltage, resistance, and electrical current in the SI. IEEE Instrum. Meas. Mag. 2019, 22, 9–16. [Google Scholar] [CrossRef]
- Rüfenacht, A.; Fox, A.E.; Butler, G.E.; Burroughs, C.J.; Dresselhaus, P.D.; Schwall, R.E.; Cular, S.; Benz, S.P. Compact DC Josephson Voltage Standard. In Proceedings of the 2020 Conference on Precision Electromagnetic Measurements (CPEM), Denver, CO, USA, 24–28 August 2020; IEEE: Washington, DC, USA, 2020; pp. 1–2. [Google Scholar] [CrossRef]
- Maruyama, M.; Urano, C.; Kaneko, N.-H.; Sannomaru, E.; Yonezawa, T.; Kanai, T.; Yoshida, H.; Yoshino, Y. Development of a compact Zener DC voltage standard with detachable module system. In Proceedings of the 2016 Conference on Precision Electromagnetic Measurements (CPEM 2016), Ottawa, ON, Canada, 10–15 July 2016; IEEE: Washington, DC, USA, 2016. [Google Scholar] [CrossRef]
- Maruyama, M.; Urano, C.; Kaneko, N.-H.; Yonezawa, T.; Kanai, T.; Sannomaru, E.; Honjo, J.; Yoshino, Y. Investigation of atmospheric-pressure dependence of compact detachable Zener module. In Proceedings of the 2018 Conference on Precision Electromagnetic Measurements (CPEM 2018), Paris, France, 8–13 July 2018; IEEE: Washington, DC, USA, 2018; pp. 1–2. [Google Scholar] [CrossRef]
- Meléndez, R.; Solano, A.; Sánchez, H. Zener DC Voltage Standard Shutdown Behavior. In Proceedings of the 2018 Conference on Precision Electromagnetic Measurements (CPEM 2018), Paris, France, 8–13 July 2018; IEEE: Washington, DC, USA, 2018; pp. 1–2. [Google Scholar] [CrossRef]
- Capra, P.P.; Cerri, R.; Galliana, F.; Lanzillotti, M. 10 V, 1 Ω, 10 kΩ high accuracy standard setup for calibration of multifunction electrical instruments and for inter-laboratory comparisons. In Proceedings of the 18th International Congress of Metrology, Paris, France, 18 September 2017; EDP Sciences: Les Ulis, France, 2017; p. 07006. [Google Scholar] [CrossRef]
- Power, O.; Walsh, J.E. Investigation of the long-and medium-term drift of Zener diode-based voltage standards. IEEE Trans. Instrum. Meas. 2005, 54, 330–336. [Google Scholar] [CrossRef]
- Manual User’s Handbook for the Datron 4910 and 4911 DC Voltage Reference Standards; Datron/Wavetek: San Diego, CA, USA, 1990; pp. 3–4.
- Manual Model 730A; DC Transfer Standard. John Fluke MFG. Co., Inc.: Seattle, WA, USA; pp. 1-1–1-3.
- Manual Model 731A; DC Transfer Standard. John Fluke MFG. Co., Inc.: Seattle, WA, USA; pp. 1-1–1-2.
- Manual Model 731B; DC Transfer Standard. John Fluke MFG. Co., Inc.: Mountlake Terrace, WA, USA, 1974; pp. 1–2.
- Manual Model 732A; DC Reference Standard. John Fluke MFG. Co., Inc.: Everett, WA, USA, 1986; p. 1-1.
- Manual Model 732B/734A; DC Reference Standard. Fluke Corporation: Everett, WA, USA, 1997; pp. 1-7–1-8.
- Manual Model 732C/734C; DC Reference Standard. Fluke Calibration: Everett, WA, USA, 2018; pp. 5–6. Available online: https://s3.amazonaws.com/download.flukecal.com/pub/literature/6010864a-fcal-datasheet-w.pdf (accessed on 18 December 2023).
- DC Reference & Transfer Standards, Automated Voltage Measurement System; Fluke Corporation: Everett, WA, USA, 2000; p. 4.
- Manual Portable DC Voltage Standard, Model 4410; Guildline Instruments Inc.: Orlando, FL, USA; p. 2.
- Manual 3000ZR Precision Voltage Standard, Operation Manual; Transmille Ltd.: Kent, UK, 2013; Version 3.00; p. 10. Available online: https://transmillecalibration.com/wp-content/uploads/2018/05/3000ZR-Operation-Manual-V2-00.pdf (accessed on 17 December 2023).
- Manual Valhalla Scientific, 2720GS Ultra-Precision Direct Voltage System; pp. 3–6. Available online: http://www.ko4bb.com/manuals/141.70.193.22/Valhalla_Scientific_2720GS_Ultra-Precision_DC_Voltage_System_Calibrator_Service_Manual.pdf (accessed on 18 December 2023).
- Walters, K.; Clark, M. An Introduction to Zener Diodes, MicroNotes Series No. 201. Microsemi Scottsdale. Available online: https://www.microsemi.com/document-portal/doc_view/14613-an-introduction-to-zener-diodes (accessed on 18 December 2023).
- Walters, Kent, Microsemi Scottsdale, Zero-Temperature Coefficient Reference Diodes, MicroNotes Series 205. 1997. Available online: https://www.microsemi.com/document-portal/doc_view/14616-zero-tc-reference-diodes (accessed on 18 December 2023).
- Richard, K. Linear Technology LTFLU. Available online: https://www.richis-lab.de/REF04.htm (accessed on 19 December 2023).
- Richard, K. Linear Technology LTFLU (Alibaba). Available online: https://www.richis-lab.de/REF25.htm (accessed on 19 December 2023).
- Richard, K. Motorola SZA263. Available online: https://www.richis-lab.de/REF24.htm (accessed on 19 December 2023).
- Bülau, A. Setting up a SZA263/LTFLU Voltage Reference. Available online: https://xdevs.com/article/ltflu_ref/ (accessed on 18 December 2023).
- Deaver, D. Predictability of Solid State Zener References. In Proceedings of the Measurement Science Conference, Anaheim, CA, USA, 18–19 January 2001. [Google Scholar]
- Ilić, D.; Šala, A.; Lenicek, I. Prediction of the Output Voltage of DC Voltage Standards. In Proceedings of the XIX IMEKO World Congress Fundamental and Applied Metrology, Lisbon, Portugal, 6–11 September 2009; Volume 1, pp. 601–606. [Google Scholar]
- Hamilton, C.A.; Tarr, L.W. Projecting Zener DC Reference Performance between Calibrations. IEEE Trans. Instrum. Meas. 2003, 52, 454–456. [Google Scholar] [CrossRef]
- Spreadbury, P.J. The Ultra-Zener… is it a portable replacement for the Weston cell? Meas. Sci. Technol. 1990, 1, 687. [Google Scholar] [CrossRef]
- Datasheet Linear Technology Corporation, LM129/LM329, 6.9V Precision Voltage Reference, Rev D Dec. 2014. Available online: https://www.analog.com/media/en/technical-documentation/data-sheets/129329fd.pdf (accessed on 18 December 2023).
- Datasheet National Semiconductor, LM199/LM299/LM399 Precision Reference, April 2005. Available online: https://www.symres.com/files/LM399.pdf (accessed on 18 December 2023).
- Datasheet Linear Technology Corporation, LM199/LM399, LM199A/LM399A Precision Reference, Rev C Dec. 2014. Available online: https://www.analog.com/media/en/technical-documentation/data-sheets/199399fc.pdf (accessed on 18 December 2023).
- Datasheet Linear Technology Corporation, LTZ1000/LTZ1000A Ultra Precision Reference, LT 1115 Rev E Nov. 2015. Available online: https://www.analog.com/LTZ1000/datasheet (accessed on 18 December 2023).
- Datasheet Analog Devices, Inc. ADR1399, Oven-Compensated, Buried Zener, 7.05 V Voltage Reference, Rev. A, March 2022. Available online: https://www.analog.com/ADR1399/datasheet (accessed on 18 December 2023).
- Datasheet Analog Devices, Inc. ADR1000, Oven-Compensated, Buried Zener, 6.62 V Voltage Reference, Rev. B, March 2022. Available online: https://www.analog.com/media/en/technical-documentation/data-sheets/adr1000.pdf (accessed on 1 November 2023).
- Marusenkov, A. Possibilities of further improvement of 1-second fluxgate variometers. Geosci. Instrum. Methods Data Syst. 2017, 6, 301–309. [Google Scholar] [CrossRef]
- Vernotte, F.; Addouche, M.; Delporte, M.; Brunet, M. The Three Cornered Hat Method: An Attempt to Identify Some Clock Correlations. In Proceedings of the 2004 IEEE International Frequency Control Symposium and Exposition, Montreal, QC, Canada, 24–27 August 2004; IEEE: Washington, DC, USA, 2004; pp. 482–488. [Google Scholar]
- Walter, D.; Bülau, A.; Zimmermann, A. Review on Excess Noise Measurements of Resistors. Sensors 2023, 23, 1107. [Google Scholar] [CrossRef] [PubMed]
- Fluke Calibration. A Practical Approach to Maintaining DC Reference Standards. Available online: https://www.elcal.ch/files/11749-eng-01-a.pdf (accessed on 19 December 2023).
- Eicke, W.G.; Cameron, J.M. Designs for Surveillance of the Volt Maintained by a Small Group of Saturated Standard Cells; US Government Printing Office: Washington, DC, USA, 1967; NBS Technical Note 430.
- Pickering, J.R.; Thompson, R.; Williams, J.M. A new compact isolated power supply for electrical metrology at low signal levels. In Proceedings of the BEMC 99–9th International Conference on Electromagnetic Measurement, Brighton, UK, 2–4 November 1999. [Google Scholar]
- Williams, J.M.; Smith, D.R.; Georgakopoulos, D.; Patel, P.D.; Pickering, J.R. Design and metrological applications of a low noise, high electrical isolation measurement unit. IET Sci. Meas. Technol. 2009, 3, 165–174. [Google Scholar] [CrossRef]
- Pickering, J.R.; Roberts, P. A Solid State DC Reference System. In Proceedings of the NCSL Conference, Dallas, TX, USA, 16–20 July 1995; p. 369. [Google Scholar]
- Crisp, P.B. Setting New Standards for DC Voltage Maintenance Systems, CalLab, Sep./Oct. 1999. In Proceedings of the IEE Seminar Measurement Dissemination by Transfer Methods (Ref. No. 1999/048), London, UK, 12 May 1999; IET: Stevenage, UK, 1999. [Google Scholar] [CrossRef]
- Cern, Burn in of the Voltage Reference for the 22-bit Delta-Sigma Converter, v. 10.1. 2009. Available online: https://cal.equipment/doc/CERN/1101699_V1_Burn_in_of_LTZ1000.pdf (accessed on 18 December 2023).
10 V Solid-State Voltage Standard | Reference IC | Stability [ppm] | T.C. [ppm/°C] | Noise | Oven | ||
---|---|---|---|---|---|---|---|
30 d | 90 d | 1 y | |||||
ADCMT 6900 [5] | LTZ1000 | - | - | 2 | 0.01 | - | On chip |
Datron/Wavetek 4910 [10] | LTZ1000CH | 0.3 | 1 | 1.5 | 0.05 | 0.04 ppm rms (0.01–2 Hz) | On chip |
Fluke 730A [11] | DH80417B | <10 | Mean of four outputs within 1 ppm of a straight line | - | 0.5 (20–30 °C) <1 (4–40 °C) <1.5 (0–4 and 40–55 °C) | <1 ppm p-p (DC–1 Hz), 20 µVrms (1 Hz–1 MHz) | None |
Fluke 731A [12] | DH80417B | 10 | - | - | 0.5 (20–30 °C) <1 (4–40 °C) <1.5 (0–4 and 40–55 °C) | <1 ppm p-p (DC–1 Hz), 20 µV rms (1 Hz–1 MHz) | Discrete |
Fluke 731B [13] | DH80417B | ±10 | ±15 | ±30 | <1 (10–45 °C) <2 (0–10 and 45–55 °C) | <1 ppm p-p (DC–1 Hz), 20 µV rms (1 Hz–1 MHz) Except <70 µV rms @ 10 V output | Discrete |
Fluke 732A [14] | SZA263 | 0.5 | 1 | 3 | ±0.05 (0–18 °C and 28–40 °C) | <1 µV rms (0.1–10 Hz) | Discrete |
Fluke 732B [15] | LTFLU-1 | ±0.3 | ±0.8 | ±2 | <0.04 (15–35 °C) | ±0.06 ppm rms (0.01–10 Hz) | Discrete |
Fluke 732C [16] | LTFLU-1A | ±0.3 | ±0.8 | ±2 | ±0.04 (15–35 °C) | ±0.06 µV/V rms | Discrete |
Wavetek/Fluke 7000/7001 7004N/T 7010N/T [17] | LTZ1000 | - - - | ±0.9 ±0.8 ±0.7 | ±1.8 ±1.2 ±1 | <0.05 <0.03 <0.02 (15–35 °C) | <0.1 ppm rms <0.05 ppm rms <0.03 ppm rms (0.01–10 Hz) | On chip |
Guildline 4410 [18] | 8x LM329AH | - | - | −3 ± 2 (1st year) −2 ± 2 (2nd year) | ±0.04 (16–28 °C) | <0.1 ppm rms (0.3–10 Hz) | None |
Transmille 3000ZR [19] | LTZ1000 | 0.8 | - | 2 | - | - | On chip |
Valhalla 2720GS/54-4T [20] | 4x LM399 | 3.2 ppm + 2.3 µV @13 V | 5.3 ppm + 2.3 µV @13 V | 13.1 ppm + 2.3 µV @13 V | 0.01 ppm + 0.20 µV @13 V 1 | 30 µV rms | On chip and discrete |
Valhalla 2720GS [20] | 6x LM399 | 2.0 ppm + 2.3 µV @13 V | 2.6 ppm + 2.3 µV @13 V | 5.3 ppm + 2.3 µV @13 V | 0.01 ppm + 0.20 µV @13 V 1 | 30 µV rms | On chip and dis-crete |
Valhalla 2720GS/HSR [20] | 8x LM399 | 1.8 ppm + 2.3 µV @13 V | 2.1 ppm + 2.3 µV @13 V | 3.5 ppm + 2.3 µV @13 V | 0.01 ppm + 0.20 µV @13 V 1 | 30 µV rms | On chip and dis-crete |
Voltage Reference | Zener Reference Voltage [V] | Zener Noise | Temperature Coefficient [ppm/°C] | Long-Term Stability |
---|---|---|---|---|
LM129A [31] | Min. 6.7, typ. 6.9, max. 7.2 | typ. 7 µV, max. 20 µV p-p | Typ. 6, max. 10 | 20 ppm/√kHr |
LM329A [31] | Min. 6.6, typ. 6.9, max. 7.25 | typ. 7 µV, max. 100 µV p-p | Typ. 6, max. 10 | 20 ppm/√kHr |
LM199AH (NS) [32] | Min. 6.8, typ. 6.95, max. 7.1 | typ. 7 µV, max. 20 µV p-p | Typ. 0.2, max. 0.5 | Typ. 20 ppm |
LM299H (NS) [32] | Min. 6.8, typ. 6.95, max. 7.1 | typ. 7 µV, max. 20 µV p-p | Typ. 0.3, max. 1 | Typ. 20 ppm |
LM399H (NS) [32] | Min. 6.6, typ. 6.95, max. 7.3 | typ. 7 µV, max. 50 µV p-p | Typ. 0.3, max. 2 | Typ. 20 ppm |
LM399AH (NS) [32] | Min. 6.6, typ. 6.95, max. 7.3 | typ. 7 µV, max. 50 µV p-p | Typ. 0.3, max. 1 | Typ. 20 ppm |
LM199 (LT) [33] | Min. 6.8, typ. 6.95, max. 7.1 | typ. 7 µV, max. 20 µV p-p | Typ. 0.3, max. 1 | Typ. 8 ppm/√kHr |
LM199A (LT) [33] | Min. 6.8, typ. 6.95, max. 7.1 | typ. 7 µV, max. 20 µV p-p | Typ. 0.3, max. 1 | Typ. 8 ppm/√kHr |
LM399 (LT) [33] | Min. 6.75, typ. 6.95, max. 7.3 | typ. 7 µV, max. 50 µV p-p | Typ. 0.3, max. 2 | Typ. 8 ppm/√kHr |
LM399A (LT) [33] | Min. 6.75, typ. 6.95, max. 7.3 | typ. 7 µV, max. 50 µV p-p | Typ. 0.3, max. 2 | Typ. 8 ppm/√kHr |
LTZ1000 [34] | Min. 7.0, typ. 7.2, max. 7.5 @ 5 mA Min. 6.9, typ. 7.15, max. 7.45 @ 1 mA | typ. 1.2 µV p-p, max. 2 µV p-p @ Iz = 5 mA, 0.1 Hz < f < 10 Hz | Typ. 0.05 | Typ. 2 μV√kHr |
ADR1399 [35] | Min. 6.75, typ. 7.05, max. 7.30 | 0.2 ppm p-p, 1.44 µV p-p @ IREF = 3 mA, 0.1 Hz < f < 10 Hz 1.44 µV rms @ 10 Hz < f < 1 kHz 200 nV/√Hz @ f = 0.1 Hz 65 nV/√Hz @ f = 10 Hz 58 nV/√Hz @ f = 1 kHz | Typ. 0.2, max. 1 | Typ. 7 ppm/√kHr |
ADR1000 1 [36] | Min. 6.57, typ. 6.62, max. 6.67 @ 5 mA Min. 6.54, typ. 6.59, max. 6.64 @ 1 mA | 0.14 ppm p-p, 0.9 µV p-p @ 0.1 Hz < f < 10 Hz 2 300 nV/√Hz @ f = 0.1 Hz 2 30 nV/√Hz @ f = 10 Hz 2 24 nV/√Hz @ f = 1 kHz 2 | Typ. < 0.2 | 8.9 ppm @ 200 h (early life drift), 25 °C 2 7.7 ppm @ 1000 h, 25 °C 2 6.6 ppm @ 2000 h, 25 °C 2 6.2 ppm @ 3000 h, 25 °C 2 0.5 ppm @ 1 year (after first 3000 h), 25 °C 2 |
10 V Solid-State Voltage Standard | Reference IC | Stability [ppm] | T.C. [ppm/°C] | Noise | Oven | ||
---|---|---|---|---|---|---|---|
30 d | 90 d | 1 y | |||||
Fluke 732C [11] | LTFLU-1A | ±0.3 | ±0.8 | ±2 | ±0.04 (15–35 °C) | ±0.06 µV/V rms | Discrete |
Wavetek/Fluke 7000/7001 7004N/T 7010N/T [12] | LTZ1000 | - - - | ±0.9 ±0.8 ±0.7 | ±1.8 ±1.2 ±1 | < 0.05 <0.03 <0.02 (15–35 °C) | <0.1 ppm rms <0.05 ppm rms < 0.03 ppm rms (0.01–10 Hz) | On chip |
10V transfer standard prototype | ADR1000 | - | - | - | <0.01 (15–31 °C) | ~143 nV rms (0.1–10 Hz) | On chip |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bülau, A.; Walter, D.; Zimmermann, A. A 10 V Transfer Standard Based on Low-Noise Solid-State Zener Voltage Reference ADR1000. Metrology 2024, 4, 98-116. https://doi.org/10.3390/metrology4010007
Bülau A, Walter D, Zimmermann A. A 10 V Transfer Standard Based on Low-Noise Solid-State Zener Voltage Reference ADR1000. Metrology. 2024; 4(1):98-116. https://doi.org/10.3390/metrology4010007
Chicago/Turabian StyleBülau, André, Daniela Walter, and André Zimmermann. 2024. "A 10 V Transfer Standard Based on Low-Noise Solid-State Zener Voltage Reference ADR1000" Metrology 4, no. 1: 98-116. https://doi.org/10.3390/metrology4010007
APA StyleBülau, A., Walter, D., & Zimmermann, A. (2024). A 10 V Transfer Standard Based on Low-Noise Solid-State Zener Voltage Reference ADR1000. Metrology, 4(1), 98-116. https://doi.org/10.3390/metrology4010007