Asexual Epichloë Fungi—Obligate Mutualists
Definition
:1. History
2. Epichloë Endophytes—A Necessity for the Pastoral Industry?
2.1. Taxonomy and Distribution
Grass Genus (Common Names) | Epichloë Species | Region | Reference |
---|---|---|---|
Achnatherum | E. gansuensis, E. sibirica; E. chisosa; E. inebrians; E. funkii | Asia | [8,24,28,29] |
Agropyron | E. bromicola | Europe/North Africa | [30] |
Agrostis (browntop) | E. baconii, E. amarillans | Europe/North Africa | [31] |
Ammophila | E. amarillans | North America | [32] |
Anthoxanthum | E. typhina | Europe/North Africa | [31] |
Brachyelytrum | E. brachyelytri | Europe/North Africa; North America | [31,33] |
Brachypodium | E. sylvatica; E. typhina; E. bromicola | Europe/North Africa; Asia | [29,31] |
Briza | E. tembladerae | South America | [34] |
Bromus | E. bromicola; E. cabralii; E. typhina subsp. poae var.aonikenkana ; E. typhina; E. tembladerae; E. pampeana | Europe/North Africa; Asia; North America; South America | [8,29,31,34,35,36,37] |
Calamagrostis | E. stromatolonga | Asia | [29] |
Cinna | E. schardlii | North America | [38] |
Dactylis (cocksfoot) | E. typhina | Europe/North Africa | [31] |
Dichelachne | E. australiensis | New Zealand | [39] |
Echinopogon | E. australiensis; E. aotearoae | Australia; New Zealand | [40,41] |
Elymus | E. elymi; E. bromicola; E. canadensis | Europe/North Africa; Asia; North America | [8,24,29,31,33,42] |
Elytrigia | E. spp. | Asia | [29] |
Festuca (fescue) | E. coenophiala; E. festucae; E. uncinata; E. siegelii; E. sinofestucae; E. typhinum var. huerfana, E. tembladerae | Europe/North Africa; Asia; North America; South America | [29,31,43,44,45] |
Glyceria | E. glyceriae | Europe/North Africa; North America | [31,33] |
Holcus | E. typhina subsp. clarkii; E. mollis | Europe/North Africa | [8,31,46] |
Hordelymus | E. disjuncta, E. danica, E. hordelymi, E. sylvatica subsp. pollinensis, | Europe/North Africa | [8,26] |
Hordeum | E. tembladerae, E. amarillans, E. typhina hybrids | South America | [47] |
Lolium (ryegrass) | E. occultans; E. typhina var. canariensis; E. hybrida; E. festucae var. lolii, E. typhina, | Europe/North Africa | [8,27,31,48] |
Leymus | E. bromicola | Europe/North Africa; Asia | [29,31] |
Melica | E. melicicola; E. guerinii; E. tembladerae | South America; Sub-Saharan Africa; South America | [8,24,34,41] |
Phleum (timothy) | E. typhina; E. cabralii; E. tembladerae | Europe/North Africa; South America | [8,31,34,37] |
Poa | E. typhina; E. liyangensis; E. alsodes; E. typhina subsp. poae; E. tembladerae; E. novae-zelandiae | Europe/North Africa; Asia; North America; South America; New Zealand | [31,34,39,43,49] |
Roegneria | E. sinica; E. bromicola | Asia | [29,50] |
Sphenopholis | E. amarillans | Europe/North Africa | [31] |
Stipa | E. spp. | Asia | [29] |
2.2. Life Cycle
2.3. Secondary Metabolite Bioactivity and Its Consequences
- Ergot alkaloids—can be divided into four groups based on their chemical structure: clavines (e.g., chanoclavine, agroclavine), lysergic acid, lysergic acid amides (e.g., ergonovine, ergine), and ergopeptines (e.g., ergovaline, ergotamine, ergocornine, ergocristine, ergosine, ergocryptine).
- Indole diterpenoids—lolitrems, epoxyjanthitrems, terpendoles, paxilline.
- Lolines—N-formyl loline (NFL), N-acetyl loline (NAL), N-acetylnorloline (NANL).
- Pyrrolopyrazine—peramine.
2.4. Application and Value to the Pastoral Industry
3. Epichloë Endophytes—Applications Outside the Pastoral Industry
3.1. Application to the Turf Industry
3.2. Application to Cereals
4. Conclusions and Prospects
Author Contributions
Funding
Conflicts of Interest
Entry Link on the Encyclopedia Platform
References
- Hallmann, J.; Quadt-Hallmann, A.; Mahaffee, W.; Kloepper, J. Bacterial endophytes in agricultural crops. Can. J. Microbiol. 1997, 43, 895–914. [Google Scholar] [CrossRef]
- Arnold, A.E.; Herre, E.A. Canopy cover and leaf age affect colonization by tropical fungal endophytes: Ecological pattern and process in Theobroma cacao (Malvaceae). Mycologia 2003, 95, 388–398. [Google Scholar] [CrossRef] [PubMed]
- De Bary, A. Die Erscheinung der Symbiose: Vortrag Gehalten auf der Versammlung Deutscher Naturforscher und Aerzte zu Cassel; Verlage von Karl J. Trübner: Stassburg, France, 1879. [Google Scholar] [CrossRef]
- Schulz, B.; Guske, S.; Dammann, U. Endophyte-host interactions. II. Defining symbiosis of the endophyte-host interaction. Symbiosis 1998, 25, 213–227. [Google Scholar]
- Sinclair, J.; Cerkauskas, R. Latent infection vs. endophytic colonization by fungi. In Endophytic Fungi in Grasses and Woody Plants; Redlin, S.C., Carris, L.M., Eds.; American Phytopathological Society Press: St Paul, MN, USA, 1996; pp. 3–29. [Google Scholar]
- Saikkonen, K.; Wali, P.; Helander, M.; Faeth, S.H. Evolution of endophyte-plant symbioses. Trends Plant Sci. 2004, 9, 275–280. [Google Scholar] [CrossRef]
- Card, S.; Johnson, L.; Teasdale, S.; Caradus, J. Deciphering endophyte behaviour: The link between endophyte biology and efficacious biological control agents. FEMS Microbiol. Ecol. 2016, 92, fiw114. [Google Scholar] [CrossRef]
- Leuchtmann, A.; Bacon, C.W.; Schardl, C.L.; White, J.F.J.; Tadych, M. Nomenclatural realignment of Neotyphodium species with genus Epichloë. Mycologia 2014, 106, 202–215. [Google Scholar] [CrossRef]
- Schmidt, S.P.; Hoveland, C.S.; Clark, E.M.; Davis, N.D.; Smith, L.A.; Grimes, H.W.; Holliman, J.L. Association of an endophytic fungus with fescue toxicity in steers fed Kentucky 31 tall fescue seed or hay. J. Anim. Sci. 1982, 55, 1259–1263. [Google Scholar] [CrossRef]
- Fletcher, L.R.; Harvey, I.C. An association of a Lolium endophyte with ryegrass staggers. N. Z. Vet. J. 1981, 29, 185–186. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Card, S.D.; Mace, W.J.; Christensen, M.J.; McGill, C.R.; Matthew, C. Defining the pathways of symbiotic Epichloë colonization in grass embryos with confocal microscopy. Mycologia 2017, 109, 153–161. [Google Scholar] [CrossRef]
- Schardl, C.L.; Craven, K.D.; Speakman, S.; Stromberg, A.; Lindstrom, A.; Yoshida, R. A novel test for host-symbiont codivergence indicates ancient origin of fungal endophytes in grasses. Syst. Biol. 2008, 57, 483–498. [Google Scholar] [CrossRef] [PubMed]
- Saikkonen, K.; Faeth, S.H.; Helander, M.; Sullivan, T.J. Fungal endophytes: A continuum of interactions with host plants. Annu. Rev. Ecol. Syst. 1998, 29, 319–343. [Google Scholar] [CrossRef]
- Schardl, C.L. The epichloae, symbionts of the grass subfamily Poideae. Ann. Mo. Bot. Gard. 2010, 97, 646–665. [Google Scholar] [CrossRef]
- Card, S.D.; Rolston, M.P.; Park, Z.; Cox, N.; Hume, D.E. Fungal endophyte detection in pasture grass seed utilising the infection layer and comparison to other detection techniques. Seed Sci. Technol. 2011, 39, 581–592. [Google Scholar] [CrossRef]
- Christensen, M.; Voisey, C. The biology of the endophyte/grass partnership. N. Z. Grassl. Assoc. Res. Pract. Ser. 2006, 13, 123–133. [Google Scholar] [CrossRef]
- Christensen, M.J.; Bennett, R.J.; Ansari, H.A.; Koga, H.; Johnson, R.D.; Bryan, G.T.; Simpson, W.R.; Koolaard, J.P.; Nickless, E.M.; Voisey, C.R. Epichloë endophytes grow by intercalary hyphal extension in elongating grass leaves. Fungal Genet. Biol. 2008, 45, 84–93. [Google Scholar] [CrossRef]
- Popay, A.J.; Bonos, S.A. Biotic Responses in Endophytic Grasses. In Neotyphodium in Cool-Season Grasses; Roberts, C.A., West, C.P., Spiers, D.E., Eds.; Blackwell Publishing: Ames, IA, USA, 2005; pp. 163–185. [Google Scholar]
- Hume, D.E.; Ryan, G.D.; Gibert, A.; Helander, M.; Mirlohi, A.; Sabzalian, M.R. Epichloë fungal endophytes for grassland ecosystems. In Sustainable Agriculture Reviews; Lichtfouse, E., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 233–305. [Google Scholar] [CrossRef]
- Johnson, L.J.; De Bonth, A.C.M.; Briggs, L.R.; Caradus, J.R.; Finch, S.C.; Fleetwood, D.J.; Fletcher, L.R.; Hume, D.E.; Johnson, R.D.; Popay, A.J.; et al. The exploitation of epichloae endophytes for agricultural benefit. Fungal Divers. 2013, 60, 171–188. [Google Scholar] [CrossRef]
- Latch, G.C.M.; Christensen, M.J. Artificial infection of grasses with endophytes. Ann. Appl. Biol. 1985, 107, 17–24. [Google Scholar] [CrossRef]
- Leuchtmann, A. Systematics, distribution, and host specificity of grass endophytes. Nat. Toxins 1992, 1, 150–162. [Google Scholar] [CrossRef]
- Turland, N.J.; Wiersema, J.H.; Barrie, F.R.; Greuter, W.; Hawksworth, D.L.; Herendeen, P.S.; Knapp, S.; Kusber, W.-H.; Li, D.-Z.; Marhold, K.; et al. International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code) adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017. Koeltz Botanical Books. Available online: https://www.iapt-taxon.org/nomen/main.php (accessed on 24 August 2021). [CrossRef]
- Moon, C.D.; Craven, K.D.; Leuchtmann, A.; Clement, S.L.; Schardl, C.L. Prevalence of interspecific hybrids amongst asexual fungal endophytes of grasses. Mol. Ecol. 2004, 13, 1455–1467. [Google Scholar] [CrossRef]
- Schardl, C.; Craven, K. Interspecific hybridization in plant-associated fungi and oomycetes: A review. Mol. Ecol. 2003, 12, 2861–2873. [Google Scholar] [CrossRef]
- Oberhofer, M.; Leuchtmann, A. Genetic diversity in epichloid endophytes of Hordelymus europaeus suggests repeated host jumps and interspecific hybridizations. Mol. Ecol. 2012, 21, 2713–2726. [Google Scholar] [CrossRef] [PubMed]
- Campbell, M.A.; Tapper, B.A.; Simpson, W.R.; Johnson, R.D.; Mace, W.; Ram, A.; Lukito, Y.; Dupont, P.-Y.; Johnson, L.J.; Scott, D.B. Epichloë hybrida, sp. nov., an emerging model system for investigating fungal allopolyploidy. Mycologia 2017, 109, 715–729. [Google Scholar] [CrossRef]
- Chen, L.; Li, X.; Li, C.; Swoboda, G.A.; Young, C.A.; Sugawara, K.; Leuchtmann, A.; Schardl, C.L. Two distinct Epichloë species symbiotic with Achnatherum inebrians, drunken horse grass. Mycologia 2015, 107, 863–873. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Nan, Z.; Song, Q.; Xia, C.; Li, X.; Yao, X.; Xu, W.; Kuang, Y.; Tian, P.; Zhang, Q. Advances in research on Epichloë endophytes in Chinese native grasses. Front. Microbiol. 2016, 7, 1399. [Google Scholar] [CrossRef]
- Lembicz, M.; Górzyńska, K.; Leuchtmann, A. Choke disease caused by Epichloë bromicola in the grass Agropyron repens in Poland. Plant Dis. 2010, 94, 1372. [Google Scholar] [CrossRef]
- Cagnano, G.; Roulund, N.; Jensen, C.S.; Forte, F.P.; Asp, T.; Leuchtmann, A. Large scale screening of Epichloë endophytes infecting Schedonorus pratensis and other forage grasses reveals a relation between microsatellite-based haplotypes and loline alkaloid levels. Front. Plant Sci. 2019, 10, 765. [Google Scholar] [CrossRef]
- Drake, I.; White, J.F., Jr.; Belanger, F.C. Identification of the fungal endophyte of Ammophila breviligulata (American beachgrass) as Epichloë amarillans. PeerJ 2018, 6, e4300. [Google Scholar] [CrossRef] [PubMed]
- Schardl, C.L.; Leuchtmann, A. Three new species of Epichloë symbiotic with North American grasses. Mycologia 1999, 91, 95–107. [Google Scholar] [CrossRef]
- Iannone, L.J.; Novas, M.V.; Young, C.A.; De Battista, J.P.; Schardl, C.L. Endophytes of native grasses from South America: Biodiversity and ecology. Fungal Ecol. 2012, 5, 357–363. [Google Scholar] [CrossRef]
- Gentile, A.; Rossi, M.S.; Cabral, D.; Craven, K.D.; Schardl, C.L. Origin, divergence, and phylogeny of Epichloë endophytes of native Argentine grasses. Mol. Phylogenet. Evol. 2005, 35, 196–208. [Google Scholar] [CrossRef]
- Charlton, N.D.; Craven, K.D.; Afkhami, M.E.; Hall, B.A.; Ghimire, S.R.; Young, C.A. Interspecific hybridization and bioactive alkaloid variation increases diversity in endophytic Epichloë species of Bromus laevipes. FEMS Microbiol. Ecol. 2014, 90, 276–289. [Google Scholar] [CrossRef]
- Mc Cargo, P.D.; Iannone, L.J.; Vignale, M.V.; Schardl, C.L.; Rossi, M.S. Species diversity of Epichloë symbiotic with two grasses from southern Argentinean Patagonia. Mycologia 2014, 106, 339–352. [Google Scholar] [CrossRef]
- Ghimire, S.R.; Rudgers, J.A.; Charlton, N.D.; Young, C.; Craven, K.D. Prevalence of an intraspecific Neotyphodium hybrid in natural populations of stout wood reed (Cinna arundinacea L.) from eastern North America. Mycologia 2011, 103, 75–84. [Google Scholar] [CrossRef]
- Leuchtmann, A.; Young, C.A.; Stewart, A.V.; Simpson, W.R.; Hume, D.E.; Scott, B. Epichloe novae-zelandiae, a new endophyte from the endemic New Zealand grass Poa matthewsii. N. Z. J. Bot. 2019, 57, 271–288. [Google Scholar] [CrossRef]
- Miles, C.O.; Menna, M.E.d.; Jacobs, S.W.L.; Garthwaite, I.; Lane, G.A.; Prestidge, R.A.; Marshall, S.L.; Wilkinson, H.H.; Schardl, C.L.; Ball, O.J.P.; et al. Endophytic fungi in indigenous Australasian grasses associated with toxicity to livestock. Appl. Environ. Microbiol. 1998, 64, 601–606. [Google Scholar] [CrossRef] [PubMed]
- Moon, C.D.; Miles, C.O.; Järlfors, U.; Schardl, C.L. The evolutionary origins of three new Neotyphodium endophyte species from grasses indigenous to the Southern Hemisphere. Mycologia 2002, 94, 694–711. [Google Scholar] [CrossRef] [PubMed]
- Burr, K.; Mittal, S.; Hopkins, A.; Young, C. Characterisation of fungal endophytes present in Elymus canadensis (Canada wildrye). N. Z. Grassl. Assoc. Res. Pract. Ser. 2006, 13, 473–476. [Google Scholar] [CrossRef]
- Cabral, D.; Iannone, L.J.; Stewart, A.V.; Novas, M.V. The distribution and incidence of Neotyphodium endophytes in native grasses from Argentina and its association with environmental factors. N. Z. Grassl. Assoc. Res. Pract. Ser. 2006, 13, 79–82. [Google Scholar] [CrossRef]
- Craven, K.D.; Blankenship, J.D.; Leuchtmann, A.; Hignight, K.; Schardl, C.L. Hybrid fungal endophytes symbiotic with the grass Lolium pratense. Sydowia 2001, 53, 44–73. [Google Scholar]
- Iannone, L.J.; Pinget, A.D.; Nagabhyru, P.; Schardl, C.L.; De Battista, J.P. Beneficial effects of Neotyphodium tembladerae and Neotyphodium pampeanum on a wild forage grass. Grass Forage Sci. 2012, 67, 382–390. [Google Scholar] [CrossRef]
- Clay, K.; Brown, V.K. Infection of Holcus lanatus and H. mollis by Epichloë in experimental grasslands. Oikos 1997, 79, 363–370. [Google Scholar] [CrossRef]
- Iannone, L.J.; Irisarri, J.G.N.; Mc Cargo, P.D.; Pérez, L.I.; Gundel, P.E. Occurrence of Epichloë fungal endophytes in the sheep-preferred grass Hordeum comosum from Patagonia. J. Arid Environ. 2015, 115, 19–26. [Google Scholar] [CrossRef]
- Moon, C.D.; Scott, D.B.; Schardl, C.L.; Christensen, M.J. The evolutionary origins of Epichloe endophytes from annual ryegrasses. Mycologia 2000, 92, 1103–1118. [Google Scholar] [CrossRef]
- Kang, Y.; Ji, Y.L.; Zhang, C.W.; Wang, Z.W. Neotyphodium sinicum, from several Roegneria species throughout China, provides insights into the evolution of asexual endophytes. Symbiosis 2011, 54, 37–45. [Google Scholar] [CrossRef]
- Li, W.; Ji, Y.; Yu, H.; Wang, Z. A new species of Epichloë symbiotic with Chinese grasses. Mycologia 2006, 98, 560–570. [Google Scholar] [CrossRef]
- Philipson, M.N. A symptomless endophyte of ryegrass (Lolium perenne) that spores on its host—A light microscope study. N. Z. J. Bot. 1989, 27, 513–519. [Google Scholar] [CrossRef]
- Tadych, M.; Ambrose, K.V.; Bergen, M.S.; Belanger, F.C.; White Jr, J.F. Taxonomic placement of Epichloë poae sp. nov. and horizontal dissemination to seedlings via conidia. Fungal Divers. 2012, 54, 117–131. [Google Scholar] [CrossRef]
- Hume, D.E.; Schmid, J.; Rolston, M.P.; Vijayan, P.; Hickey, M.J. Effect of climatic conditions on endophyte and seed viability in stored ryegrass seed. Seed Sci. Technol. 2011, 39, 481–489. [Google Scholar] [CrossRef]
- Hume, D.E.; Card, S.D.; Rolston, M.P. Effects of storage conditions on endophyte and seed viability in pasture grasses. In Proceedings of the 22nd International Grassland Congress, Sydney, Australia, 15–19 September 2013; pp. 405–408. [Google Scholar]
- Easton, H.S.; Latch, G.C.M.; Tapper, B.A.; Ball, O.J.P. Ryegrass host genetic control of concentrations of endophyte-derived alkaloids. Crop Sci. 2002, 42, 51–57. [Google Scholar] [CrossRef]
- Faeth, S.H.; Fagan, W.F. Fungal endophytes: Common host plant symbionts but uncommon mutualists. Integr. Comp. Biol. 2002, 42, 360–368. [Google Scholar] [CrossRef]
- Schardl, C.L.; Young, C.A.; Faulkner, J.R.; Florea, S.; Pan, J. Chemotypic diversity of epichloae, fungal symbionts of grasses. Fungal Ecol. 2012, 5, 331–344. [Google Scholar] [CrossRef]
- Agee, C.S.; Hill, N.S. Ergovaline variability in Acremonium-infected tall fescue due to environment and plant genotype. Crop Sci. 1994, 34, 221–226. [Google Scholar] [CrossRef]
- Brosi, G.B.; McCulley, R.L.; Bush, L.P.; Nelson, J.A.; Classen, A.T.; Norby, R.J. Effects of multiple climate change factors on the tall fescue-fungal endophyte symbiosis: Infection frequency and tissue chemistry. New Phytol. 2011, 189, 797–805. [Google Scholar] [CrossRef]
- Hennessy, L.M.; Popay, A.J.; Finch, S.C.; Clearwater, M.J.; Cave, V.M. Temperature and plant genotype alter alkaloid concentrations in ryegrass infected with an Epichloë endophyte and this affects an insect herbivore. Front. Plant Sci. 2016, 7, 1097. [Google Scholar] [CrossRef]
- Fuchs, B.; Krischke, M.; Mueller, M.J.; Krauss, J. Plant age and seasonal timing determine endophyte growth and alkaloid biosynthesis. Fungal Ecol. 2017, 29, 52–58. [Google Scholar] [CrossRef]
- Watson, R.H.; Keogh, R.G.; McDonald, M.F. Ewe reproductive performance and growth rate of suckling-lambs on endophyte-infected perennial ryegrass pasture. N. Z. Grassl. Assoc. Res. Pract. Ser. 1999, 7, 19–26. [Google Scholar] [CrossRef]
- Ball, O.J.-P.; Barker, G.M.; Prestidge, R.A.; Lauren, D.R. Distribution and accumulation of the alkaloid peramine in Neotyphodium lolii-infected perennial ryegrass. J. Chem. Ecol. 1997, 23, 1419–1434. [Google Scholar] [CrossRef]
- Patchett, B.J.; Chapman, R.B.; Fletcher, L.R.; Gooneratne, S.R. Root loline concentration in endophyte-infected meadow fescue (Festuca pratensis) is increased by grass grub (Costelytra zealandica) attack. N. Z. Plant Prot. 2008, 61, 210–214. [Google Scholar] [CrossRef]
- Thompson, F.N.; Stuedemann, J.A. Pathophysiology of fescue toxicosis. Agric. Ecosyst. Environ. 1993, 44, 263–281. [Google Scholar] [CrossRef]
- Roberts, C.; Andrae, J. Tall fescue toxicosis and management. Crop Manag. 2004, 3, 1–18. [Google Scholar] [CrossRef]
- Strickland, J.R.; Aiken, G.E.; Klotz, J.L. Ergot alkaloid induced blood vessel dysfunction contributes to fescue toxicosis. Forage Grazinglands 2009, 7, 1–7. [Google Scholar] [CrossRef]
- Di Menna, M.E.; Mortimer, P.H.; Prestidge, R.A.; Hawkes, A.D.; Sprosen, J.M. Lolitrem B concentrations, counts of Acremonium lolii hyphae, and the incidence of ryegrass staggers in lambs on plots of A. lolii-infected perennial ryegrass. N. Z. J. Agric. Res. 1992, 35, 211–217. [Google Scholar] [CrossRef]
- Prestidge, R.A. Causes and control of perennial ryegrass staggers in New Zealand. Agric. Ecosyst. Environ. 1993, 44, 283–300. [Google Scholar] [CrossRef]
- Duringer, J.M.; Blythe, L.L.; Estill, C.T.; Moon, A.; Murty, L.; Livesay, S.; Galen, A.; Craig, A.M. Determination of a sub-chronic threshold for lolitrem B and perennial ryegrass toxicosis in Angus cattle consuming endophyte-infected perennial ryegrass (Lolium perenne) straw over 64 days. Livest. Sci. 2021, 250, 104570. [Google Scholar] [CrossRef]
- Klotz, J.; Nicol, A. Ergovaline, an endophytic alkaloid. 1. Animal physiology and metabolism. Anim. Prod. Sci. 2016, 56, 1761–1774. [Google Scholar] [CrossRef]
- Caradus, J.R.; Johnson, L.J. Epichloë fungal endophytes—From a biological curiosity in wild grasses to an essential component of resilient high performing ryegrass and fescue pastures. J. Fungi 2020, 6, 322. [Google Scholar] [CrossRef]
- Fletcher, L.R.; Sutherland, B.L.; Fletcher, C.G. The impact of endophyte on the health and productivity of sheep grazing ryegrass based pastures. In Proceedings of the Ryegrass Endophyte—An Essential New Zealand Symbiosis; Grassland Research and Practice Series No. 7; New Zealand Grassland Association: Napier, New Zealand; pp. 11–17.
- Bluett, S.J.; Thom, E.R.; Clark, D.A.; Waugh, C.D. Effects of a novel ryegrass endophyte on pasture production, dairy cow milk production and calf liveweight gain. Aust. J. Exp. Agric. 2005, 45, 11–19. [Google Scholar] [CrossRef]
- Van Heeswijck, R.; McDonald, G. Acremonium endophytes in perennial ryegrass and other pasture grasses in Australia and New Zealand. Aust. J. Agric. Res. 1992, 43, 1683–1709. [Google Scholar] [CrossRef]
- Reed, K.F.M.; Page, S.W.; Lean, I.J. Perennial Ryegrass Toxicosis in Australia; Meat & Livestock Australia: North Sydney, Australia, 2005; p. 100. [Google Scholar]
- Reed, K.F.M.; Nie, Z.N.; Walker, L.V.; Mace, W.J.; Clark, S.G. Weather and pasture characteristics associated with outbreaks of perennial ryegrass toxicosis in southern Australia. Anim. Prod. Sci. 2011, 51, 738–752. [Google Scholar] [CrossRef]
- Bourke, C.A.; Hunt, E.; Watson, R. Fescue-associated oedema of horses grazing on endophyte-inoculated tall fescue grass (Festuca arundinacea) pastures. Aust. Vet. J. 2009, 87, 492–498. [Google Scholar] [CrossRef] [PubMed]
- Finch, S.; Munday, J.; Sutherland, B.; Vlaming, J.; Fletcher, L. Further investigation of equine fescue oedema induced by Mediterranean tall fescue (Lolium arundinaceum) infected with selected fungal endophytes (Epichloë coenophiala). N. Z. Vet. J. 2017, 65, 322–326. [Google Scholar] [CrossRef] [PubMed]
- Cosgrove, G.P.; Anderson, C.B.; Berquist, T.R.N. Fungal endophyte effects on intake, health and liveweight gain of grazing cattle. N. Z. Grassl. Assoc. 1996, 57, 43–48. [Google Scholar]
- Fletcher, L.R. “Non-toxic” endophytes in ryegrass and their effect on livestock health and production. NZGA Res. Pract. Ser. 1999, 7, 133–139. [Google Scholar] [CrossRef]
- Thom, E.R.; Waugh, C.D.; Minnee, E.M.K.; Waghorn, G.C. Effects of novel and wild-type endophytes in perennial ryegrass on cow health and production. N. Z. Vet. J. 2013, 61, 87–97. [Google Scholar] [CrossRef]
- Seddon, H.; Carne, H. Staggers in Stock due to Rough-Bearded Grass (Echinopogon Ovatus); New South Wales Department of Agriculture Bulletin: Sydney, Australia, 1926; pp. 34–40. [Google Scholar]
- Pomilio, A.; Rofi, R.; Gambino, M.; Mazzini, C.; de Langenheim, R.D. The lethal principle of Poa huecu (coirón blanco): A plant indigenous to Argentina. Toxicon 1989, 27, 1251–1262. [Google Scholar] [CrossRef]
- Miles, C.; Uzal, F.; Garthwaite, I.; Munday-Finch, S.; di Menna, M. Poa huecu and Festuca argentina; AgResearch: Hamilton, New Zealand, 1995; p. 20. [Google Scholar]
- Petroski, R.J.; Powell, R.G.; Clay, K. Alkaloids of Stipa robusta (sleepygrass) infected with an Acremonium endophyte. Nat. Toxins 1992, 1, 84–88. [Google Scholar] [CrossRef]
- Shymanovich, T.; Saari, S.; Lovin, M.E.; Jarmusch, A.K.; Jarmusch, S.A.; Musso, A.M.; Charlton, N.D.; Young, C.A.; Cech, N.B.; Faeth, S.H. Alkaloid variation among epichloid endophytes of sleepygrass (Achnatherum robustum) and consequences for resistance to insect herbivores. J. Chem. Ecol. 2015, 41, 93–104. [Google Scholar] [CrossRef] [PubMed]
- Miles, C.O.; Lane, G.A.; Menna, M.E.d.; Garthwaite, I.; Piper, E.L.; Ball, O.J.P.; Latch, G.C.M.; Allen, J.M.; Hunt, M.B.; Bush, L.P.; et al. High levels of ergonovine and lysergic acid amide in toxic Achnatherum inebrians accompany infection by an Acremonium-like endophytic fungus. J. Agric. Food Chem. 1996, 44, 1285–1290. [Google Scholar] [CrossRef]
- Russell, G.G.; Ellis, R. The genus Melica L. (Poaceae) in southern Africa. Bothalia 1982, 14, 37–44. [Google Scholar] [CrossRef]
- Miles, C.; di Menna, M.; Kellerman, T.; Garthwaite, I.; Ball, O. Melica Decumbens; AgResearch: Hamilton, New Zealand, 1995; p. 20. [Google Scholar]
- Popay, A.J.; Rowan, D.D. Endophytic fungi as mediators of plant-insect interactions. In Insect-Plant Interactions 5; Bernays, E.A., Ed.; CRC Press: Boca Raton, FL, USA, 1994; pp. 83–103. [Google Scholar]
- Bush, L.P.; Wilkinson, H.H.; Schardl, C.L. Bioprotective alkaloids of grass-fungal endophyte symbioses. Plant Physiol. 1997, 114, 1–7. [Google Scholar] [CrossRef]
- Wiewióra, B.; Żurek, G.; Żurek, M. Endophyte-mediated disease resistance in wild populations of perennial ryegrass (Lolium perenne). Fungal Ecol. 2015, 15, 1–8. [Google Scholar] [CrossRef]
- Xia, C.; Li, N.; Zhang, Y.; Li, C.; Zhang, X.; Nan, Z. Role of Epichloë endophytes in defense responses of cool-season grasses to pathogens: A review. Plant Dis. 2018, 102, 2061–2073. [Google Scholar] [CrossRef] [PubMed]
- Card, S.D.; Bastías, D.A.; Caradus, J.R. Antagonism to Plant Pathogens by Epichloë Fungal Endophytes—A Review. Plants 2021, 10, 1997. [Google Scholar] [CrossRef] [PubMed]
- Bacon, C.W. Abiotic stress tolerances (moisture, nutrients) and photosynthesis in endophyte-infected tall fescue. Agric. Ecosyst. Environ. 1993, 44, 123–141. [Google Scholar] [CrossRef]
- Elmi, A.; West, C. Endophyte effects on tall fescue stomatal response, osmotic adjustment, and tiller survival. New Phytol. 1995, 131, 61–67. [Google Scholar] [CrossRef]
- Malinowski, D.P.; Belesky, D.P. Adaptations of endophyte-infected cool-season grasses to environmental stresses: Mechanisms of drought and mineral stress tolerance. Crop Sci. 2000, 40, 923–940. [Google Scholar] [CrossRef]
- Hahn, H.; McManus, M.T.; Warnstorff, K.; Monahan, B.J.; Young, C.A.; Davies, E.; Tapper, B.A.; Scott, B. Neotyphodium fungal endophytes confer physiological protection to perennial ryegrass (Lolium perenne L.) subjected to a water deficit. Environ. Exp. Bot. 2008, 63, 183–199. [Google Scholar] [CrossRef]
- He, L.; Hatier, J.; Card, S.; Matthew, C. Endophyte-infection reduces leaf dehydration of ryegrass and tall fescue plants under moderate water deficit. N. Z. Grassl. Assoc. 2013, 5–7. [Google Scholar] [CrossRef]
- Nagabhyru, P.; Dinkins, R.D.; Wood, C.L.; Bacon, C.W.; Schardl, C.L. Tall fescue endophyte effects on tolerance to water-deficit stress. BMC Plant Biol. 2013, 13, 127. [Google Scholar] [CrossRef]
- Decunta, F.A.; Pérez, L.I.; Malinowski, D.P.; Molina-Montenegro, M.A.; Gundel, P.E. A systematic review on the effects of Epichloë fungal endophytes on drought tolerance in cool-season grasses. Front. Plant Sci. 2021, 12, 380. [Google Scholar] [CrossRef]
- Hewitt, K.G.; Popay, A.J.; Hofmann, R.W.; Caradus, J.R. Epichloë—A lifeline for temperate grasses under combined drought and insect pressure. Grass Res. 2021, 1, 7. [Google Scholar] [CrossRef]
- Vázquez-de-Aldana, B.R.; Romo, M.; García-Ciudad, A.; Petisco, C.; García-Criado, B. Infection with the fungal endophyte Epichloë festucae may alter the allelopathic potential of red fescue. Ann. Appl. Biol. 2011, 159, 281–290. [Google Scholar] [CrossRef]
- Ren, A.; Li, C.; Gao, Y. Endophytic fungus improves growth and metal uptake of Lolium arundinaceum Darbyshire ex. Schreb. Int. J. Phytoremediat. 2011, 13, 233–243. [Google Scholar] [CrossRef]
- Mirzahossini, Z.; Shabani, L.; Sabzalian, M.R.; Sharifi-Tehrani, M. ABC transporter and metallothionein expression affected by NI and Epichloe endophyte infection in tall fescue. Ecotoxicol. Environ. Saf. 2015, 120, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Malinowski, D.P.; Belesky, D.P. Tall fescue aluminum tolerance is affected by Neotyphodium coenophialum endophyte. J. Plant Nutr. 1999, 22, 1335–1349. [Google Scholar] [CrossRef]
- Reza Sabzalian, M.; Mirlohi, A. Neotyphodium endophytes trigger salt resistance in tall and meadow fescues. J. Plant Nutr. Soil Sci. 2010, 173, 952–957. [Google Scholar] [CrossRef]
- Ren, A.; Wei, M.; Yin, L.; Wu, L.; Zhou, Y.; Li, X.; Gao, Y. Benefits of a fungal endophyte in Leymus chinensis depend more on water than on nutrient availability. Environ. Exp. Bot. 2014, 108, 71–78. [Google Scholar] [CrossRef]
- Malinowski, D.P.; Belesky, D.P. Neotyphodium coenophialum-endophyte infection affects the ability of tall fescue to use sparingly available phosphorus. J. Plant Nutr. 1999, 22, 835–853. [Google Scholar] [CrossRef]
- Wang, J.; Nan, Z.; Christensen, M.J.; Li, C. Glucose-6-phosphate dehydrogenase plays a vital role in Achnatherum inebrians plants host to Epichloë gansuensis by improving growth under nitrogen deficiency. Plant Soil 2018, 430, 37–48. [Google Scholar] [CrossRef]
- Patterson, C.G.; Potter, D.A.; Fannin, F.F. Feeding deterrency of alkaloids from endophyte-infected grasses to Japanese beetle grubs. Entomol. Exp. Appl. 1991, 61, 285–289. [Google Scholar] [CrossRef]
- Popay, A.J.; Wyatt, R.T. Resistance to Argentine stem weevil in perennial ryegrass infected with endophytes producing different alkaloids. N. Z. Plant Prot. 1995, 48, 229–236. [Google Scholar] [CrossRef]
- Ball, O.J.-P.; Miles, C.O.; Prestidge, R.A. Ergopeptine alkaloids and Neotyphodium lolii-mediated resistance in perennial ryegrass against adult Heteronychus arator (Coleoptera: Scarabaeidae). J. Econ. Entomol. 1997, 90, 1382–1391. [Google Scholar] [CrossRef]
- Popay, A.J.; Gerard, P.J. Cultivar and endophyte effects on a root aphid, Aploneura lentisci, in perennial ryegrass. N. Z. Plant Prot. 2007, 60, 223–227. [Google Scholar] [CrossRef]
- Potter, D.A.; Stokes, J.T.; Redmond, C.T.; Schardl, C.L.; Panaccione, D.G. Contribution of ergot alkaloids to suppression of a grass-feeding caterpillar assessed with gene-knockout endophytes in perennial ryegrass. Entomol. Exp. Appl. 2007, 126, 138–147. [Google Scholar] [CrossRef]
- Clay, K.; Cheplick, G.P. Effect of ergot alkaloids from fungal endophyte-infected grasses on fall armyworm (Spodoptera frugiperda). J. Chem. Ecol. 1989, 15, 169–182. [Google Scholar] [CrossRef]
- Dymock, J.; Rowan, D.; McGee, I. Effects of endophyte-produced mycotoxins on Argentine stem weevil and the cutworm Graphania mutans. In Proceedings of the 5th Australasian Grassland Invertebrate Ecology Conference, Victoria, Australia, 5–19 August 1988; pp. 35–43. [Google Scholar]
- Rowan, D.D.; Gaynor, D.L. Isolation of feeding deterrents against Argentine stem weevil from ryegrass infected with the endophyte Acremonium loliae. J. Chem. Ecol. 1986, 12, 647–658. [Google Scholar] [CrossRef] [PubMed]
- Rowan, D.D. Lolitrems, peramine and paxilline: Mycotoxins of the ryegrass/endophyte interaction. Agric. Ecosyst. Environ. 1993, 44, 103–122. [Google Scholar] [CrossRef]
- Popay, A.J.; Cotching, B.; Moorhead, A.; Ferguson, C.M. AR37 endophyte effects on porina and root aphid populations and ryegrass damage in the field. N. Z. Grassl. Assoc. 2012, 74, 165–170. [Google Scholar] [CrossRef]
- Bryant, J.R.; Lambert, M.G.; Brazendale, R.; Holmes, C.W.; Fraser, T.J. Effects of integrated cropping and pasture renewal on the performance and profit of dairy farms. N. Z. Grassl. Assoc. 2010, 72, 29–34. [Google Scholar] [CrossRef]
- Patchett, B.J.; Gooneratne, R.B.; Chapman, B.; Fletcher, L.R. Effects of loline-producing endophyte-infected meadow fescue ecotypes on New Zealand grass grub (Costelytra zealandica). N. Z. J. Agric. Res. 2011, 54, 303–313. [Google Scholar] [CrossRef]
- Barker, G.M.; Patchett, B.J.; Cameron, N.E. Epichloë uncinata infection and loline content protect Festulolium grasses from crickets (Orthoptera: Gryllidae). J. Econ. Entomol. 2015, 108, 789–797. [Google Scholar] [CrossRef] [PubMed]
- Espinoza, J.; Chacón-Fuentes, M.; Quiroz, A.; Bardehle, L.; Escobar-Bahamondes, P.; Ungerfeld, E. Antifeedant effects and repellent activity of loline alkaloids from endophyte-infected tall fescue against horn flies, Haematobia irritans (Diptera: Muscidae). Molecules 2021, 26, 817. [Google Scholar] [CrossRef]
- Johnson, M.; Dahlman, D.; Siegel, M.; Bush, L.; Latch, G.; Potter, D.; Varney, D. Insect feeding deterrents in endophyte-infected tall fescue. Appl. Environ. Microbiol. 1985, 49, 568–571. [Google Scholar] [CrossRef] [PubMed]
- Riedell, W.; Kieckhefer, R.; Petroski, R.; Powell, R. Naturally-occurring and synthetic loline alkaloid derivatives: Insect feeding behavior modification and toxicity. J. Entomol. Sci. 1991, 26, 122–129. [Google Scholar] [CrossRef]
- Popay, A.J.; Lane, G.A. The effect of crude extracts containing loline alkaloids on two New Zealand insect pests. In Proceedings of the 4th International Neotyphodium/Grass Interactions Symposium, Soest, Germany, 27–29 September 2000; pp. 471–475. [Google Scholar]
- Koppenhöfer, A.M.; Fuzy, E.M. Effects of turfgrass endophytes (Clavicipitaceae: Ascomycetes) on white grub (Coleoptera: Scarabaeidae) control by the entomopathogenic nematode Heterorhabditis bacteriophora (Rhabditida: Heterorhabditidae). Environ. Entomol. 2003, 32, 392–396. [Google Scholar] [CrossRef]
- Jensen, J.G.; Popay, A.J.; Tapper, B.A. Argentine stem weevil adults are affected by meadow fescue endophyte and its loline alkaloids. N. Z. Plant Prot. 2009, 62, 12–18. [Google Scholar] [CrossRef]
- Gaynor, D.; Rowan, D. Peramine—An Argentine stem weevil feeding deterrent from endophyte-infected ryegrass. In Proceedings of the 4th Australiasian Conference on Grassland Invertebrate Ecology Canterbury, Canterbury, New Zealand, 13–17 May 1985; pp. 338–343. [Google Scholar]
- Bastias, D.A.; Martínez-Ghersa, M.A.; Ballaré, C.L.; Gundel, P.E. Epichloë fungal endophytes and plant defenses: Not just alkaloids. Trends Plant Sci. 2017, 22, 939–948. [Google Scholar] [CrossRef]
- Fuchs, B.; Krauss, J. Can Epichloë endophytes enhance direct and indirect plant defence? Fungal Ecol. 2019, 38, 98–103. [Google Scholar] [CrossRef]
- Nelson, E.H.; Hogg, B.N.; Mills, N.J.; Daane, K.M. Syrphid flies suppress lettuce aphids. BioControl 2012, 57, 819–826. [Google Scholar] [CrossRef]
- Easton, H.S.; Fletcher, L.R. The importance of endophyte in agricultural systems—Changing plant and animal productivity. In Proceedings of the 6th International Symposium on Fungal Endophytes of Grasses, Christchurch, New Zealand, 25–28 March 2007; pp. 11–18. [Google Scholar]
- Caradus, J.R.; Johnson, L.J. Improved adaptation of temperate grasses through mutualism with fungal endophytes. In Endophyte biotechnology: Potential for Agriculture and Pharmacology; Schouten, A., Ed.; CABI: Wallingford, UK, 2019; pp. 85–108. [Google Scholar] [CrossRef]
- Caradus, J. The commercial impact of Neotyphodium endophyte science and technology. In Proceedings of the 8th International Grass Endophyte Symposium, Lanzhou, China, 13–16 August 2012; pp. 13–16. [Google Scholar]
- Fletcher, L.R. Novel endophytes in New Zealand grazing systems: The perfect solution or a compromise? In Epichloae, Endophytes of Cool Season Grasses: Implications, Utilization and Biology; Young, C.A., Aiken, G.E., McCulley, R.L., Strickland, J.R., Schardl, C.L., Eds.; The Samuel Roberts Noble Foundation: Ardmore, OK, USA, 2012; pp. 5–13. [Google Scholar]
- Thom, E.R.; Popay, A.J.; Hume, D.E.; Fletcher, L.R. Evaluating the performance of endophytes in farm systems to improve farmer outcomes—A review. Crop Pasture Sci. 2012, 63, 927–943. [Google Scholar] [CrossRef]
- Young, C.A.; Hume, D.E.; McCulley, R.L. Forages and pastures symposium: Fungal endophytes of tall fescue and perennial ryegrass: Pasture friend or foe? J. Anim. Sci. 2013, 91, 2379–2394. [Google Scholar] [CrossRef]
- Hume, D.E.; Stewart, A.V.; Simpson, W.R.; Johnson, R.D. Epichloë fungal endophytes play a fundamental role in New Zealand grasslands. J. R. Soc. N. Z. 2020, 50, 279–298. [Google Scholar] [CrossRef]
- Caradus, J.; Chapman, D.; Cookson, T.; Cotching, B.; Deighton, M.; Donnelly, L.; Ferguson, J.; Finch, S.; Gard, S.; Hume, D. Epichloë endophytes–new perspectives on a key ingredient for resilient perennial grass pastures. NZGA Res. Pract. Ser. 2021, 17, 57–70. [Google Scholar]
- Fletcher, L.R.; Markham, L.J.; White, S.R. Endophytes and heat tolerance in lambs grazing perennial ryegrass. N. Z. Grassl. Assoc. 1994, 56, 265–270. [Google Scholar] [CrossRef]
- Popay, A.J.; Hume, D.E. Endophytes improve ryegrass persistence by controlling insects. NZGA Res. Pract. Ser. 2011, 15, 149–156. [Google Scholar] [CrossRef]
- Tapper, B.A.; Lane, G.A. Janthitrems found in a Neotyphodium endophyte of perennial ryegrass. In Proceedings of the 5th International Symposium on Neotyphodium/Grass Interactions, Fayetteville, AR, USA, 23–26 May 2004; p. Poster 301. [Google Scholar]
- Stewart, A.V.; Kerr, G.A.; Lissaman, W.; Rowarth, J.S. Endophyte in ryegrass and fescue. In Pasture and Forage Plants for New Zealand; Grassland Research and Practice Series 8; Stewart, A.V., Kerr, G.A., Lissaman, W., Rowarth, J.S., Eds.; New Zealand Grassland Association: Mosgiel, New Zealand, 2014; Chapter 8; pp. 66–77. [Google Scholar]
- Logan, C.M.; Edwards, G.; Kerr, G.; Williams, S. Ryegrass Staggers and Liveweight Gain of Ewe Lambs and Hoggets Grazing Four Combinations of Perennial Ryegrass and Strains of Endophyte. New Zealand Society of Animal Production, 2015. Available online: https://researcharchive.lincoln.ac.nz/handle/10182/9991 (accessed on 24 August 2021).
- Eady, C.; Corkran, J.; Bailey, K.; Kerr, G.; Nicol, A. Estimation of ergovaline intake of cows from grazed perennial ryegrass containing NEA2 or standard endophyte. J. N. Z. Grassl. 2017, 79, 197–203. [Google Scholar] [CrossRef]
- Fletcher, L.; Finch, S.; Sutherland, B.; de Nicolo, G.; Mace, W.; Van Koten, C.; Hume, D. The occurrence of ryegrass staggers and heat stress in sheep grazing ryegrass-endophyte associations with diverse alkaloid profiles. N. Z. Vet. J. 2017, 65, 232–241. [Google Scholar] [CrossRef]
- Hewitt, K.G.; Mace, W.J.; McKenzie, C.M.; Matthew, C.; Popay, A.J. Fungal alkaloid occurrence in endophyte-infected perennial ryegrass during seedling establishment. J. Chem. Ecol. 2020, 46, 410–421. [Google Scholar] [CrossRef] [PubMed]
- Popay, A.J.; Hume, D.E.; Mace, W.J.; Faville, M.J.; Finch, S.C.; Cave, V.M. A root aphid, Aploneura lentisci is affected by Epichloë endophyte strain and impacts perennial ryegrass growth in the field. Crop Pasture Sci. 2021, 72, 155–164. [Google Scholar] [CrossRef]
- Barker, G.M.; Patchett, B.J.; Cameron, N.E. Epichloë uncinata infection and loline content afford Festulolium grasses protection from black beetle (Heteronychus arator). N. Z. J. Agric. Res. 2015, 58, 35–56. [Google Scholar] [CrossRef]
- Barker, G.; Patchett, B.; Gillanders, T.; Brown, G.; Montel, S.; Cameron, N. Feeding and oviposition by Argentine stem weevil on Epichloe uncinata-infected loline-containing Festulolium. N. Z. Plant Prot. 2015, 68, 212–217. [Google Scholar]
- Fletcher, L.R.; Fletcher, C.G.; Sutherland, B.L. The health and performance of sheep grazing a non-toxic tall fescue endophyte association. In Proceedings of the Fourth International Neotyphodium/ Grass Interactions Symposium, Soest, Germany, 27–29 September 2000; pp. 459–464. [Google Scholar]
- Popay, A.J.; Tapper, B.A. Endophyte effects on consumption of seed and germinated seedlings of ryegrass and fescue by grass grub (Costelytra zealandica) larvae. In Proceedings of the 6th International Symposium on Fungal Endophytes of Grasses, Christchurch, New Zealand, 25–28 March 2007; pp. 353–356. [Google Scholar]
- Beck, P.A.; Stewart, C.B.; Gunter, S.A.; Singh, D. Evaluation of tall fescue for stocker cattle in the Gulf coastal plain. Prof. Anim. Sci. 2009, 25, 569–579. [Google Scholar] [CrossRef]
- ACIL Allen Consulting. New Zealand’s Science System: Case Studies, Report to the Ministry of Business, Innovation and Employment. 2017. Available online: https://www.csiro.au/-/media/About/Files/CSIRO-Value-Final-Report-2017-PDF.pdf (accessed on 24 August 2021).
- Duckett, S.K.; Andrae, J.G.; Bouton, J.H.; Hoveland, C.S.; McCann, M.A. Subsequent feedlot performance and carcass quality of steers that grazed tall fescue with different endophyte types. Crop Forage Turfgrass Manag. 2016, 2, 1–7. [Google Scholar] [CrossRef]
- Duckett, S.; Lacy, R.; Andrae, J.; Hoveland, C.; Bouton, J.; McCann, M. Animal performance, carcass quality and economics of cattle finished after grazing endophyte-infected, endophyte-free or nonergot alkaloid-producing endophyte-infected tall fescue. N. Z. Grassl. Assos. Res. Pract. Ser. 2006, 13, 253–255. [Google Scholar] [CrossRef]
- Bouton, J.; Hill, N.S.; Hoveland, C.S.; McCann, M.A.; Thompson, F.N. Performance of tall fescue cultivars infected with non-toxic endophytes. In Proceedings of the 4th International Neotyphodium/Grass Interactions Symposium, Soest, Germany, 27–29 September 2000; pp. 179–185. [Google Scholar]
- Finch, S.; Pennell, C.; Kerby, J.; Cave, V. Mice find endophyte-infected seed of tall fescue unpalatable–implications for the aviation industry. Grass Forage Sci. 2016, 71, 659–666. [Google Scholar] [CrossRef]
- Pennell, C.G.; Rolston, M.P. Avanex™ Unique endophyte technology-bird deterrent endophytic grass for amenity turf and airports. In Proceedings of the 22nd International Grasslands Congress, Syndey, Australia, 15–19 September 2013; pp. 405–408. [Google Scholar]
- Pennell, C.; Rolston, M.; Baird, D.; Hume, D.; McKenzie, C.; Card, S. Using novel-grass endophyte associations as an avian deterrent. N. Z. Plant Prot. 2017, 70, 255–264. [Google Scholar] [CrossRef]
- Pennell, C.; Rolston, M.; Van Koten, C.; Hume, D.; Card, S. Reducing bird numbers at New Zealand airports using a unique endophyte product. N. Z. Plant Prot. 2017, 70, 224–234. [Google Scholar] [CrossRef]
- Pennell, C.G.; Rolston, M.P.; Latham, A.D.M.; Mace, W.J.; Vlaming, B.; van Koten, C.; Latham, M.C.; Brown, S.; Card, S.D. Novel grass–endophyte associations reduce the feeding behaviour of invasive European rabbits (Oryctolagus cuniculus). Wildl. Res. 2017, 43, 681–690. [Google Scholar] [CrossRef]
- Card, S.D.; Faville, M.J.; Simpson, W.R.; Johnson, R.D.; Voisey, C.R.; De Bonth, A.C.M.; Hume, D.E. Mutualistic fungal endophytes in the Triticeae—Survey and description. FEMS Microb. Ecol. 2014, 88, 94–106. [Google Scholar] [CrossRef]
- Simpson, W.R.; Faville, M.J.; Moraga, R.A.; Williams, W.M.; Mcmanus, M.T.; Johnson, R.D. Epichloë fungal endophytes and the formation of synthetic symbioses in Hordeeae (= Triticeae) grasses. J. Syst. Evol. 2014, 52, 794–806. [Google Scholar] [CrossRef]
- Hume, D.E.; Drummond, J.B.; Rolston, M.P.; Simpson, W.R.; Johnson, R.D. Epichloë endophyte improves agronomic performance and grain yield of rye (Secale cereale). In Proceedings of the 10th International Symposium on Fungal Endophytes of Grasses, Salamanca, Spain, 18–21 June 2018; p. 102. [Google Scholar]
- Simpson, W.R.; Popay, A.J.; Mace, W.J.; Hume, D.E.; Johnson, R.D. Creating synthetic symbioses between Epichloë and rye (Secale cereale) to improve crop performance. In Proceedings of the 10th International Symposium on Fungal Endophytes of Grasses, Salamanca, Spain, 18–21 June 2018; p. 96. [Google Scholar]
- Popay, A.; Jensen, J.B. Insect protection provided by loline-producing endophytes infecting rye. In Proceedings of the 10th International Symposium on Fungal Endophytes of Grasses, Salamanca, Spain, 18–21 June 2018; p. 103. [Google Scholar]
- Johnson, R.D.; Tsujimoto, H.; Hume, D.E.; Mace, W.J.; Simpson, W.R. Alien chromatin from Hordeeae grasses enhances the compatibility of Epichloë endophyte symbiosis with the hexaploid wheat Triticum aestivum. In Proceedings of the 10th International Symposium on Fungal Endophytes of Grasses, Salamanca, Spain, 18–21 June 2018; p. 104. [Google Scholar]
- Johnson, L.J.; Caradus, J.R. The science required to deliver Epichloë endophytes to commerce. In Endophytes for a Growing World; Cambridge University Press: Cambridge, UK, 2019; pp. 343–370. [Google Scholar] [CrossRef]
- Johnson, L.J.; Bastías, D.A.; Caradus, J.R.; Chettri, P.; Forester, N.T.; Mace, W.J.; Miller, T.A.; Moon, C.D.; Voisey, C.R.; Zhang, W. The dynamic mechanisms underpinning symbiotic Epichloë–grass interactions: Implications for sustainable and resilient agriculture. In Microbiome Stimulants for Crops; Elsevier: Amsterdam, The Netherlands, 2021; pp. 73–108. [Google Scholar] [CrossRef]
Bioactivity Trait | Consequence | Causation | References |
---|---|---|---|
Disadvantageous bioactivity | |||
Fescue toxicosis | Fescue foot, high core body temperature, increased respiration, low heart rate, altered fat metabolism, low serum prolactin, failure or reduced milk production produce milk, suppression of the immune system, reduced forage intake, low rate of weight gain, and reproductive problems. | Ergot alkaloids | [65,66,67] |
Ryegrass staggers | Neurotoxic disease with symptoms ranging from slight muscular tremors through to staggering, and collapse. Can be associated with animal deaths. | Lolitrem B, other indole diterpenoids; sub-chronic threshold of 1.55 ppm for cattle and 2 to 2.5 ppm for sheep | [68,69,70] |
Heat stress | Animals that are exposed to high concentrations of ergot alkaloids lose their ability to dissipate heat through restricted blood flow. | Ergovaline and other ergot alkaloids | [67,71,72] |
Fecal soiling of the breech (dags) | Leads to higher incidence of myiasis (flystrike). | Ergovaline and lolitrem B | [73] |
Reduced animal performance | Reduced liveweight gains and milk yields. | Ergovaline and lolitrem B | [73,74] |
Ryegrass toxicosis | Can result in death through misadventure. | Documented only in Australia and likely to be a combination of ergot alkaloids and lolitrem B | [75,76,77] |
Equine fescue oedema | Inappetence, depression, and subcutaneous oedema of the head, neck, chest, and abdomen in horses. | Only noted with endophytes in Mediterranean-type tall fescues | [78,79] |
Reduced herbivore feeding | Deterrence to feeding. | Ergovaline and other ergot alkaloids | [80,81,82] |
Livestock toxicosis (Australia, New Zealand) | Rare toxicosis in grazing livestock after Poa matthewsii and Echinopogon consumption. | Possible paxilline | [41,83] |
Huecu toxicosis (Argentina) | Intoxication in grazing animals after Poa and Festuca grazing infected with E. tembladerae. | Indole-diterpenoid and ergot alkaloids | [84,85] |
Sleepy grass toxicosis (USA) | Intoxication and narcosis in grazing livestock after Stipa robusta consumption. | Lysergic acid amide | [86,87] |
Drunken horse grass toxicosis (Mongolia, China) | Intoxication and narcosis in horses, donkeys, sheep, goats, and cattle after Achnatherum inebrians consumption. | Ergot, ergonovine, lysergic acid, stipatoxin | [88] |
Dronkgras toxicosis (South Africa) | Drunk-like behaviour of cattle, horses, donkeys consuming Melica decumbens. | Indole-diterpenoids | [89,90] |
Advantageous bioactivity | |||
Insect pest resistance | Improved plant persistence and yield in presence of some insect pests. | Various alkaloids depending on insect species (Table 3) | [72,91,92] |
Plant pathogen resistances | Reduced incidence to some fungal diseases. | Many known, but possible effects of peroxidase activity, phenolic compounds and antifungal proteins | [72,93,94,95] |
Drought (low water supply) tolerance | Improved tolerance of drought through moderation of stomatal conductance, enhanced osmoregulation. | Largely unknown, but compounds implicated include polyols; increased levels of sugars and proline | [96,97,98,99,100,101,102,103] |
Allelopathy | Endophytic fescue plants reduce radicle elongation and growth of competing seedling species; but can detrimental on companion Trifolium species. | Total phenolic compound concentration was greater in endophytic than non-endophytic plants | [104] |
Heavy metal tolerance | Improved growth in presence of cadmium, nickel. | Unknown; in case of cadmium improved translocation to shoot, but for nickel reduced translocation to shoot | [105,106] |
Aluminium tolerance | Aluminium sequestration was greater on root surfaces and in root tissues of endophytic plants. | Increased exudation of phenolic-like compounds from roots of endophytic plants | [107] |
Salinity tolerance | Improved leaf survival; changes of anatomical structures reducing water loss; and allowing water, nutrients, photosynthates translocation. | Unknown, but decreased sodium potassium and chlorine uptake | [108,109] |
Nutrient uptake | Increased uptake of N and P from low levels of supply. | Unknown | [96,98,110,111] |
Secondary Metabolite | Mode of Action | Invertebrates Affected | Reference |
---|---|---|---|
Ergot alkaloids | |||
Ergovaline | Deterrent; anti-feeding; toxic | Argentine stem weevil (Listronotus bonariensis) adults; African black beetle (Heteronychus arator) adults; root aphid (Aploneura lentisci); Japanese beetle (Popillia japonica) larvae; black cutworm (Agrostis ipsilon); nematode (Pratylenchus scribneri) | [112,113,114,115,116] |
Ergocryptine | Deterrent; anti-feeding; toxic | Argentine stem weevil adults and larvae; fall armyworm (Spodoptera frugiperda) larvae; nematode (Pratylenchus scribneri) | [117,118] |
Indole diterpenoids | |||
Lolitrem B | Deterrent; anti-feeding | Argentine stem weevil larvae; circumstantial effect on Paratylenchus nematode | [119] |
Paxilline | Deterrent; anti-feeding | Argentine stem weevil larvae | [120] |
Epoxyjanthitrems | Deterrent and toxic | Porina | [121] |
Lolines | |||
N-formyl loline, N-acetyl loline, N-acetylnorloline | Deterrent; anti-feeding | Grass grub (Costelytra giveni); horn flies (Haematobia irritans); African black beetle; field cricket (Gryllidae spp.); Japanese beetle (Popillia japonica) larvae | [122,123,124,125] |
Deterrent and toxic | Argentine stem weevil larvae and adults; milkweed bug (Oncopeltus fasciatus); corn borer (Ostrinia nubilalis) larvae; aphid (Rhopalosiphum padi and Schizaphis graminum); fall armyworm (Spodoptera frugiperda) larvae; porina larvae (Wiseana ssp.); nematode (Pratylenchus scribneri) | [126,127,128,129,130] | |
Pyrrolopyrazine | |||
Peramine | Deterrent; anti-feeding | Argentine stem weevil adults and larvae | [120,131] |
Not a deterrent, but disrupted development | Cutworm (Graphania mutans) | [118] |
Epichloë Brand (or Strain) | Known Chemistry | Insect Pest Affects Significantly Reduced | Animal Performance | References |
---|---|---|---|---|
Ryegrass; endophytes are E. festucae var lolii, or E. festucae | ||||
Nil endophyte | No chemistry | No insect pest protection | Excellent | [74,81,143,144] |
AR1 | Peramine | Argentine stem weevil (larva), pasture mealybug (Balanococcus poae) | Excellent | [81] |
AR37 | Epoxyjanthitrems | Argentine stem weevil (adult), pasture mealybug, porina, African black beetle, root aphid | Excellent, but minor staggers can occur with sheep/lambs | [145] |
NEA (NEA2) | Low ergovaline and peramine, very low lolitrem B | Pasture mealybug, African black beetle | Excellent | [146,147] |
NEA2 (mix of NEA2 and NEA6) | Medium ergovaline, medium-low peramine, very low lolitrem B | Argentine stem weevil, pasture mealybug, African black beetle, root aphid | Excellent, but lamb live weight gain could be reduced in extreme circumstances | [147,148,149,150,151] |
NEA4 (mix of NEA2 and NEA3) | Medium ergovaline, medium-low peramine, very low lolitrem B | Argentine stem weevil, pasture mealybug, African black beetle | Excellent, but lamb live weight gain could be reduced in extreme circumstances | [147] |
Standard endophyte | High ergovaline, peramine and lolitrem B | Argentine stem weevil, pasture mealybug, African black beetle; root aphid | Can cause ryegrass staggers in sheep and lambs, and significantly decrease lamb growth rates in summer and autumn, and significantly increase dags. In dairy cows, it has been shown to depress milksolids production through summer and autumn. | [74,81,143,144,149,151] |
Festulolium; endophyte is E. uncinatum | ||||
U2 | Loline compounds NFL, NAL, and NANL | African black beetle, Argentine stem weevil, pasture mealybug, root aphid, grass grub, field crickets | Excellent | [124,152,153] |
Tall fescue; endophytes are E. coenophiala | ||||
Nil endophyte | No chemistry | No insect protection | Excellent | [154] |
MaxQ II (USA); MaxP (NZ, Australia) (AR584) | Peramine, loline compounds NFL, NAL, and NANL | African black beetle, Argentine stem weevil, pasture mealybug, grass grub, root aphid, fall armyworm, corn flea beetle (Chaetocnema pulicaria), bird cherry-oat aphid (Rhopalosiphum padi), field crickets | Excellent | [155,156] |
E34 | Low ergovaline | Not tested | Excellent; lowered blood serum prolactin levels | [156] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caradus, J.R.; Card, S.D.; Hewitt, K.G.; Hume, D.E.; Johnson, L.J. Asexual Epichloë Fungi—Obligate Mutualists. Encyclopedia 2021, 1, 1084-1100. https://doi.org/10.3390/encyclopedia1040083
Caradus JR, Card SD, Hewitt KG, Hume DE, Johnson LJ. Asexual Epichloë Fungi—Obligate Mutualists. Encyclopedia. 2021; 1(4):1084-1100. https://doi.org/10.3390/encyclopedia1040083
Chicago/Turabian StyleCaradus, John R., Stuart D. Card, Katrin G. Hewitt, David E. Hume, and Linda J. Johnson. 2021. "Asexual Epichloë Fungi—Obligate Mutualists" Encyclopedia 1, no. 4: 1084-1100. https://doi.org/10.3390/encyclopedia1040083
APA StyleCaradus, J. R., Card, S. D., Hewitt, K. G., Hume, D. E., & Johnson, L. J. (2021). Asexual Epichloë Fungi—Obligate Mutualists. Encyclopedia, 1(4), 1084-1100. https://doi.org/10.3390/encyclopedia1040083