Physical-Chemical Properties of Nano-Sized Phyllosilicates: Recent Environmental and Industrial Advancements
Definition
:1. Introduction
Mica Group | |||
---|---|---|---|
Sheet Type | Layer Stacking | General Formula | |
Muscovite | Dioctahedral | 2:1 | KAl2(Si3,Al)O10(OH,F)2 |
Paragonite | Dioctahedral | 2:1 | NaAl2(Si3,Al)O10(OH)2 |
Margarite | Dioctahedral | 2:1 | CaAl2(Al2Si2)O10(OH)2 |
Celadonite | Dioctahedral | 2:1 | K(Mg,Fe3+,◽)(Si4O10)(OH)2 |
Biotite | Trioctahedral | 2:1 | K(Mg,Fe)3AlSi3O10(OH,F)2 |
Phlogopite | Trioctahedral | 2:1 | KMg3(Si3,Al)O10(OH,F)2 |
Annite | Trioctahedral | 2:1 | KFe3(AlSi3)O10(OH)2 |
Lepidolite | Trioctahedral | 2:1 | K(Li,Al)3(Si,Al)4O10(OH,F)2 |
Zinnwaldite | Trioctahedral | 2:1 | KLiFe2+Al(AlSi3)O10(OH,F)2 |
Clay group | |||
Kaolinite | Dioctahedral | 1:1 | Al2Si2O5(OH)4 |
Halloysite | Dioctahedral | 1:1 | Al2Si2O5(OH)4·2H2O |
Illite | Dioctahedral | 2:1 | K0.6–0.85(Al,Mg)2(Si,Al)4O10(OH)2 |
Talc | Dioctahedral | 2:1 | Mg3Si4O10(OH)2 |
Pyrophyllite | Dioctahedral | 2:1 | Al2Si4O10(OH)2 |
Palygorskite | Dioctahedral | 2:1 | (Mg,Al)2Si4O10(OH)·4(H2O) |
Sepiolite | Trioctahedral | 2:1 | Mg4Si6O15(OH)2·6H2O |
Nontronite | Dioctahedral | 2:1 | Na0.3Fe3+2(Si,Al)4O10(OH)2·n(H2O) |
Montmorillonite | Dioctahedral | 2:1 | (Na,Ca)0.3(Al,Mg)2Si4O10(OH)2·nH2O |
Vermiculite | Either trioctahedral or dioctahedral | 2:1 | Mg0.7(Mg,Fe2+,Al)6(Si,Al)8O20(OH)4·8H2O |
Glauconite | Dioctahedral | 2:1 | (K,Na)(Fe3+Al,Mg)2(Si,Al)4O10(OH)2 |
Chlorite | Either trioctahedral or dioctahedral | 2:1:1 | (Mg,Fe)3(Si,Al)4O10(OH)2·(Mg,Fe)3(OH)6 |
2. Methods for Preparing Nano-Sized Phyllosilicates
2.1. Physical and Chemical Modification Methods for Preparing Nano-Sized Phyllosilicates
2.2. X-ray Powder Diffraction (XRPD)
3. Applications and Influences
3.1. Surface Charge and Its Potential in Technological Applications
3.2. Nano-Sized Micas for Pearlescent Pigment Production
3.3. Nanoclays and Their Role as Environmental Adsorbents
3.4. Importance of Nano-Sized Clay Minerals in Hazardous Waste Disposal
3.5. Nanoclays in Polymers
3.6. Clay Mineral Physical-Chemical Properties for Enological Applications
3.7. Clay Minerals in Healthcare
4. Conclusions and Prospects
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brigatti, M.F.; Galán, E.; Theng, B.K.G. Chapter 2—Structure and Mineralogy of Clay Minerals. In Developments in Clay Science; Bergaya, F., Lagaly, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; Volume 5, pp. 19–86. ISBN 1572-4352. [Google Scholar]
- Brigatti, M.F.; Malferrari, D.; Laurora, A.; Elmi, C. Structure and Mineralogy of Layer Silicates: Recent Perspectives and New Trends. In Layered Mineral Structures and Their Application in Advanced Technologies; Brigatti, M.F., Mottana, A., Eds.; Mineralogical Society of Great Britain and Ireland: Middlesex, UK, 2011; Volume 11, pp. 1–71. ISBN 978-0-903056-29-8. [Google Scholar]
- Brigatti, M.F.; Guggenheim, S.J. Mica Crystal Chemistry and the Influence of Pressure, Temperature, and Solid Solution on Atomistic Models. Rev. Mineral. Geochem. 2002, 46, 1–97. [Google Scholar] [CrossRef]
- Brigatti, M.F.; Galán, E.; Theng, B.K.G. Structure and Mineralogy of Clay Minerals. In Developments in Clay Science; Elsevier: Amsterdam, The Netherlands, 2013; Volume 5, pp. 21–81. ISBN 978-0-08-099364-5. [Google Scholar]
- Brindley, G.W.; Brown, G. (Eds.) Crystal Structures of Clay Minerals and Their X-ray Identification; Mineralogical Society of Great Britain and Ireland: Middlesex, UK, 1980; ISBN 978-0-903056-08-3. [Google Scholar]
- Brown, G. Structure, Crystal Chemistry, and Origin of the Phyllosilicate Minerals Common in Soil Clays. In Soil Colloids and Their Associations in Aggregates; De Boodt, M.F., Hayes, M.H.B., Herbillon, A., De Strooper, E.B.A., Tuck, J.J., Eds.; Springer: Boston, MA, USA, 1990; pp. 7–38. ISBN 978-1-4899-2611-1. [Google Scholar]
- Guggenheim, S.; Martin, R.T. Definition of Clay and Clay Mineral: Joint Report of the Aipea Nomenclature and CMS Nomenclature Committees. Clays Clay Miner. 1995, 43, 255–256. [Google Scholar] [CrossRef]
- Elmi, C.; Guggenheim, S.; Gieré, R. Surface Crystal Chemistry of Phyllosilicates Using X-ray Photoelectron Spectroscopy: A Review. Clays Clay Miner. 2016, 64, 537–551. [Google Scholar] [CrossRef]
- Sinha Ray, S. 1—An Overview of Pure and Organically Modified Clays. In Clay-Containing Polymer Nanocomposites; Sinha Ray, S., Ed.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 1–24. ISBN 978-0-444-59437-2. [Google Scholar]
- Alderton, D. Micas. In Encyclopedia of Geology, 2nd ed.; Alderton, D., Elias, S.A., Eds.; Academic Press: Oxford, UK, 2021; pp. 326–333. ISBN 978-0-08-102909-1. [Google Scholar]
- Carroll, D. Clay Minerals: A Guide to Their X-ray Identification; Special Paper; Geological Society of America: Boulder, CO, USA, 1970; ISBN 978-0-8137-2126-2. [Google Scholar]
- Hochella, M.F.; Lower, S.K.; Maurice, P.A.; Penn, R.L.; Sahai, N.; Sparks, D.L.; Twining, B.S. Nanominerals, Mineral Nanoparticles, and Earth Systems. Science 2008, 319, 1631–1635. [Google Scholar] [CrossRef]
- Barhoum, A.; García-Betancourt, M.L.; Jeevanandam, J.; Hussien, E.A.; Mekkawy, S.A.; Mostafa, M.; Omran, M.M.; Abdalla, M.S.; Bechelany, M. Review on Natural, Incidental, Bioinspired, and Engineered Nanomaterials: History, Definitions, Classifications, Synthesis, Properties, Market, Toxicities, Risks, and Regulations. Nanomaterials 2022, 12, 177. [Google Scholar] [CrossRef]
- Hochella, M.F.; Mogk, D.W.; Ranville, J.; Allen, I.C.; Luther, G.W.; Marr, L.C.; McGrail, B.P.; Murayama, M.; Qafoku, N.P.; Rosso, K.M.; et al. Natural, Incidental, and Engineered Nanomaterials and Their Impacts on the Earth System. Science 2019, 363, eaau8299. [Google Scholar] [CrossRef]
- Kirbiyik Kurukavak, Ç. Thermal and Morphological Characterization of Bionanocomposites. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2022; ISBN 978-0-12-803581-8. [Google Scholar]
- Majid, M.S.A.; Ridzuan, M.J.M.; Lim, K.H. 6—Effect of Nanoclay Filler on Mechanical and Morphological Properties of Napier/Epoxy Composites. In Interfaces in Particle and Fibre Reinforced Composites; Goh, K.L., Aswathi, M.k., De Silva, R.T., Thomas, S., Eds.; Woodhead Publishing Series in Composites Science and Engineering; Woodhead Publishing: Sawston, UK, 2020; pp. 137–162. ISBN 978-0-08-102665-6. [Google Scholar]
- Guan, H.; Zhao, Y. 9—Decontamination Application of Nanoclays. In Clay Nanoparticles; Cavallaro, G., Fakhrullin, R., Pasbakhsh, P., Eds.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2020; pp. 203–224. ISBN 978-0-12-816783-0. [Google Scholar]
- Wang, W.; Wang, A. Nanoscale Clay Minerals for Functional Ecomaterials: Fabrication, Applications, and Future Trends. In Handbook of Ecomaterials; Martínez, L.M.T., Kharissova, O.V., Kharisov, B.I., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 2409–2490. ISBN 978-3-319-68255-6. [Google Scholar]
- Kausar, A. 7—Flame Retardant Potential of Clay Nanoparticles. In Clay Nanoparticles; Cavallaro, G., Fakhrullin, R., Pasbakhsh, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 169–184. ISBN 978-0-12-816783-0. [Google Scholar]
- Sinha Ray, S.; Bousmina, M. Biodegradable Polymers and Their Layered Silicate Nanocomposites: In Greening the 21st Century Materials World. Prog. Mater. Sci. 2005, 50, 962–1079. [Google Scholar] [CrossRef]
- Theng, B.K.G.; Churchman, G.J.; Gates, W.P.; Yuan, G. Organically Modified Clays for Pollutant Uptake and Environmental Protection. In Soil Mineral Microbe-Organic Interactions: Theories and Applications; Huang, Q., Huang, P.M., Violante, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 145–174. ISBN 978-3-540-77686-4. [Google Scholar]
- Xu, P.; Qi, G.; Lv, D.; Niu, D.; Yang, W.; Bai, H.; Yan, X.; Zhao, X.; Ma, P. Enhanced Flame Retardancy and Toughness of Eco-Friendly Polyhydroxyalkanoate/Bentonite Composites Based on in Situ Intercalation of P-N-Containing Hyperbranched Macromolecules. Int. J. Biol. Macromol. 2023, 232, 123345. [Google Scholar] [CrossRef]
- Cheng, H.; Zhou, Y.; Liu, Q. 6—Kaolinite Nanomaterials: Preparation, Properties and Functional Applications. In Nanomaterials from Clay Minerals; Wang, A., Wang, W., Eds.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2019; pp. 285–334. ISBN 978-0-12-814533-3. [Google Scholar]
- Deng, H.; Wu, Y.; Shahzadi, I.; Liu, R.; Yi, Y.; Li, D.; Cao, S.; Wang, C.; Huang, J.; Su, H. 8—Nanomaterials From Mixed-Layer Clay Minerals: Structure, Properties, and Functional Applications. In Nanomaterials from Clay Minerals; Wang, A., Wang, W., Eds.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2019; pp. 365–413. ISBN 978-0-12-814533-3. [Google Scholar]
- Dong, J.; Zhang, J. 13—Maya Blue Pigments Derived From Clay Minerals. In Nanomaterials from Clay Minerals; Wang, A., Wang, W., Eds.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2019; pp. 627–661. ISBN 978-0-12-814533-3. [Google Scholar]
- Wang, A.; Wang, W. 1—Introduction. In Nanomaterials from Clay Minerals; Wang, A., Wang, W., Eds.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–20. ISBN 978-0-12-814533-3. [Google Scholar]
- Liu, Y.; Wang, W.; Wang, A. Effect of Dry Grinding on the Microstructure of Palygorskite and Adsorption Efficiency for Methylene Blue. Powder Technol. 2012, 225, 124–129. [Google Scholar] [CrossRef]
- Pérez-Rodríguez, J.L.; Madrid Sánchez del Villar, L.; Sánchez-Soto, P.J. Effects of Dry Grinding on Pyrophyllite. Clay Miner. 1988, 23, 399–410. [Google Scholar] [CrossRef]
- Kauffman, S.H.; Leidner, J.; Woodhams, R.T.; Xanthos, M. The Preparation and Classification of High Aspect Ratio Mica Flakes for Use in Polymer Reinforcement. Powder Technol. 1974, 9, 125–133. [Google Scholar] [CrossRef]
- Malayoglu, U.; Besun, N. Development of Nanosized Mica Particles from Natural Mica by Sonication/Organic Intercalation Method for Pearlescent Pigment. Minerals 2020, 10, 572. [Google Scholar] [CrossRef]
- Pérez-Rodríguez, J.L.; Wiewióra, A.; Drapaa, J.; Pérez-Maqueda, L.A. The Effect of Sonication on Dioctahedral and Trioctahedral Micas. Ultrason. Sonochemistry 2006, 13, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Jin, Y.; Qian, Y.; Hu, T. A New Approach to Efficiently Disperse Aggregated Palygorskite Into Single Crystals via Adding Freeze Process Into Traditional Extrusion Treatment. IEEE Trans. Nanotechnol. 2010, 9, 6–10. [Google Scholar] [CrossRef]
- Barrios, M.S.; González, L.V.F.; Rodríguez, M.A.V.; Pozas, J.M.M. Acid Activation of a Palygorskite with HCl: Development of Physico-Chemical, Textural and Surface Properties. Appl. Clay Sci. 1995, 10, 247–258. [Google Scholar] [CrossRef]
- Konta, J. Clay Minerals Including Related Phyllosilicates: Interdisciplinary Research and Inward Integration. Acta Geodyn. Geomater. 2005, 2, 53–68. [Google Scholar]
- Grim, R.E. Clay Mineralogy; McGraw-Hill: New York, NY, USA, 1968; ISBN 978-0-07-024836-6. [Google Scholar]
- Bish, D.L.; Post, J.E. (Eds.) Modern Powder Diffraction; Mineralogical Society of America; De Gruyter: Chantilly, VA, USA, 1989; Volume 20, ISBN 978-1-5015-0901-8. [Google Scholar]
- Gregg, S.J.; Parker, T.W.; Stephens, M.J. The Effect of Grinding on Kaolinite. Clay Miner. Bull. 1953, 2, 34–44. [Google Scholar] [CrossRef]
- Mackenzie, R.C.; Milne, A.A. The Effect of Grinding on Micas. I. Muscovite. Mineral. Mag. J. Mineral. Soc. 1953, 30, 178–185. [Google Scholar] [CrossRef]
- Takahashi, H. Effect of Dry Grinding on Kaolin Minerals. Clays Clay Miner. 1957, 6, 279–291. [Google Scholar] [CrossRef]
- Miller, J.G.; Oulton, T.D. Prototropy in Kaolinite during Percussive Grinding. Clays Clay Miner. 1970, 18, 313–323. [Google Scholar] [CrossRef]
- Číčel, B.; Kranz, G. Mechanism of Montmorillonite Structure Degradation by Percussive Grinding. Clay Miner. 1981, 16, 151–162. [Google Scholar] [CrossRef]
- Cornejo, J.; Hermosin, M.C. Structural Alteration of Sepiolite by Dry Grinding. Clay Miner. 1988, 23, 391–398. [Google Scholar] [CrossRef]
- Reynolds, R.C., Jr.; Bish, D.L. The Effects of Grinding on the Structure of a Low-Defect Kaolinite. Am. Mineral. 2002, 87, 1626–1630. [Google Scholar] [CrossRef]
- Moore, D.M.; Reynolds, R.C., Jr. X-ray Diffraction and Identification and Analysis of Clay Minerals, 2nd ed.; Oxford University Press: New York, NY, USA, 1997; ISBN 978-0-19-508713-0. [Google Scholar]
- Środoń, J. Nature of Mixed-Layer Clays and Mechanisms of Their Formation and Alteration. Annu. Rev. Earth Planet. Sci. 1999, 27, 19–53. [Google Scholar] [CrossRef]
- Brindley, G.W. Ethylene Glycol and Glycerol Complexes of Smectites and Vermiculites. Clay Miner. 1966, 6, 237–259. [Google Scholar] [CrossRef]
- Mosser-Ruck, R.; Devineau, K.; Charpentier, D.; Cathelineau, M. Effects of Ethylene Glycol Saturation Protocols on XRD Patterns: A Critical Review and Discussion. Clays Clay Miner. 2005, 53, 631–638. [Google Scholar] [CrossRef]
- Elmi, C.; Brigatti, M.F.; Guggenheim, S.; Pasquali, L.; Montecchi, M.; Nannarone, S. Crystal Chemistry and Surface Configurations of Two Iron-Bearing Trioctahedral Mica-1M Polytypes. Clays Clay Miner. 2014, 62, 243–252. [Google Scholar] [CrossRef]
- Elmi, C.; Brigatti, M.F.; Guggenheim, S.; Pasquali, L.; Montecchi, M.; Malferrari, D.; Nannarone, S. Sodian Muscovite-2M1: Crystal Chemistry and Surface Features. Can. Mineral. 2013, 51, 5–14. [Google Scholar] [CrossRef]
- Elmi, C.; Brigatti, M.F.; Guggenheim, S.; Pasquali, L.; Montecchi, M.; Nannarone, S. Crystal Chemistry and Surface Configurations of Two Polylithionite-1M Crystals. Am. Mineral. 2014, 99, 2049–2059. [Google Scholar] [CrossRef]
- Adapa, S.; Swamy, D.R.; Kancharla, S.; Pradhan, S.; Malani, A. Role of Mono- and Divalent Surface Cations on the Structure and Adsorption Behavior of Water on Mica Surface. Langmuir 2018, 34, 14472–14488. [Google Scholar] [CrossRef]
- Pintea, S.; de Poel, W.; de Jong, A.E.F.; Felici, R.; Vlieg, E. Solid–Liquid Interface Structure of Muscovite Mica in SrCl2 and BaCl2 Solutions. Langmuir 2018, 34, 4241–4248. [Google Scholar] [CrossRef] [PubMed]
- Glausch, R. Special Effect Pigments; Vincentz: Hanover, Germany, 1998; ISBN 978-3-87870-541-3. [Google Scholar]
- Gao, Q.; Wu, X.; Fan, Y.; Zhou, X. Low Temperature Synthesis and Characterization of Rutile TiO2-Coated Mica–Titania Pigments. Dye. Pigment. 2012, 95, 534–539. [Google Scholar] [CrossRef]
- Maile, F.J.; Pfaff, G.; Reynders, P. Effect Pigments—Past, Present and Future. Prog. Org. Coat. 2005, 54, 150–163. [Google Scholar] [CrossRef]
- Ben Moshe, S.; Rytwo, G. Thiamine-Based Organoclay for Phenol Removal from Water. Appl. Clay Sci. 2018, 155, 50–56. [Google Scholar] [CrossRef]
- Aslan, A.; Karaduman, E.; Derun, E.M.; Piskin, M.B. Development and Characterization of Negative Air Ion Emitting Mica- and Sericite-Based Antimicrobial Pearlescent Pigments. Ceram. Int. 2021, 47, 26421–26429. [Google Scholar] [CrossRef]
- Tan, J.; Shen, L.; Fu, X.; Hou, W.; Chen, X. Preparation and Conductive Mechanism of Mica Titania Conductive Pigment. Dye. Pigment. 2004, 62, 107–114. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, Y.; Huan, W.; Yuan, H.; Wang, L.; Carlini, R. Preparation of Magnetic Pearlescent Pigment Mica/Fe3O4 by Thermally Decomposing Ferric Formate Composite Containing Hydrazine. J. Inorg. Organomet. Polym. 2018, 28, 651–670. [Google Scholar] [CrossRef]
- Ryu, Y.C.; Kim, T.G.; Seo, G.-S.; Park, J.H.; Suh, C.S.; Park, S.-S.; Hong, S.-S.; Lee, G.D. Effect of Substrate on the Phase Transformation of TiO2 in Pearlescent Pigment. J. Ind. Eng. Chem. 2008, 14, 213–218. [Google Scholar] [CrossRef]
- Štengl, V.; Šubrt, J.; Bakardjieva, S.; Kalendova, A.; Kalenda, P. The Preparation and Characteristics of Pigments Based on Mica Coated with Metal Oxides. Dye. Pigment. 2003, 58, 239–244. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Z.; Lu, X.; Lu, G.; Sun, J. Facile Synthesis of High Antistatic Mica-Titania@graphene Composite Pearlescent Pigment at Room Temperature. Dye. Pigment. 2017, 145, 436–443. [Google Scholar] [CrossRef]
- Carroll, D. Ion Exchange in Clays and Other Minerals. GSA Bull. 1959, 70, 749–779. [Google Scholar] [CrossRef]
- Awasthi, A.; Jadhao, P.; Kumari, K. Clay Nano-Adsorbent: Structures, Applications and Mechanism for Water Treatment. SN Appl. Sci. 2019, 1, 1076. [Google Scholar] [CrossRef]
- Cavallaro, G.; Fakhrullin, R.; Pasbakhsh, P. Introduction: Overview of Nanoclays. In Clay Nanoparticles; Cavallaro, G., Fakhrullin, R., Pasbakhsh, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; p. xv. ISBN 978-0-12-816783-0. [Google Scholar]
- de Paiva, L.B.; Morales, A.R.; Valenzuela Díaz, F.R. Organoclays: Properties, Preparation and Applications. Appl. Clay Sci. 2008, 42, 8–24. [Google Scholar] [CrossRef]
- He, H.; Ma, L.; Zhu, J.; Frost, R.L.; Theng, B.K.G.; Bergaya, F. Synthesis of Organoclays: A Critical Review and Some Unresolved Issues. Appl. Clay Sci. 2014, 100, 22–28. [Google Scholar] [CrossRef]
- Pan, C.; Liu, P. Revisiting the Surface Olefin Cross-Metathesis of Nitrile Butadiene Rubber on Palygorskite Nanorods: Product Controlling for Specific Applications. Appl. Clay Sci. 2023, 231, 106757. [Google Scholar] [CrossRef]
- Zhou, S.Q.; Niu, Y.Q.; Liu, J.H.; Chen, X.X.; Li, C.S.; Gates, W.P.; Zhou, C.H. Functional Montmorillonite/Polymer Coatings. Clays Clay Miner. 2022, 70, 209–232. [Google Scholar] [CrossRef]
- Whitworth, T.M. Clay Minerals: Ion exchangeIon Exchange. In Geochemistry; Springer: Dordrecht, The Netherlands, 1998; pp. 85–87. ISBN 978-1-4020-4496-0. [Google Scholar]
- Fang, B.; Lü, T.; Ning, F.; Pang, J.; He, Z.; Sun, J. Facilitating Gas Hydrate Dissociation Kinetics and Gas Migration in Clay Interlayer by Surface Cations Shielding Effects. Fuel 2022, 318, 123576. [Google Scholar] [CrossRef]
- Zhou, C.; Tong, D.; Yu, W. 7—Smectite Nanomaterials: Preparation, Properties, and Functional Applications. In Nanomaterials from Clay Minerals; Wang, A., Wang, W., Eds.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2019; pp. 335–364. ISBN 978-0-12-814533-3. [Google Scholar]
- Appel, C.; Ma, L.Q.; Dean Rhue, R.; Kennelley, E. Point of Zero Charge Determination in Soils and Minerals via Traditional Methods and Detection of Electroacoustic Mobility. Geoderma 2003, 113, 77–93. [Google Scholar] [CrossRef]
- Gao, W.; Zhao, S.; Wu, H.; Deligeer, W.; Asuha, S. Direct Acid Activation of Kaolinite and Its Effects on the Adsorption of Methylene Blue. Appl. Clay Sci. 2016, 126, 98–106. [Google Scholar] [CrossRef]
- Li, G.; Cheng, W.; Jiang, T.; Sun, N.; Ai, L. Preparation of Porous Silica by Acid Dissociation of Thermally Activated Kaolinite. Adv. Mater. Res. 2011, 284–286, 1381–1384. [Google Scholar] [CrossRef]
- Fida, H.; Guo, S.; Zhang, G. Preparation and Characterization of Bifunctional Ti–Fe Kaolinite Composite for Cr(VI) Removal. J. Colloid Interface Sci. 2015, 442, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Chang, P.; Yu, S.; Chen, T.; Ren, A.; Chen, C.; Wang, X. Effect of pH, Ionic Strength, Fulvic Acid and Humic Acid on Sorption of Th(IV) on Na-Rectorite. J. Radioanal. Nucl. Chem. 2007, 274, 153–160. [Google Scholar] [CrossRef]
- Tan, X.L.; Chang, P.P.; Fan, Q.H.; Zhou, X.; Yu, S.M.; Wu, W.S.; Wang, X.K. Sorption of Pb(II) on Na-Rectorite: Effects of pH, Ionic Strength, Temperature, Soil Humic Acid and Fulvic Acid. Colloids Surf. A Physicochem. Eng. Asp. 2008, 328, 8–14. [Google Scholar] [CrossRef]
- Dana, K.; Sarkar, M. 5—Organophilic Nature of Nanoclay. In Clay Nanoparticles; Cavallaro, G., Fakhrullin, R., Pasbakhsh, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 117–138. ISBN 978-0-12-816783-0. [Google Scholar]
- Kryuchkova, M.-B.; Batasheva, S.; Akhatova, F.; Babaev, V.; Buzyurova, D.; Vikulina, A.; Volodkin, D.; Fakhrullin, R.; Rozhina, E. Pharmaceuticals Removal by Adsorption with Montmorillonite Nanoclay Pharmaceuticals Removal by Adsorption with Montmorillonite Nanoclay. Int. J. Mol. Sci. 2021, 22, 9670. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wu, P.; Yu, L.; Li, L.; Gong, B.; Zhu, N.; Dang, Z.; Yang, C. Preparation and Characterization of Organo-Vermiculite Based on Phosphatidylcholine and Adsorption of Two Typical Antibiotics. Appl. Clay Sci. 2017, 137, 160–167. [Google Scholar] [CrossRef]
- Jacoby, M. As Nuclear Waste Piles up, Scientists Seek the Best Long-Term Storage Solutions. Chem. Eng. News 2020, 98, 12. [Google Scholar]
- Sellin, P.; Leupin, O.X. The Use of Clay as an Engineered Barrier in Radioactive-Waste Management a Review. Clays Clay Miner. 2013, 61, 477–498. [Google Scholar] [CrossRef]
- Wolthers, M.; Charlet, L.; Tournassat, C. Chapter 20—Reactivity of Bentonite: An Additive Model Applied to Uranyl Sorption. In Interface Science and Technology; Lützenkirchen, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2006; Volume 11, pp. 539–552. ISBN 1573-4285. [Google Scholar]
- Bildstein, O.; Claret, F. Chapter 5—Stability of Clay Barriers Under Chemical Perturbations. In Developments in Clay Science; Tournassat, C., Steefel, C.I., Bourg, I.C., Bergaya, F., Eds.; Natural and Engineered Clay Barriers; Elsevier: Amsterdam, The Netherlands, 2015; Volume 6, pp. 155–188. [Google Scholar]
- Delage, P.; Cui, Y.J.; Tang, A.M. Clays in Radioactive Waste Disposal. J. Rock Mech. Geotech. Eng. 2010, 2, 111–123. [Google Scholar] [CrossRef]
- Wersin, P.; Birgersson, M.; Olsson, S.; Karnland, O.; Snellman, M. Impact of Corrosion-Derived Iron on the Bentonite Buffer within the KBS-3H Disposal Concept—The Olkiluoto Site as Case Study. In Olkiluoto Site as Case Study (No. SKB-R—08-34); Swedish Nuclear Fuel and Waste Management Co.: Oskarshamn, Sweden, 2008; p. 58. [Google Scholar]
- Carlson, L.; Karnland, O.; Oversby, V.M.; Rance, A.P.; Smart, N.R.; Snellman, M.; Vähänen, M.; Werme, L.O. Experimental Studies of the Interactions between Anaerobically Corroding Iron and Bentonite. Phys. Chem. Earth Parts A/B/C 2007, 32, 334–345. [Google Scholar] [CrossRef]
- Gorski, C.A.; Klüpfel, L.; Voegelin, A.; Sander, M.; Hofstetter, T.B. Redox Properties of Structural Fe in Clay Minerals. 2. Electrochemical and Spectroscopic Characterization of Electron Transfer Irreversibility in Ferruginous Smectite, SWa-1. Environ. Sci. Technol. 2012, 46, 9369–9377. [Google Scholar] [CrossRef]
- Anastácio, A.S.; Aouad, A.; Sellin, P.; Fabris, J.D.; Bergaya, F.; Stucki, J.W. Characterization of a Redox-Modified Clay Mineral with Respect to Its Suitability as a Barrier in Radioactive Waste Confinement. Appl. Clay Sci. 2008, 39, 172–179. [Google Scholar] [CrossRef]
- Wersin, P.; Jenni, A.; Mäder, U.K. Interaction of Corroding Iron with Bentonite in the ABM1 Experiment at Äspö, Sweden: A Microscopic Approach. Clays Clay Miner. 2015, 63, 51–68. [Google Scholar] [CrossRef]
- Hadi, J.; Wersin, P.; Serneels, V.; Greneche, J.-M. Eighteen Years of Steel–Bentonite Interaction in the FEBEX in Situ Test at the Grimsel Test Site in Switzerland. Clays Clay Miner. 2019, 67, 111–131. [Google Scholar] [CrossRef]
- Ongaro, G.; Pontefisso, A.; Zeni, E.; Lanero, F.; Famengo, A.; Zorzi, F.; Zaccariotto, M.; Galvanetto, U.; Fiorentin, P.; Gobbo, R.; et al. Chemical and Mechanical Characterization of Unprecedented Transparent Epoxy–Nanomica Composites—New Model Insights for Mechanical Properties. Polymers 2023, 15, 1456. [Google Scholar] [CrossRef] [PubMed]
- Das, P.; Manna, S.; Behera, A.K.; Shee, M.; Basak, P.; Sharma, A.K. Current Synthesis and Characterization Techniques for Clay-Based Polymer Nano-Composites and Its Biomedical Applications: A Review. Environ. Res. 2022, 212, 113534. [Google Scholar] [CrossRef] [PubMed]
- Liu, P. Polymer Modified Clay Minerals: A Review. Appl. Clay Sci. 2007, 38, 64–76. [Google Scholar] [CrossRef]
- Franco-Urquiza, E.A. Clay-Based Polymer Nanocomposites: Essential Work of Fracture. Polymers 2021, 13, 2399. [Google Scholar] [CrossRef]
- Ghanbari, A.; Behzadfar, E.; Arjmand, M. Properties of Talc Filled Reactor-Made Thermoplastic Polyolefin Composites. J. Polym. Res. 2019, 26, 241. [Google Scholar] [CrossRef]
- Gozali Balkanloo, P.; Poursattar Marjani, A.; Zanbili, F.; Mahmoudian, M. Clay Mineral/Polymer Composite: Characteristics, Synthesis, and Application in Li-Ion Batteries: A Review. Appl. Clay Sci. 2022, 228, 106632. [Google Scholar] [CrossRef]
- Gu, X.; Wang, Y.; Liu, X.; Zhang, S.; Li, H.; Sun, J.; Jin, X.; Tang, W. Efficient Approach to Enhancing the Fire Resistance of Polypropylene by Modified Microporous Aluminosilicate from Kaolinite as Synergist. Polym. Adv. Technol. 2020, 31, 1047–1058. [Google Scholar] [CrossRef]
- Shehata, A.B.; Hassan, M.A.; Darwish, N.A. Kaolin Modified with New Resin–Iron Chelate as Flame Retardant System for Polypropylene. J. Appl. Polym. Sci. 2004, 92, 3119–3125. [Google Scholar] [CrossRef]
- Sun, Y.; Yuan, B.; Chen, X.; Li, K.; Wang, L.; Yun, Y.; Fan, A. Suppression of Methane/Air Explosion by Kaolinite-Based Multi-Component Inhibitor. Powder Technol. 2019, 343, 279–286. [Google Scholar] [CrossRef]
- Tang, W.; Zhang, S.; Sun, J.; Gu, X. Flame Retardancy and Thermal Stability of Polypropylene Composite Containing Ammonium Sulfamate Intercalated Kaolinite. Ind. Eng. Chem. Res. 2016, 55, 7669–7678. [Google Scholar] [CrossRef]
- Tang, W.; Song, L.; Liu, F.; Dessie, W.; Qin, Z.; Zhang, S.; Gu, X. Improving the Flame Retardancy and Thermal Stability of Polypropylene Composites via Introducing Glycine Intercalated Kaolinite Compounds. Appl. Clay Sci. 2022, 217, 106411. [Google Scholar] [CrossRef]
- Hu, Y.; Xu, T.; Xu, H.; Zhong, Y.; Zhang, L.; Wang, B.; Sui, X.; Feng, X.; Mao, Z. Preparation and Properties of Sepiolite-Based 3D Flame-Retardant Aerogel. Clays Clay Miner. 2023, 70, 865–881. [Google Scholar] [CrossRef]
- Woo, S.H.; Lee, S.Y.; Yoon, Y.-G.; Rigacci, A.; Woo, J.-J.; Beauger, C.; Kim, H.-J. Functionalized Nanoclays for Improved Properties of Composite Proton Exchange Membranes. J. Power Sources 2022, 549, 232083. [Google Scholar] [CrossRef]
- Azeez, A.A.; Rhee, K.Y.; Park, S.J.; Hui, D. Epoxy Clay Nanocomposites—Processing, Properties and Applications: A Review. Compos. Part B Eng. 2013, 45, 308–320. [Google Scholar] [CrossRef]
- de Azeredo, H.M.C.; Otoni, C.G.; Assis, O.B.G.; Corrêa, D.S.; de Moura, M.R.; Mattoso, L.H.C. Nanoparticles and Antimicrobial Food Packaging. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 978-0-08-100596-5. [Google Scholar]
- Zaghouane-Boudiaf, H.; Boutahala, M. Preparation and Characterization of Organo-Montmorillonites. Application in Adsorption of the 2,4,5-Trichlorophenol from Aqueous Solution. Adv. Powder Technol. 2011, 22, 735–740. [Google Scholar] [CrossRef]
- Zhu, J.; Qing, Y.; Wang, T.; Zhu, R.; Wei, J.; Tao, Q.; Yuan, P.; He, H. Preparation and Characterization of Zwitterionic Surfactant-Modified Montmorillonites. J. Colloid Interface Sci. 2011, 360, 386–392. [Google Scholar] [CrossRef]
- Zhu, L.; Tian, S.; Zhu, J.; Shi, Y. Silylated Pillared Clay (SPILC): A Novel Bentonite-Based Inorgano–Organo Composite Sorbent Synthesized by Integration of Pillaring and Silylation. J. Colloid Interface Sci. 2007, 315, 191–199. [Google Scholar] [CrossRef]
- Guo, Y.X.; Liu, J.H.; Gates, W.P.; Zhou, C.H. Organo-Modification of Montmorillonite. Clays Clay Miner. 2020, 68, 601–622. [Google Scholar] [CrossRef]
- Amari, A.; Mohammed Alzahrani, F.; Mohammedsaleh Katubi, K.; Salem Alsaiari, N.; Tahoon, M.A.; Ben Rebah, F. Clay-Polymer Nanocomposites: Preparations and Utilization for Pollutants Removal. Materials 2021, 14, 1365. [Google Scholar] [CrossRef]
- Hnamte, M.; Pulikkal, A.K. Clay-Polymer Nanocomposites for Water and Wastewater Treatment: A Comprehensive Review. Chemosphere 2022, 307, 135869. [Google Scholar] [CrossRef] [PubMed]
- Trinh, B.M.; Chang, B.P.; Mekonnen, T.H. The Barrier Properties of Sustainable Multiphase and Multicomponent Packaging Materials: A Review. Prog. Mater. Sci. 2023, 133, 101071. [Google Scholar] [CrossRef]
- Kim, J.-K.; Hu, C.; Woo, R.S.C.; Sham, M.-L. Moisture Barrier Characteristics of Organoclay–Epoxy Nanocomposites. Compos. Sci. Technol. 2005, 65, 805–813. [Google Scholar] [CrossRef]
- Lange, J.; Wyser, Y. Recent Innovations in Barrier Technologies for Plastic Packaging—A Review. Packag. Technol. Sci. 2003, 16, 149–158. [Google Scholar] [CrossRef]
- Merah, N.; Ashraf, F.; Shaukat, M.M. Mechanical and Moisture Barrier Properties of Epoxy–Nanoclay and Hybrid Epoxy–Nanoclay Glass Fibre Composites: A Review. Polymers 2022, 14, 1620. [Google Scholar] [CrossRef]
- Pavlidou, S.; Papaspyrides, C.D. A Review on Polymer–Layered Silicate Nanocomposites. Prog. Polym. Sci. 2008, 33, 1119–1198. [Google Scholar] [CrossRef]
- Ozkoc, G.; Kemaloglu, S.; Quaedflieg, M. Production of Poly(Lactic Acid)/Organoclay Nanocomposite Scaffolds by Microcompounding and Polymer/Particle Leaching. Polym. Compos. 2010, 31, 674–683. [Google Scholar] [CrossRef]
- Kalendova, A.; Merinska, D.; Gerard, J.F.; Slouf, M. Polymer/Clay Nanocomposites and Their Gas Barrier Properties. Polym. Compos. 2013, 34, 1418–1424. [Google Scholar] [CrossRef]
- Raquez, J.-M.; Habibi, Y.; Murariu, M.; Dubois, P. Polylactide (PLA)-Based Nanocomposites. Prog. Polym. Sci. 2013, 38, 1504–1542. [Google Scholar] [CrossRef]
- Farah, S.; Anderson, D.G.; Langer, R. Physical and Mechanical Properties of PLA, and Their Functions in Widespread Applications—A Comprehensive Review. Adv. Drug Deliv. Rev. 2016, 107, 367–392. [Google Scholar] [CrossRef]
- Singha, S.; Hedenqvist, M.S. A Review on Barrier Properties of Poly(Lactic Acid)/Clay Nanocomposites. Polymers 2020, 12, 1095. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Deng, J.; Shao, Y.; Shi, Q.; Meng, G.; Ping, L. Effect of Polyaniline/Organophilic Montmorillonite Composites on Properties of Epoxy Coating. Corros. Rev. 2014, 32, 227–236. [Google Scholar] [CrossRef]
- Lira, E.; Salazar, F.N.; Rodríguez-Bencomo, J.J.; Vincenzi, S.; Curioni, A.; López, F. Effect of Using Bentonite during Fermentation on Protein Stabilisation and Sensory Properties of White Wine. Int. J. Food Sci. Technol. 2014, 49, 1070–1078. [Google Scholar] [CrossRef]
- Jaeckels, N.; Tenzer, S.; Meier, M.; Will, F.; Dietrich, H.; Decker, H.; Fronk, P. Influence of Bentonite Fining on Protein Composition in Wine. LWT 2017, 75, 335–343. [Google Scholar] [CrossRef]
- Ubeda, C.; Lambert-Royo, M.I.; Gil i Cortiella, M.; Del Barrio-Galán, R.; Peña-Neira, Á. Chemical, Physical, and Sensory Effects of the Use of Bentonite at Different Stages of the Production of Traditional Sparkling Wines. Foods 2021, 10, 390. [Google Scholar] [CrossRef]
- Blade, W.H.; Boulton, R. Adsorption of Protein by Bentonite in a Model Wine Solution. Am. J. Enol. Vitic. 1988, 39, 193–199. [Google Scholar] [CrossRef]
- Cosme, F.; Fernandes, C.; Ribeiro, T.; Filipe-Ribeiro, L.; Nunes, F.M. White Wine Protein Instability: Mechanism, Quality Control and Technological Alternatives for Wine Stabilisation—An Overview. Beverages 2020, 6, 19. [Google Scholar] [CrossRef]
- Sauvage, F.-X.; Bach, B.; Moutounet, M.; Vernhet, A. Proteins in White Wines: Thermo-Sensitivity and Differential Adsorbtion by Bentonite. Food Chem. 2010, 118, 26–34. [Google Scholar] [CrossRef]
- Lucchetta, M.; Pocock, K.F.; Waters, E.J.; Marangon, M. Use of Zirconium Dioxide during Fermentation as an Alternative to Protein Fining with Bentonite for White Wines. Am. J. Enol. Vitic. 2013, 64, 400–404. [Google Scholar] [CrossRef]
- Sommer, S.; Sommer, S.J.; Gutierrez, M. Characterization of Different Bentonites and Their Properties as a Protein-Fining Agent in Wine. Beverages 2022, 8, 31. [Google Scholar] [CrossRef]
- Jackson, R.S. 8—Postfermentation Treatments and Related Topics. In Wine Science, 3rd ed.; Jackson, R.S., Ed.; Academic Press: San Diego, CA, USA, 2008; pp. 418–519. ISBN 978-0-12-373646-8. [Google Scholar]
- Marchal, R.; Waters, E.J. 7—New Directions in Stabilization, Clarification and Fining of White Wines. In Managing Wine Quality; Reynolds, A.G., Ed.; Woodhead Publishing: Sawston, UK, 2010; pp. 188–225. ISBN 978-1-84569-798-3. [Google Scholar]
- Weiss, K.C.; Lange, L.W.; Bisson, L.F. Small-Scale Fining Trials: Effect of Method of Addition on Efficiency of Bentonite Fining. Am. J. Enol. Vitic. 2001, 52, 275–279. [Google Scholar] [CrossRef]
- Lambri, M.; Dordoni, R.; Silva, A.; Faveri, D.M.D. Odor-Active Compound Adsorption onto Bentonite in a Model White Wine Solution. Chem. Eng. Trans. 2013, 32, 1741–1746. [Google Scholar]
- Catarino, S.; Madeira, M.; Monteiro, F.; Rocha, F.; Curvelo-Garcia, A.S.; de Sousa, R.B. Effect of Bentonite Characteristics on the Elemental Composition of Wine. J. Agric. Food Chem. 2008, 56, 158–165. [Google Scholar] [CrossRef]
- Sommer, S.; Tondini, F. Sustainable Replacement Strategies for Bentonite in Wine Using Alternative Protein Fining Agents. Sustainability 2021, 13, 1860. [Google Scholar] [CrossRef]
- Viseras, C.; Sánchez-Espejo, R.; Palumbo, R.; Liccardi, N.; García-Villén, F.; Borrego-Sánchez, A.; Massaro, M.; Riela, S.; López-Galindo, A. Clays in Cosmetics and Personal-Care Products. Clays Clay Miner. 2021, 69, 561–575. [Google Scholar] [CrossRef]
- Bastos, C.M.; Rocha, F. Assessment of Some Clay-Based Products Available on Market and Designed for Topical Use. Geosciences 2022, 12, 453. [Google Scholar] [CrossRef]
- Massaro, M.; Colletti, C.; Lazzara, G.; Riela, S. The Use of Some Clay Minerals as Natural Resources for Drug Carrier Applications. JFB 2018, 9, 58. [Google Scholar] [CrossRef]
- Shahbaz, A.; Hussain, N.; Mahmood, T.; Iqbal, H.M.N.; Bin Emran, T.; Show, P.L.; Bilal, M. 17—Polymer Nanocomposites for Biomedical Applications. In Smart Polymer Nanocomposites; Ali, N., Bilal, M., Khan, A., Nguyen, T.A., Gupta, R.K., Eds.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2023; pp. 379–394. ISBN 978-0-323-91611-0. [Google Scholar]
- Perioli, L.; Ambrogi, V.; Bertini, B.; Ricci, M.; Nocchetti, M.; Latterini, L.; Rossi, C. Anionic Clays for Sunscreen Agent Safe Use: Photoprotection, Photostability and Prevention of Their Skin Penetration. Eur. J. Pharm. Biopharm. 2006, 62, 185–193. [Google Scholar] [CrossRef]
- Kim, D.; Kim, D.; Kim, J.; Park, C.; Roh, K.-M.; Kang, I.-M.; Seo, S.M. Synthesis and Characterization Fo Montmorillonite Supported TiO2 Composites for Enhanced UV Absorption. Clays Clay Miner. 2020, 68, 533–543. [Google Scholar] [CrossRef]
- Aguzzi, C.; Cerezo, P.; Viseras, C.; Caramella, C. Use of Clays as Drug Delivery Systems: Possibilities and Limitations. Appl. Clay Sci. 2007, 36, 22–36. [Google Scholar] [CrossRef]
- Del Hoyo, C. Layered Double Hydroxides and Human Health: An Overview. Appl. Clay Sci. 2007, 36, 103–121. [Google Scholar] [CrossRef]
- Wanna, D.; Alam, C.; Toivola, D.M.; Alam, P. Bacterial Cellulose–Kaolin Nanocomposites for Application as Biomedical Wound Healing Materials. Adv. Nat. Sci Nanosci. Nanotechnol. 2013, 4, 045002. [Google Scholar] [CrossRef]
- Williams, L.B.; Haydel, S.E. Evaluation of the Medicinal Use of Clay Minerals as Antibacterial Agents. Int. Geol. Rev. 2010, 52, 745–770. [Google Scholar] [CrossRef]
- Samlíková, M.; Holešová, S.; Hundáková, M.; Pazdziora, E.; Jankovič, Ľ.; Valášková, M. Preparation of Antibacterial Chlorhexidine/Vermiculite and Release Study. Int. J. Miner. Process. 2017, 159, 1–6. [Google Scholar] [CrossRef]
- Viseras, C.; Carazo, E.; Borrego-Sánchez, A.; García-Villén, F.; Sánchez-Espejo, R.; Cerezo, P.; Aguzzi, C. Clay Minerals in Skin Drug Delivery. Clays Clay Miner. 2019, 67, 59–71. [Google Scholar] [CrossRef]
- Khatoon, N.; Chu, M.Q.; Zhou, C.H. Nanoclay-Based Drug Delivery Systems and Their Therapeutic Potentials. J. Mater. Chem. B 2020, 8, 7335–7351. [Google Scholar] [CrossRef]
- Guggenheim, S. An Overview of Order/Disorder in Hydrous Phyllosilicates. In Layered Mineral Structures and Their Application in Advanced Technologies; Brigatti, M.F., Mottana, A., Eds.; Mineralogical Society of Great Britain and Ireland: Middlesex, UK, 2011; Volume 11, pp. 72–111. ISBN 978-0-903056-29-8. [Google Scholar]
- Tournassat, C.; Greneche, J.-M.; Tisserand, D.; Charlet, L. The Titration of Clay Minerals: I. Discontinuous Backtitration Technique Combined with CEC Measurements. J. Colloid Interface Sci. 2004, 273, 224–233. [Google Scholar] [CrossRef]
- Rebitski, E.P.; Darder, M.; Sainz-Diaz, C.I.; Carraro, R.; Aranda, P.; Ruiz-Hitzky, E. Theoretical and Experimental Investigation on the Intercalation of Metformin into Layered Clay Minerals. Appl. Clay Sci. 2020, 186, 105418. [Google Scholar] [CrossRef]
- Peixoto, D.; Pereira, I.; Pereira-Silva, M.; Veiga, F.; Hamblin, M.R.; Lvov, Y.; Liu, M.; Paiva-Santos, A.C. Emerging Role of Nanoclays in Cancer Research, Diagnosis, and Therapy. Coord. Chem. Rev. 2021, 440, 213956. [Google Scholar] [CrossRef]
- Chakraborty, J.; Chakraborty, M.; Ghosh, S.; Mitra, M.K. Drug Delivery Using Nanosized Layered Double Hydroxide, an Anionic Clay. KEM 2013, 571, 133–167. [Google Scholar] [CrossRef]
- Kumari, S.; Thakur, N.; Kumar, R.; Thakur, R.C.; Sharma, A. Effect of Synthetic Parameters on Crystallinity of Hydrotalcite-Like Anionic Clays with Elucidation and Identification through X-ray Diffraction Analysis. ECS Trans. 2022, 107, 18903–18921. [Google Scholar] [CrossRef]
- Mei, X.; Wang, W.; Yan, L.; Hu, T.; Liang, R.; Yan, D.; Wei, M.; Evans, D.G.; Duan, X. Hydrotalcite Monolayer toward High Performance Synergistic Dual-Modal Imaging and Cancer Therapy. Biomaterials 2018, 165, 14–24. [Google Scholar] [CrossRef] [PubMed]
Mineral Name | d(001) (Å) Cu-Kα | Reference |
---|---|---|
Kaolinite | 7.19 | Brindley and Brown [5] |
Kaolinite (disordered) | 7.15 | Carroll [11] |
Halloysite | 7.2 (dehydrated) 10.1 (hydrated) | Carroll [11] |
Sepiolite | 4.00–9.51 12.6, 4.31, 2.61 | Brindley and Brown [5] Carroll [11] |
Illite | 9.91 | Brindley and Brown [5] |
Talc | 9.32 | Brindley and Brown [5] |
Serpentine | 8.38 | Brindley and Brown [5] |
Vermiculite | 14.51–14.82 14.2 (unheated) 9.23 (heated) 9.3 (heated at 700 °C) | Brindley and Brown [5] Grim [35] Carroll [11] |
Smectite | 15.00 17.00–18.00 | Carroll [11] Brindley and Brown [5] |
Clinochlore 1 | 14.20 13.7 | Brindley and Brown [5] Grim [35] |
Muscovite | 10.10 9.98 | Brindley and Brown [5] Grim [35] |
Muscovite 1M | 10.077 | Carroll [11] |
Muscovite 2M | 10.014 | Carroll [11] |
Biotite | 10.30 10.1 | Brindley and Brown [5] Grim [35] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elmi, C. Physical-Chemical Properties of Nano-Sized Phyllosilicates: Recent Environmental and Industrial Advancements. Encyclopedia 2023, 3, 1439-1460. https://doi.org/10.3390/encyclopedia3040103
Elmi C. Physical-Chemical Properties of Nano-Sized Phyllosilicates: Recent Environmental and Industrial Advancements. Encyclopedia. 2023; 3(4):1439-1460. https://doi.org/10.3390/encyclopedia3040103
Chicago/Turabian StyleElmi, Chiara. 2023. "Physical-Chemical Properties of Nano-Sized Phyllosilicates: Recent Environmental and Industrial Advancements" Encyclopedia 3, no. 4: 1439-1460. https://doi.org/10.3390/encyclopedia3040103
APA StyleElmi, C. (2023). Physical-Chemical Properties of Nano-Sized Phyllosilicates: Recent Environmental and Industrial Advancements. Encyclopedia, 3(4), 1439-1460. https://doi.org/10.3390/encyclopedia3040103