Physical Properties of Helium and Application in Respiratory Care
Definition
:1. Introduction
2. Physical Properties of Helium and Other Therapeutic Gas Mixtures
2.1. Origin, Discovery, and Extraction of Helium
2.2. Density
2.3. Viscosity
2.4. Thermal Conductivity
2.5. Heat Capacity at Constant Pressure
2.6. Mass Diffusivity
3. Flow in a Simplified Lung Airways Model
3.1. Lung Model
3.2. Flow through the Lung Airways
4. Breathing and Inhaling Mixtures of Helium and Oxygen
4.1. Reduction in the Work of Breathing
4.2. Improved Diffusivity
4.3. Thermal Effects
5. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Van Sciver, S.W.; Timmerhaus, K.D.; Clark, A.F. Helium Cryogenics; Springer: New York, NY, USA, 2012. [Google Scholar]
- Palani, P.K.; Murugan, N. Selection of parameters of pulsed current gas metal arc welding. J. Mater. Process. Technol. 2006, 172, 1–10. [Google Scholar]
- Nagai, H.; Noda, K.; Yamazaki, I.; Mori, T. Status of H-II rocket first stage propulsion system. J. Propuls. Power 1992, 8, 313–319. [Google Scholar] [CrossRef]
- Reich, G. Leak detection with tracer gases; sensitivity and relevant limiting factors. Vacuum 1987, 37, 691–698. [Google Scholar] [CrossRef]
- Beenaker, C.I.M. Evaluation of a microwave-induced plasma in helium at atmospheric pressure as an element-selective detector for gas chromatography. Spectrochim. Acta Part. B At. Spectrosc. 1977, 32, 173–187. [Google Scholar] [CrossRef]
- Häussinger, P.; Glatthaar, R.; Rhode, W.; Kick, H.; Benkmann, C.; Weber, J.; Wunschel, H.J.; Stenke, V.; Leicht, E.; Stenger, H. Noble gases. In Ullmann’s Encyclopedia of Industrial Chemistry; Verlag Chemie: Hoboken, NJ, USA, 2000. [Google Scholar]
- Sayers, R.R.; Yant, W.P. The Value of Helium-Oxygen Atmosphere in Diving and Caisson Operations. Anesth. Analg. 1926, 5, 127–138. [Google Scholar] [CrossRef]
- Berganza, C.J.; Zhang, J.H. The role of helium gas in medicine. Med. Gas Res. 2013, 3, 18–24. [Google Scholar] [CrossRef]
- Postek, M.T.; Vladar, A.E.; Kramar, J.; Stern, L.A.; Notte, J.; McVey, S. Helium ion microscopy: A new technique for semiconductor metrology and nanotechnology. In AIP Conference Proceedings; American Institute of Physics: New York, NY, USA, 2007; Volume 931, pp. 161–167. [Google Scholar]
- Bouchiat, M.A.; Carver, T.R.; Varnum, C.M. Nuclear polarization in He3 gas induced by optical pumping and dipolar exchange. Phys. Rev. Lett. 1960, 5, 373–375. [Google Scholar] [CrossRef]
- Yang, X.; Cheng, Y.; Cheng, N.; Gong, J.; Bai, L.; Zhao, L.; Deng, Y. Gases for establishing pneumoperitoneum during laparoscopic abdominal surgery. Cochrane Database Syst. Rev. 2022, 3. [Google Scholar]
- Oei, G.T.; Weber, N.C.; Hollmann, M.W.; Preckel, B. Cellular effects of helium in different organs. J. Am. Soc. Anesthesiol. 2010, 112, 1503–1510. [Google Scholar] [CrossRef]
- Dickinson, R.; Franks, N.P. Bench-to-bedside review: Molecular pharmacology and clinical use of inert gases in anesthesia and neuroprotection. Crit. Care 2010, 14, 229. [Google Scholar] [CrossRef]
- Barach, A.L.; Eckman, M. The Use of Helium as a New Therapeutic Gas. Curr. Res. Anesth. Analg. 1935, 14, 210–215. [Google Scholar] [CrossRef]
- Aver, E.; Olive, K.A.; Skillman, E.D. A new approach to systematic uncertainties and self-consistency in helium abundance determinations. J. Cosmol. Astropart. Phys. 2010, 2010, 003. [Google Scholar] [CrossRef]
- Cooke, R.J.; Fumagalli, M. Measurement of the primordial helium abundance from the intergalactic medium. Nat. Astron. 2018, 2, 957–961. [Google Scholar] [CrossRef]
- Alpher, R.A.; Bethe, H.; Gamow, G. The origin of chemical elements. Phys. Rev. 1948, 73, 803–804. [Google Scholar] [CrossRef]
- Hoyle, F.; Tayler, R.J. The mystery of the cosmic helium abundance. Nature 1964, 203, 1108–1110. [Google Scholar] [CrossRef]
- Langer, N.; Henkel, C. The synthesis of helium and CNO isotopes in massive stars. Space Sci. Rev. 1995, 74, 343–353. [Google Scholar] [CrossRef]
- Lie-Svendsen, Ø.; Rees, M.H. Helium escape from the terrestrial atmosphere: The ion outflow mechanism. J. Geophys. Res. Space Phys. 1996, 101, 2435–2443. [Google Scholar] [CrossRef]
- Oliver, B.M.; Bradley, J.G.; Farrar, H., IV. Helium concentration in the Earth’s lower atmosphere. Geochim. Cosmochim. Acta 1984, 48, 1759–1767. [Google Scholar] [CrossRef]
- Lockyer, W. Helium: Its Discovery and Applications. Nature 1920, 105, 360–363. [Google Scholar] [CrossRef]
- Wheeler, M. Helium: The Disappearing Element; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Kramer, D. Helium is again in short supply. Phys. Today 2022. [Google Scholar] [CrossRef]
- White, F.M. Viscous Fluid Flow, 2nd ed.; McGraw-Hill: New York, NY, USA, 1991. [Google Scholar]
- Bird, B.; Steward, W.; Lightfoot, E. Transport Phenomena, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2002. [Google Scholar]
- Wilke, C.R. A viscosity equation for gas mixtures. J. Chem. Phys. 1950, 18, 517–519. [Google Scholar] [CrossRef]
- Sears, F.W.; Salinger, G.L. Thermodynamics, Kinetic Theory, and Statistical Thermodynamics, 3rd ed.; Addison-Wesley: Reading, MA, USA, 1975. [Google Scholar]
- Lide, D.R. (Ed.) CRC Handbook of Chemistry and Physics, 78th ed.; CRC Press: Boca Raton, FL, USA, 1997. [Google Scholar]
- Poling, B.E.; Prausnitz, J.M.; O’connell, J.P. Properties of Gases and Liquids, 5th ed.; McGraw-Hill Education: New York, NY, USA, 2001. [Google Scholar]
- Katz, I.; Caillibotte, G.; Martin, A.R.; Arpentinier, P. Property value estimation for inhaled therapeutic binary gas mixtures: He, Xe, N2O, and N2 with O2. Med. Gas Res. 2011, 1, 28. [Google Scholar] [CrossRef] [PubMed]
- Weibel, E.R.; Gomez, D.M. Architecture of the human lung: Use of quantitative methods establishes fundamental relations between size and number of lung structures. Science 1962, 137, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Weibel, E.R.; Sapoval, B.; Filoche, M. Design of peripheral airways for efficient gas exchange. Respir. Physiol. Neurobiol. 2005, 148, 3–21. [Google Scholar] [CrossRef]
- Slutsky, A.S.; Berdine, G.G.; Drazen, J.M. Steady flow in a model of human central airways. J. Appl. Physiol. 1980, 49, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Mihaescu, M.; Gutmark, E.; Murugappan, S.; Elluru, R.; Cohen, A.; Willging, J.P. Modeling flow in a compromised pediatric airway breathing air and heliox. Laryngoscope 2008, 118, 2205–2211. [Google Scholar] [CrossRef]
- Lewis, T.A.; Tzeng, Y.S.; McKinstry, E.L.; Tooker, A.C.; Hong, K.; Sun, Y.; Mansour, J.; Handler, Z.; Albert, M.S. Quantification of airway diameters and 3D airway tree rendering from dynamic hyperpolarized 3He magnetic resonance imaging. Magn. Reson. Med. Off. J. Int. Soc. Magn. Reson. Med. 2005, 53, 474–478. [Google Scholar] [CrossRef]
- Chappel, E. (Ed.) Drug Delivery Devices and Therapeutic Systems; Academic Press: New York, NY, USA, 2020. [Google Scholar] [CrossRef]
- Katz, I.M.; Martin, A.R.; Muller, P.A.; Terzibachi, K.; Feng, C.H.; Caillibotte, G.; Sandeau, J.; Texereau, J. The ventilation distribution of helium–oxygen mixtures and the role of inertial losses in the presence of heterogeneous airway obstructions. J. Biomech. 2011, 44, 1137–1143. [Google Scholar] [CrossRef]
- Wang, C.S. Inhaled Particles; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Gluck, E.H.; Onorato, D.J.; Castriotta, R. Helium-oxygen mixtures in intubated patients with status asthmaticus and respiratory acidosis. Chest 1990, 98, 693–698. [Google Scholar] [CrossRef]
- Papamoschou, D. Theoretical validation of the respiratory benefits of helium-oxygen mixtures. Respir. Physiol. 1995, 99, 183–190. [Google Scholar] [CrossRef]
- Chevrolet, J.C. Helium oxygen mixtures in the intensive care unit. Crit. Care 2001, 5, 179–181. [Google Scholar] [CrossRef] [PubMed]
- Jolliet, P.; Tassaux, D. Helium-oxygen ventilation. Respir. Care Clin. N. Am. 2002, 8, 295–307. [Google Scholar] [CrossRef] [PubMed]
- Brighenti, C.; Barbini, P.; Gnudi, G.; Cevenini, G.; Pecchiari, M.; D’Angelo, E. Helium–oxygen ventilation in the presence of expiratory flow-limitation: A model study. Respir. Physiol. Neurobiol. 2007, 157, 326–334. [Google Scholar] [CrossRef]
- O’Donnell, D.E.; Banzett, R.B.; Carrieri-Kohlman, V.; Casaburi, R.; Davenport, P.W.; Gandevia, S.C.; Gelb, A.F.; Mahler, D.A.; Webb, K.A. Pathophysiology of dyspnea in chronic obstructive pulmonary disease: A roundtable. Proc. Am. Thorac. Soc. 2007, 4, 145–168. [Google Scholar] [CrossRef]
- Kim, I.K.; Corcoran, T. Recent developments in heliox therapy for asthma and bronchiolitis. Clin. Pediatr. Emerg. Med. 2009, 10, 68–74. [Google Scholar] [CrossRef]
- Frazier, M.D.; Cheifetz, I.M. The role of heliox in paediatric respiratory disease. Paediatr. Respir. Rev. 2010, 11, 46–53. [Google Scholar] [CrossRef]
- Slinger, C.; Slinger, R.; Vyas, A.; Haines, J.; Fowler, S.J. Heliox for inducible laryngeal obstruction (vocal cord dysfunction): A systematic literature review. Laryngoscope Investig. Otolaryngol. 2019, 4, 255–258. [Google Scholar] [CrossRef]
- Lew, A.; Morrison, J.M.; Amankwah, E.; Sochet, A.A. Heliox for pediatric critical asthma: A multicenter, retrospective, registry-based descriptive study. J. Intensive Care Med. 2022, 37, 776–783. [Google Scholar] [CrossRef]
- Chappel, E. Design and characterization of a passive flow control valve dedicated to the hydrocephalus treatment. Cogent Eng. 2016, 3, 1247612. [Google Scholar] [CrossRef]
- Cornaggia, L.; Conti, L.; Hannebelle, M.; Gamper, S.; Dumont-Fillon, D.; Van Lintel, H.; Renaud, P.; Chappel, E. Passive flow control valve for protein delivery. Cogent Eng. 2017, 4, 1413923. [Google Scholar] [CrossRef]
- Dumont-Fillon, D.; Lamaison, D.; Chappel, E. Design and Characterization of 3-Stack MEMS-Based Passive Flow Regulators for Implantable and Ambulatory Infusion Pumps. J. Microelectromech. Syst. 2020, 29, 170–181. [Google Scholar] [CrossRef]
- Tachatos, N.; Chappel, E.; Dumont-Fillon, D.; Meboldt, M.; Daners, M.S. Posture related in-vitro characterization of a flow regulated MEMS CSF valve. Biomed. Microdevices 2020, 22, 21. [Google Scholar] [CrossRef]
- Chappel, E. A review of Passive Constant Flow Regulators for microfluidic applications. Appl. Sci. 2020, 10, 8858. [Google Scholar] [CrossRef]
- Chappel, E. Design and Characterization of an Adjustable Passive Flow Regulator and Application to External CSF Drainage. Micromachines 2023, 14, 675. [Google Scholar] [CrossRef] [PubMed]
- Pedley, T.J.; Schroter, R.C.; Sudlow, M.F. The prediction of pressure drop and variation of resistance within the human bronchial airways. Respir. Physiol. 1970, 9, 387–405. [Google Scholar] [CrossRef] [PubMed]
- Despas, P.J.; Leroux, M.; Macklem, P.T. Site of airway obstruction in asthma as determined by measuring maximal expiratory flow breathing air and a helium-oxygen mixture. J. Clin. Investig. 1972, 51, 3235–3243. [Google Scholar] [CrossRef]
- Jaber, S.; Fodil, R.; Carlucci, A.; Boussarsar, M.; Pigeot, J.; Lemaire, F.; Harf, A.; Lofaso, F.; Isabey, D.; Brochard, L. Noninvasive ventilation with helium–oxygen in acute exacerbations of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2000, 161, 1191–1200. [Google Scholar] [CrossRef]
- Corcoran, T.E.; Gamard, S. Development of aerosol drug delivery with helium oxygen gas mixtures. J. Aerosol Med. 2004, 17, 299–309. [Google Scholar] [CrossRef]
- Martin, A.R.; Katz, I.M.; Jenöfi, K.; Caillibotte, G.; Brochard, L.; Texereau, J. Bench experiments comparing simulated inspiratory effort when breathing helium-oxygen mixtures to that during positive pressure support with air. BMC Pulm. Med. 2012, 12, 62. [Google Scholar] [CrossRef]
- Reuben, A.D.; Harris, A.R. Heliox for asthma in the emergency department: A review of the literature. Emerg. Med. J. 2004, 21, 131–135. [Google Scholar] [CrossRef]
- Laude, E.A.; Duffy, N.C.; Baveystock, C.; Dougill, B.; Campbell, M.J.; Lawson, R.; Jones, P.W.; Calverley, P.M. The effect of helium and oxygen on exercise performance in chronic obstructive pulmonary disease: A randomized crossover trial. Am. J. Respir. Crit. Care Med. 2006, 173, 865–870. [Google Scholar] [CrossRef] [PubMed]
- Hashemian, S.M.; Fallahian, F. The use of heliox in critical care. Int. J. Crit. Illn. Inj. Sci. 2014, 4, 138–142. [Google Scholar] [CrossRef] [PubMed]
- Liet, J.M.; Ducruet, T.; Gupta, V.; Cambonie, G. Heliox inhalation therapy for bronchiolitis in infants. Cochrane Database Syst. Rev. 2015, 9. [Google Scholar] [CrossRef]
- Rodrigo, G.J.; Pollack, C.V.; Rodrigo, C.; Rowe, B.H.; Walters, E.H.; Cochrane Airways Group. Heliox for treatment of exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 1996, 2010, CD003571. [Google Scholar] [CrossRef]
- Eddy, R.L.; Svenningsen, S.; Licskai, C.; McCormack, D.G.; Parraga, G. Hyperpolarized helium 3 MRI in mild-to-moderate asthma: Prediction of postbronchodilator reversibility. Radiology 2019, 293, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Mummy, D.G.; Carey, K.J.; Evans, M.D.; Denlinger, L.C.; Schiebler, M.L.; Sorkness, R.L.; Jarjour, N.N.; Fain, S.B. Ventilation defects on hyperpolarized helium-3 MRI in asthma are predictive of 2-year exacerbation frequency. J. Allergy Clin. Immunol. 2020, 146, 831–839. [Google Scholar] [CrossRef]
- Debiński, W.; Kłossowski, M.; Gembicka, D. Effect of breathing of a helium-oxygen mixture on the adaptation of the organism to exercise. Acta Physiol. Pol. 1984, 35, 285–292. [Google Scholar]
- Beurskens, C.J.; Brevoord, D.; Lagrand, W.K.; van den Bergh, W.M.; Vroom, M.B.; Preckel, B.; Horn, J.; Juffermans, N.P. Heliox improves carbon dioxide removal during lung protective mechanical ventilation. Crit. Care Res. Pract. 2014, 2014, 954814. [Google Scholar] [CrossRef]
- Ho, A.M.H.; Dion, P.W.; Karmakar, M.K.; Chung, D.C.; Tay, B.A. Use of heliox in critical upper airway obstruction: Physical and physiologic considerations in choosing the optimal helium: Oxygen mix. Resuscitation 2002, 52, 297–300. [Google Scholar] [CrossRef]
- Diehl, J.L.; Peigne, V.; Guérot, E.; Faisy, C.; Lecourt, L.; Mercat, A. Helium in the adult critical care setting. Ann. Intensive Care 2011, 1, 24. [Google Scholar] [CrossRef]
- Abroug, F.; Ouanes-Besbes, L.; Hammouda, Z.; Benabidallah, S.; Dachraoui, F.; Ouanes, I.; Jolliet, P. Noninvasive ventilation with helium–oxygen mixture in hypercapnic COPD exacerbation: Aggregate meta-analysis of randomized controlled trials. Ann. Intensive Care 2017, 7, 59. [Google Scholar]
- Katz, I.; Pichelin, M.; Montesantos, S.; Majoral, C.; Martin, A.; Conway, J.; Fleming, J.; Venegas, J.; Greenblatt, E.; Caillibotte, G. Using helium-oxygen to improve regional deposition of inhaled particles: Mechanical principles. J. Aerosol Med. Pulm. Drug Deliv. 2014, 27, 71–80. [Google Scholar] [PubMed]
- Anderson, M.; Svartengren, M.; Bylin, G.; Philipson, K.; Camner, P. Deposition in asthmatics of particles inhaled in air or in helium-oxygen. Am. J. Respir. Crit. Care Med. 1993, 147, 524–528. [Google Scholar] [CrossRef]
- Kim, I.K.; Saville, A.L.; Sikes, K.L.; Corcoran, T.E. Heliox-driven albuterol nebulization for asthma exacerbations: An overview. Respir. Care 2006, 51, 613–618. [Google Scholar] [PubMed]
- Rose, J.S.; Panacek, E.A.; Miller, P. Prospective randomized trial of heliox-driven continuous nebulizers in the treatment of asthma in the emergency department. J. Emerg. Med. 2002, 22, 133–137. [Google Scholar] [CrossRef]
- Hess, D.R. Aerosol delivery devices in the treatment of asthma. Respir. Care 2008, 53, 699–725. [Google Scholar]
- Carr, J.; Jung, B.; Chanques, G.; Jaber, S. Helium as a therapeutic gas: An old idea needing some new thought. In New Developments in Mechanical Ventilation: European Respiratory Monograph 55; ERP: Sheffield, UK, 2012; pp. 124–132. [Google Scholar]
- Hess, D.R.; Fink, J.B.; Venkataraman, S.T.; Kim, I.K.; Myers, T.R.; Tano, B.D. The history and physics of heliox. Respir. Care 2006, 51, 608–612. [Google Scholar]
- Venkataraman, S.T. Heliox during mechanical ventilation. Respir. Care 2006, 51, 632–639. [Google Scholar] [PubMed]
- Pozin, N.; Montesantos, S.; Katz, I.; Pichelin, M.; Grandmont, C.; Vignon-Clementel, I. Calculated ventilation and effort distribution as a measure of respiratory disease and Heliox effectiveness. J. Biomech. 2017, 60, 100–109. [Google Scholar]
Gas | M | Density 0 °C | Density 20 °C | Density 37 °C |
---|---|---|---|---|
28.96 | 1292.8 | 1204.6 | 1138.5 | |
28.01 | 1250.6 | 1165.2 | 1101.3 | |
32.00 | 1428.5 | 1331.0 | 1258.0 | |
44.01 | 1964.8 | 1830.7 | 1730.3 | |
4.00 | 178.7 | 166.5 | 157.4 | |
28.01 | 1250.4 | 1165.1 | 1101.2 | |
44.01 | 1964.7 | 1830.6 | 1730.2 | |
131.30 | 5861.5 | 5461.4 | 5161.9 | |
10.16 | 453.6 | 422.7 | 399.5 | |
12.40 | 553.6 | 515.8 | 487.5 | |
18.00 | 803.6 | 748.7 | 707.7 | |
101.51 | 4531.6 | 4222.3 | 3990.7 | |
56.96 | 2542.6 | 2369.1 | 2239.1 |
Gas | |||
---|---|---|---|
Å | g/mol | ||
2.576 | 10.2 | 4 | |
3.617 | 97 | 28.97 | |
3.996 | 190 | 44.01 | |
3.59 | 110 | 28.01 | |
3.433 | 113 | 32 | |
3.667 | 99.8 | 28.01 | |
3.879 | 220 | 44.01 | |
4.009 | 234.7 | 131.3 |
Gas | Cp,m | Cp,m (gas)/Cp,m (air) | Cp | μ (20 °C) | μ (37 °C) | k (20 °C) | k (37 °C) | ν (20 °C) | ν (37 °C) |
---|---|---|---|---|---|---|---|---|---|
J/(mol.K) | / | J/(g.K) | μPa.s | μPa.s | mW/(m.K) | mW/(m.K) | mm2/s | mm2/s | |
Air | 29.2 | 1.00 | 1.008 | 18.1 | 18.9 | 26 | 27 | 15.03 | 16.60 |
29.1 | 1.00 | 1.039 | 17.5 | 18.1 | 25 | 26 | 15.02 | 16.43 | |
29.4 | 1.01 | 0.919 | 20.3 | 21.1 | 26 | 27 | 15.25 | 16.77 | |
38.6 | 1.32 | 0.877 | 14.55 | 15.4 | 17 | 18 | 7.95 | 8.90 | |
20.8 | 0.71 | 5.197 | 19.5 | 20.6 | 153.5 | 159.6 | 117.13 | 130.91 | |
29.1 | 1.00 | 1.039 | 17.4 | 18.2 | 26.1 | 27.3 | 14.93 | 16.53 | |
37.1 | 1.27 | 0.843 | 14.7 | 15.5 | 16.2 | 17.6 | 8.03 | 8.96 | |
20.8 | 0.71 | 0.158 | 22.6 | 23.8 | 5.4 | 5.7 | 4.14 | 4.61 | |
22.7 | 0.78 | 2.233 | 21.5 | 22.55 | 105 | 109 | 50.87 | 56.45 | |
23.4 | 0.80 | 1.885 | 21.6 | 22.6 | 92 | 95.1 | 41.87 | 46.35 | |
25.1 | 0.86 | 1.394 | 21.4 | 22.3 | 66 | 68.2 | 28.58 | 31.51 | |
23.4 | 0.80 | 0.230 | 22.8 | 23.9 | 9.6 | 10.1 | 5.40 | 5.99 | |
Xe 35% He 35% 30% | 23.4 | 0.80 | 0.410 | 23.7 | 24.8 | 34.3 | 35.7 | 10.00 | 11.08 |
Gas | ||
---|---|---|
0.566 | 0.622 | |
0.146 | 0.162 | |
0.105 | 0.117 | |
0.146 | 0.162 | |
0.147 | 0.163 | |
0.082 | 0.091 | |
0.346 | 0.383 | |
0.304 | 0.336 | |
0.232 | 0.257 | |
0.126 | 0.140 | |
0.182 | 0.202 |
Gas | ||
---|---|---|
0.720 | 0.791 | |
0.197 | 0.218 | |
0.147 | 0.163 | |
0.119 | 0.132 |
Gas | ν (37 °C) | ν(mix)/ν(Air) (37 °C) |
---|---|---|
mm2/s | ||
Air | 16.60 | / |
He 78% O2 22% | 56.45 | 3.40 |
He 70% O2 30% | 46.35 | 2.79 |
He 50% O2 50% | 31.51 | 1.90 |
Xe 70% O2 30% | 5.99 | 0.36 |
Xe 35% He 35% O2 30% | 11.08 | 0.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chappel, E. Physical Properties of Helium and Application in Respiratory Care. Encyclopedia 2023, 3, 1373-1386. https://doi.org/10.3390/encyclopedia3040098
Chappel E. Physical Properties of Helium and Application in Respiratory Care. Encyclopedia. 2023; 3(4):1373-1386. https://doi.org/10.3390/encyclopedia3040098
Chicago/Turabian StyleChappel, Eric. 2023. "Physical Properties of Helium and Application in Respiratory Care" Encyclopedia 3, no. 4: 1373-1386. https://doi.org/10.3390/encyclopedia3040098
APA StyleChappel, E. (2023). Physical Properties of Helium and Application in Respiratory Care. Encyclopedia, 3(4), 1373-1386. https://doi.org/10.3390/encyclopedia3040098