Geomasking to Safeguard Geoprivacy in Geospatial Health Data
Definition
:1. Geoprivacy in Geospatial Health Data
2. Geomasking to Safeguard Geoprivacy
3. Geomasking Methods
3.1. Affine Transformation
3.2. Aggregation
3.3. Random Perturbation
3.4. Synthetic Data Generation
3.5. Differential Privacy
3.6. Other Cryptographic Techniques and Hybrid Approaches
4. Conclusions and Prospects
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, J.; Kwan, M.P.; Levenstein, M.C.; Richardson, D.B. How Do People Perceive the Disclosure Risk of Maps? Examining the Perceived Disclosure Risk of Maps and Its Implications for Geoprivacy Protection. Cart. Geogr. Inf. Sci. 2021, 48, 2–20. [Google Scholar] [CrossRef]
- Wang, J.; Kim, J.; Kwan, M.P. An Exploratory Assessment of the Effectiveness of Geomasking Methods on Privacy Protection and Analytical Accuracy for Individual-Level Geospatial Data. Cart. Geogr. Inf. Sci. 2022, 49, 385–406. [Google Scholar] [CrossRef]
- Ribeiro, A.I.; Dias, V.; Ribeiro, S.; Silva, J.P.; Barros, H. Geoprivacy in Neighbourhoods and Health Research: A Mini-Review of the Challenges and Best Practices in Epidemiological Studies. Public. Health Rev. 2022, 43, 1605105. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Kwan, M.P. Daily Activity Locations K-Anonymity for the Evaluation of Disclosure Risk of Individual GPS Datasets. Int. J. Health Geogr. 2020, 19, 7. [Google Scholar] [CrossRef] [PubMed]
- McNutt, M. Reproducibility. Science 2014, 343, 229. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services. Health Insurance Portability and Accountability Act. In Public Law; U.S. Department of Health and Human Services: Washington, DC, USA, 1996; pp. 104–191. [Google Scholar]
- European Union. Regulation (EU) 2016/679 of the European Parliament and of the Council. Off. J. Eur. Union. 2016, 679, 1–88. [Google Scholar]
- Canada Department of Justice. Personal Information Protection and Electronic Documents Act; Canada Department of Justice: Ottawa, ON, Canada, 2000; pp. 4356–4364.
- Delmelle, E.M.; Desjardins, M.R.; Jung, P.; Owusu, C.; Lan, Y.; Hohl, A.; Dony, C. Uncertainty in Geospatial Health: Challenges and Opportunities Ahead. Ann. Epidemiol. 2022, 65, 15–30. [Google Scholar] [CrossRef]
- Tellman, N.; Litt, E.R.; Knapp, C.; Eagan, A.; Cheng, J.; Radonovich, L.J. The Effects of the Health Insurance Portability and Accountability Act Privacy Rule on Influenza Research Using Geographical Information Systems. Geospat. Health 2010, 5, 3–9. [Google Scholar] [CrossRef]
- Seidl, D.E. Geoprivacy: Location Masking Strategies and Personal Identification Risk; San Diego State University: San Diego, CA, USA, 2018. [Google Scholar]
- Allshouse, W.B.; Fitch, M.K.; Hampton, K.H.; Gesink, D.C.; Doherty, I.A.; Leone, P.A.; Serre, M.L.; Miller, W.C. Geomasking Sensitive Health Data and Privacy Protection: An Evaluation Using an E911 Database. Geocarto Int. 2010, 25, 443–452. [Google Scholar] [CrossRef]
- Armstrong, M.P.; Rushton, G.; Zimmerman, D.L. Geographically Masking Health Data to Preserve Confidentiality. Stat. Med. 1999, 18, 497–525. [Google Scholar] [CrossRef]
- Carr, J.; Vallor, S.; Freundschuh, S.; Gannon, W.L.; Zandbergen, P. Hitting the Moving Target: Challenges of Creating a Dynamic Curriculum Addressing the Ethical Dimensions of Geospatial Data. J. Geogr. High. Educ. 2014, 38, 444–454. [Google Scholar] [CrossRef]
- Kwan, M.-P.; Casas, I.; Schmitz, B. Protection of Geoprivacy and Accuracy of Spatial Information: How Effective Are Geographical Masks? Cartogr. Int. J. Geogr. Inf. Geovisualization 2004, 39, 15–28. [Google Scholar] [CrossRef]
- Nissenbaum, H. Privacy in Context: Technology, Policy, and the Integrity of Social Life. In Privacy in Context; Stanford University Press: Stanford, CA, USA, 2009; ISBN 0804772894. [Google Scholar]
- Cassa, C.A.; Grannis, S.J.; Overhage, J.M.; Mandl, K.D. A Context-Sensitive Approach to Anonymizing Spatial Surveillance Data: Impact on Outbreak Detection. J. Am. Med. Inform. Assoc. 2006, 13, 160–165. [Google Scholar] [CrossRef] [PubMed]
- Zandbergen, P.A. Ensuring Confidentiality of Geocoded Health Data: Assessing Geographic Masking Strategies for Individual-level Data. Adv. Med. 2014, 2014, 567049. [Google Scholar] [CrossRef] [PubMed]
- Hampton, K.H.; Fitch, M.K.; Allshouse, W.B.; Doherty, I.A.; Gesink, D.C.; Leone, P.A.; Serre, M.L.; Miller, W.C. Mapping Health Data: Improved Privacy Protection with Donut Method Geomasking. Am. J. Epidemiol. 2010, 172, 1062–1069. [Google Scholar] [CrossRef]
- Stinchcomb, D. Procedures for Geomasking to Protect Patient Confidentiality. In Proceedings of the ESRI International Health GIS Conference, Washington, DC, USA, 17–20 October 2004; pp. 1–17. [Google Scholar]
- Zhang, S.; Freundschuh, S.M.; Lenzer, K.; Zandbergen, P.A. The Location Swapping Method for Geomasking. Cart. Geogr. Inf. Sci. 2017, 44, 22–34. [Google Scholar] [CrossRef]
- Rubin, D.B. Statistical Disclosure Limitation. J. Off. Stat. 1993, 9, 461–468. [Google Scholar]
- Beckman, R.J.; Baggerly, K.A.; McKay, M.D. Creating Synthetic Baseline Populations. Transp. Res. Part A Policy Pract. 1996, 30, 415–429. [Google Scholar] [CrossRef]
- Sakshaug, J.W.; Raghunathan, T.E. Synthetic Data for Small Area Estimation. In Privacy in Statistical Databases; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6344, pp. 162–173. [Google Scholar]
- Drechsler, J. Synthetic Datasets for Statistical Disclosure Control: Theory and Implementation; Springer Science & Business Media: New York, NY, USA; Heidelberg, Germany; Dordrecht, The Netherlands; London, UK, 2011. [Google Scholar]
- Dwork, C. Differential Privacy. In International Colloquium on Automata, Languages, and Programming; Springer: Berlin, Heidelberg, 2006; Volume 4052, pp. 1–12. [Google Scholar]
- Duchi, J.C.; Jordan, M.I.; Wainwright, M.J. Local Privacy and Statistical Minimax Rates. In Proceedings of the 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, Berkeley, CA, USA, 26–29 October 2013. [Google Scholar]
- Mironov, I. Rényi Differential Privacy. In Proceedings of the 2017 IEEE 30th Computer Security Foundations Symposium (CSF), Santa Barbara, CA, USA, 21–25 August 2017; pp. 263–275. [Google Scholar] [CrossRef]
- Xiao, Y.; Xiong, L. Protecting Locations with Differential Privacy under Temporal Correlations. Proc. ACM Conf. Comput. Commun. Secur. 2015, 2015, 1298–1309. [Google Scholar] [CrossRef]
- Harris, D.R. Leveraging Differential Privacy in Geospatial Analyses of Standardized Healthcare Data. In Proceedings of the 2020 IEEE International Conference on Big Data (Big Data), Atlanta, GA, USA, 10–13 December 2020; pp. 3119–3122. [Google Scholar] [CrossRef]
- Abowd, J.M. The US Census Bureau Adopts Differential Privacy. In Proceedings of the 2008 IEEE 24th International Conference on Data Engineering, Cancun, Mexico, 7–12 April 2008; Cornell University ILR School: Geneva, Switzerland, 2008; p. 2867. [Google Scholar] [CrossRef]
- Troncoso, C.; Payer, M.; Hubaux, J.-P.; Salathé, M.; Larus, J.; Bugnion, E.; Lueks, W.; Stadler, T.; Pyrgelis, A.; Antonioli, D.; et al. Decentralized Privacy-Preserving Proximity Tracing. Commun. ACM 2022, 65, 48–57. [Google Scholar] [CrossRef]
- Yan, Y.; Sun, Z.; Mahmood, A.; Xu, F.; Dong, Z.; Sheng, Q.Z. Achieving Differential Privacy Publishing of Location-Based Statistical Data Using Grid Clustering. ISPRS Int. J. Geo-Inf. 2022, 11, 404. [Google Scholar] [CrossRef]
- Rivest, R.L.; Adleman, L.; Dertouzos, M.L. On Data Banks and Privacy Homomorphisms. Found. Secur. Comput. 1978, 4, 169–180. [Google Scholar]
- Gentry, C. Fully Homomorphic Encryption Using Ideal Lattices. In Proceedings of the Annual ACM Symposium on Theory of Computin, Bethesda, MD, USA, 31 May–2 June 2009; pp. 169–178. [Google Scholar] [CrossRef]
- Goldreich, O.; Micali, S.; Wigderson, A. How to Play Any Mental Game, or a Completeness Theorem for Protocols with Honest Majority. In Providing Sound Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali; Association for Computing Machinery: New York, NY, USA, 2019. [Google Scholar] [CrossRef]
- Zhu, X.; Ayday, E.; Vitenberg, R. A Privacy-Preserving Framework for Outsourcing Location-Based Services to the Cloud. IEEE Trans. Dependable Secur. Comput. 2021, 18, 384–399. [Google Scholar] [CrossRef]
- Ren, Y.; Li, X.; Miao, Y.; Luo, B.; Weng, J.; Choo, K.K.R.; Deng, R.H. Towards Privacy-Preserving Spatial Distribution Crowdsensing: A Game Theoretic Approach. IEEE Trans. Inf. Forensics Secur. 2022, 17, 804–818. [Google Scholar] [CrossRef]
- Goldreich, O. Foundations of Cryptography: Volume 2, Basic Applications; Cambridge University Press: Cambridge, UK, 2001; Volume 2, ISBN 0521830842. [Google Scholar]
- Hojati, M.; Farmer, C.; Feick, R.; Robertson, C. Decentralized Geoprivacy: Leveraging Social Trust on the Distributed Web. Int. J. Geogr. Inf. Sci. 2021, 35, 2540–2566. [Google Scholar] [CrossRef]
- Rosenblatt, L.; Liu, X.; Pouyanfar, S.; de Leon, E.; Desai, A.; Allen, J.; Development, M.A.; Program, A. Differentially Private Synthetic Data: Applied Evaluations and Enhancements. arXiv 2020. arXiv:2011.05537. [Google Scholar]
- Bowen, C.M.; Liu, F. Differentially Private Data Synthesis Methods. arXiv 2016, arXiv:1602.01063. [Google Scholar]
- Bowen, C.M.; Snoke, J. Comparative Study of Differentially Private Synthetic Data Algorithms from the NIST PSCR Differential Privacy Synthetic Data Challenge. arXiv 2019, arXiv:1911.12704. [Google Scholar] [CrossRef]
- Raghunathan, T.E.; Reiter, J.P.; Rubin, D.B. Multiple Imputation for Statistical Disclosure Limitation. J. Off. Stat. 2003, 19, 1. [Google Scholar]
- GeoPriv. Available online: https://diuke.github.io/GeoPrivPlugin/ (accessed on 15 September 2024).
- GitHub—Claudiofronterre/Geomask: Geomask. Available online: https://github.com/claudiofronterre/geomask?tab=readme-ov-file (accessed on 15 September 2024).
- GitHub—IBM/Differential-Privacy-Library: Diffprivlib: The IBM Differential Privacy Library. Available online: https://github.com/IBM/differential-privacy-library (accessed on 15 September 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J. Geomasking to Safeguard Geoprivacy in Geospatial Health Data. Encyclopedia 2024, 4, 1581-1589. https://doi.org/10.3390/encyclopedia4040103
Wang J. Geomasking to Safeguard Geoprivacy in Geospatial Health Data. Encyclopedia. 2024; 4(4):1581-1589. https://doi.org/10.3390/encyclopedia4040103
Chicago/Turabian StyleWang, Jue. 2024. "Geomasking to Safeguard Geoprivacy in Geospatial Health Data" Encyclopedia 4, no. 4: 1581-1589. https://doi.org/10.3390/encyclopedia4040103
APA StyleWang, J. (2024). Geomasking to Safeguard Geoprivacy in Geospatial Health Data. Encyclopedia, 4(4), 1581-1589. https://doi.org/10.3390/encyclopedia4040103