Investigation of Anaerobic Digestion of the Aqueous Phase from Hydrothermal Carbonization of Mixed Municipal Solid Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feedstock
2.2. Hydrothermal Carbonization Experiments
2.3. Anaerobic Digestion
Methods and Test Apparatus
2.4. Analytical Methods
2.4.1. Hydrothermal Carbonization and Products: Solids and Gases
2.4.2. Aqueous Phase
3. Results and Discussion
3.1. Hydrothermal Carbonization and Carbon Distribution
3.2. Aqueous Phase Composition
3.3. Anaerobic Digestion of HTC MSW Aqueous Phase
3.4. Solid Phase Composition
TGA and BET
3.5. Discussion
Material Balance
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- U.S. Environmental Protection Agency (EPA). Advancing Sustainable Materials Management: 2017 Fact Sheet Assessing Trends in Material Generation, Recycling, Composting, Combustion with Energy Recovery and Landfilling in the United States; EPA: Washington, DC, USA, 2019.
- Berge, N.D.; Ro, K.; Mao, J.; Flora, J.R.V.; Chappell, M.A.; Bae, S. Hydrothermal Carbonization of Municipal Waste Streams. Environ. Sci. Technol. 2011, 45, 5696–5703. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, I.; Blöhse, D.; Ramke, H.-G. Hydrothermal carbonization of agricultural residues. Bioresour. Technol. 2013, 142, 138–146. [Google Scholar] [CrossRef]
- Wirth, B.; Mumme, J. Anaerobic digestion of waste water from hydrothermal carbonization of corn silage. Appl. Bioenergy 2013, 1, 1–10. [Google Scholar] [CrossRef]
- Wirth, B.; Mumme, J.; Erlach, B. Anaerobic treatment of waste water derived from hydrothermal carbonization. In Proceedings of the 20th European Biomass Conference and Exhibition, Milan, Italy, 18–22 June 2012. [Google Scholar]
- Lucian, M.; Volpe, M.; Merzari, F.; Wüst, D.; Kruse, A.; Andreottola, G.; Fiori, L. Hydrothermal carbonization coupled with anaerobic digestion for the valorization of the organic fraction of municipal solid waste. Bioresour. Technol. 2020, 314, 123734. [Google Scholar] [CrossRef] [PubMed]
- Becker, R.; Dorgerloh, U.; Paulke, E.; Mumme, J.; Nehls, I. Hydrothermal carbonization of biomass: Major organic components of the aqueous phase. Chem. Eng. Technol. 2014, 37, 511–518. [Google Scholar] [CrossRef]
- DiStefano, T.D.; Belenky, L.G. Life-cycle analysis of energy and greenhouse gas emissions from anaerobic biodegradation of municipal solid waste. J. Environ. Eng. 2009, 135, 1097–1105. [Google Scholar] [CrossRef]
- Erdogan, E.; Atila, B.; Mumme, J.; Reza, M.T.; Toptas, A.; Elibol, M.; Yanik, J. Characterization of products from hydrothermal carbonization of orange pomace including anaerobic digestibility of process liquor. Bioresour. Technol. 2015, 196, 35–42. [Google Scholar] [CrossRef]
- Pardo, B.D.M.; Doyle, L.; Renz, M.; Salimbeni, A. Industrial Scale Hydrothermal Carbonization: New Applications for Wet Biomass Waste; ttz Bremerhaven: Bremerhaven, Germany, 2016. [Google Scholar]
- Marques, I.P. Anaerobic digestion treatment of olive mill wastewater for effluent re-use in irrigation. Desalination 2001, 137, 233–239. [Google Scholar] [CrossRef]
- Posmanik, R.; Labatut, R.A.; Kim, A.H.; Usack, J.G.; Tester, J.W.; Angenent, L. Coupling hydrothermal liquefaction and anaerobic digestion for energy valorization from model biomass feedstocks. Bioresour. Technol. 2017, 233, 134–143. [Google Scholar] [CrossRef]
- Zhao, K.; Li, Y.; Zhou, Y.; Guo, W.; Jiang, H.; Xu, Q. Characterization of hydrothermal carbonization products (hydrochars and spent liquor) and their biomethane production performance. Bioresour. Technol. 2018, 267, 9–16. [Google Scholar]
- Kambo, H.; Dutta, A. A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew. Sustain. Energy Rev. 2015, 45, 359–378. [Google Scholar] [CrossRef]
- Channiwala, S.; Parikh, P. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 2002, 81, 1051–1063. [Google Scholar] [CrossRef]
- Funke, A.; Ziegler, F. Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod. Biorefining 2010, 4, 160–177. [Google Scholar]
- Hoekman, S.K.; Broch, A.; Robbins, C. Hydrothermal Carbonization (HTC) of Lignocellulosic Biomass. Energy Fuels 2011, 25, 1802–1810. [Google Scholar] [CrossRef]
- Weiner, B.; Poerschmann, J.; Wedwitschka, H.; Koehler, R.; Kopinke, F.-D. Influence of process water reuse on the hydrothermal carbonization of paper. ACS Sustain. Chem. Eng. 2014, 2, 2165–2171. [Google Scholar] [CrossRef]
- Fedorak, P.M.; Hrudey, S.E. The effects of phenol and some alkyl phenolics on batch anaerobic methanogenesis. Water Res. 1984, 18, 361–367. [Google Scholar] [CrossRef]
- Jørgensen, P.J. Biogas-Green Energy; Faculty of Agricultural Sciences, Aarhus University: Aarhus, Denmark, 2009. [Google Scholar]
- Reza, M.T.; Andert, J.; Wirth, B.; Busch, D.; Pielert, J.; Lynam, J.G.; Mumme, J. Hydrothermal carbonization of biomass for energy and crop production. Appl. Bioenergy 2014, 1, 11–29. [Google Scholar] [CrossRef]
- Zhang, B.; Cai, W.-M.; He, P.-J. Influence of lactic acid on the two-phase anaerobic digestion of kitchen wastes. J. Environ. Sci. 2007, 19, 244–249. [Google Scholar]
- Chen, Y.; Cheng, J.J.; Creamer, K.S. Inhibition of anaerobic digestion process: A review. Bioresour. Technol. 2008, 99, 4044–4064. [Google Scholar] [CrossRef]
- Dioha, I.; Ikeme, C.H.; Nafi’u, T.; Soba, N.I.; Yusuf, M.B.S. Effect of carbon to nitrogen ratio on biogas production. Int. Res. J. Nat. Sci. 2013, 1, 1–10. [Google Scholar]
- Cumming, J.W.; McLaughlin, J. The thermogravimetric behaviour of coal. Thermochim. Acta 1982, 57, 253–272. [Google Scholar] [CrossRef]
- Lucian, M.; Volpe, M.; Gao, L.; Piro, G.; Goldfarb, J.L.; Fiori, L. Impact of hydrothermal carbonization conditions on the formation of hydrochars and secondary chars from the organic fraction of municipal solid waste. Fuel 2018, 233, 257–268. [Google Scholar] [CrossRef]
T (°C) | Time | Acetic Acid (g/L) | Lactic Acid (g/L) | Mannose (g/L) | Xylose (g/L) |
---|---|---|---|---|---|
250 | 10 min | 0.3 | 8.7 | 2.0 | 0.9 |
250 | 1 h | 0.5 | 10.4 | 2.0 | 2.0 |
250 | 6 h | 0.5 | 10.1 | 1.9 | 1.6 |
280 | 10 min | 0.5 | 13.3 | 1.6 | 2.2 |
280 | 1 h | 0.6 | 13.1 | 1.8 | 2.6 |
280 | 6 h | 0.7 | 10.4 | 1.2 | 3.1 |
310 | 10 min | 0.6 | 13.7 | 2.1 | 3.4 |
310 | 1 h | 0.7 | 11.2 | 1.9 | 3.5 |
HTC MSW Aqueous Phase | T (°C) | t | mL biogas/g COD | mL biogas/g TOC | Carbon Nitrogen Ratio (C/N) |
---|---|---|---|---|---|
Comparisons from literature | 250 | 10 min | 109.4 | 327.4 | 40 |
250 | 1 h | 15.0 | 48.0 | 61 | |
280 | 10 min | 70.0 | 222.0 | 63 | |
280 | 1 h | 35.5 | 103.3 | 68 | |
310 | 1 h | 24.0 | 84.9 | 57 | |
Corn silage HTC aqueous phase [4] | 220 | 6 h | 600 mL CH4/g TOC | 23 | |
Orange pomace HTC aqueous phase [9] | 260 | 2 h | 295.6 | -- | |
Sewage sludge HTC aqueous phase [17] | 200 | 6 h | 180 mL CH4/g COD | -- | |
Food waste HTC aqueous phase [13] | 260 | 4 h | 58 mL CH4/g COD | -- | |
Organic fraction MSW HTC aqueous phase [6] | 180 | 1 h | 205 mL CH4/g COD |
TS (%DW) | VS (%DW) | Ash (%DW) | C (wt.%) | N (wt.%) | H (wt.%) | O (wt.%) | HHV (MJ/Kg) | Solids Yield (wt.%) | ||
---|---|---|---|---|---|---|---|---|---|---|
initial feedstock | ||||||||||
paper | 93.4 | 92.0 | 7.5 | 37.2 | 0.0 | 5.5 | 49.8 | 14.2 | - | |
food | 90.5 | 93.3 | 6.1 | 42.7 | 6.5 | 4.0 | 40.7 | 15.2 | - | |
plastic | 98.1 | 0.0 | 0.0 | 64.0 | 0.0 | 4.3 | 31.7 | 24.1 | - | |
hydrochar | ||||||||||
T (°C) | t | |||||||||
250 | 10 min | 93.5 | 94.4 | 4.8 | 47.7 | 0.5 | 5.7 | 41.4 | 19.0 | 56 |
250 | 1 h | 98.6 | 95.0 | 4.8 | 55.1 | 0.9 | 4.9 | 34.3 | 21.3 | 43 |
250 | 6 h | 98.7 | 91.7 | 8.2 | 62.4 | 1.3 | 4.6 | 23.6 | 24.6 | 41 |
280 | 10 min | 99.8 | 93.5 | 6.4 | 60.1 | 1.1 | 4.6 | 27.7 | 23.4 | 39 |
280 | 1 h | 97.4 | 92.5 | 10.5 | 61.5 | 1.3 | 5.0 | 21.7 | 24.9 | 40 |
280 | 6 h | 96.3 | 91.6 | 16.9 | 52.7 | 0.7 | 4.3 | 25.4 | 20.5 | 35 |
310 | 10 min | 97.9 | 91.3 | 16.1 | 54.5 | 1.1 | 4.6 | 23.8 | 21.6 | 41 |
310 | 1 h | 91.6 | 84.2 | 21.7 | 58.0 | 1.3 | 5.0 | 13.9 | 24.2 | 41 |
Lignite | Bituminous 1 | Bituminous 2 | Anthracite | HTC MSW Hydrochar | |
---|---|---|---|---|---|
IT (°C) | 210 | 350 | 340 | 480 | 270 |
Main PT (°C) | 500 | 555 | 555 | 665 | 412 |
BT (°C) | 540 | 665 | 690 | 785 | 660 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adams, K.J.; Stuart, B.; Kumar, S. Investigation of Anaerobic Digestion of the Aqueous Phase from Hydrothermal Carbonization of Mixed Municipal Solid Waste. Biomass 2021, 1, 61-73. https://doi.org/10.3390/biomass1010005
Adams KJ, Stuart B, Kumar S. Investigation of Anaerobic Digestion of the Aqueous Phase from Hydrothermal Carbonization of Mixed Municipal Solid Waste. Biomass. 2021; 1(1):61-73. https://doi.org/10.3390/biomass1010005
Chicago/Turabian StyleAdams, Kameron J., Ben Stuart, and Sandeep Kumar. 2021. "Investigation of Anaerobic Digestion of the Aqueous Phase from Hydrothermal Carbonization of Mixed Municipal Solid Waste" Biomass 1, no. 1: 61-73. https://doi.org/10.3390/biomass1010005
APA StyleAdams, K. J., Stuart, B., & Kumar, S. (2021). Investigation of Anaerobic Digestion of the Aqueous Phase from Hydrothermal Carbonization of Mixed Municipal Solid Waste. Biomass, 1(1), 61-73. https://doi.org/10.3390/biomass1010005