Journal Description
Biomass
Biomass
is an international, peer-reviewed, open access journal on biomass conversion and biorefinery published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, EBSCO, and other databases.
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 23.2 days after submission; acceptance to publication is undertaken in 10.8 days (median values for papers published in this journal in the second half of 2024).
- Journal Rank: CiteScore - Q2 (Forestry)
- Recognition of Reviewers: APC discount vouchers, optional signed peer review, and reviewer names published annually in the journal.
Latest Articles
Leveraging Microalgae to Achieve Zero Hunger: Enhancing Livestock Feed for Nutritional Security
Biomass 2025, 5(1), 4; https://doi.org/10.3390/biomass5010004 - 8 Jan 2025
Abstract
►
Show Figures
Achieving “Zero Hunger” (SDG 2) requires overcoming complex challenges, especially in vulnerable communities in developing countries. Livestock plays a key role in food security, but limited resources threaten productivity, prompting interest in innovative solutions like microalgae supplementation in ruminant diets. Microalgae offer potential
[...] Read more.
Achieving “Zero Hunger” (SDG 2) requires overcoming complex challenges, especially in vulnerable communities in developing countries. Livestock plays a key role in food security, but limited resources threaten productivity, prompting interest in innovative solutions like microalgae supplementation in ruminant diets. Microalgae offer potential benefits by enhancing productivity and nutrition while addressing local protein deficiencies. However, barriers such as economic costs, processing requirements, and resistance to changing traditional feeding practices present challenges. This review examines the feasibility of microalgae-based livestock feed as a sustainable strategy to improve food security, particularly in arid, climate-affected regions. Biomass yield estimates suggest that small-scale cultivation can meet livestock nutritional needs; for example, a 22-goat herd would require approximately 88 g of microalgae per day to enrich meat with polyunsaturated fatty acids. Semi-continuous production systems could enable smallholders to cultivate adequate biomass, using local agricultural resources efficiently. This approach supports food security, improves meat quality, and strengthens community resilience. Collaboration among researchers, extension services, and local farmers is essential to ensure the effective adoption of microalgae feed systems, contributing to a sustainable future for livestock production in vulnerable regions.
Full article
Open AccessFeature PaperArticle
Optimization of Carotenoids and Other Antioxidant Compounds Extraction from Carrot Peels Using Response Surface Methodology
by
Martha Mantiniotou, Vassilis Athanasiadis, Dimitrios Kalompatsios and Stavros I. Lalas
Biomass 2025, 5(1), 3; https://doi.org/10.3390/biomass5010003 - 30 Dec 2024
Abstract
►▼
Show Figures
Carrots, scientifically known as Daucus carota L., are among the most popular and widely consumed vegetables. They are used for cooking and juice production, both industrially and in households, resulting in large amounts of waste each year, mainly from the peel. The peels
[...] Read more.
Carrots, scientifically known as Daucus carota L., are among the most popular and widely consumed vegetables. They are used for cooking and juice production, both industrially and in households, resulting in large amounts of waste each year, mainly from the peel. The peels are rich in antioxidant compounds that can be used either as cosmetics or as food and feed additives. Therefore, in this work, the extraction of these compounds was optimized using green techniques (pulsed electric field and/or ultrasonication) and solvents. Response surface methodology was applied to achieve the optimization. Under optimum conditions, the total polyphenol yield was 8.26 mg gallic acid equivalents per g dry weight (dw) and the total carotenoid content was 137.44 μg β-carotene equivalents per g dw. The optimum extract reportedly showed an antioxidant capacity of 76.57 μmol ascorbic acid equivalents (AAE) per g dw by FRAP assay and 63.48 μmol AAE per g dw by DPPH assay, while the total ascorbic acid content was 2.55 mg per g dw. Furthermore, chromatographic quantification of individual bioactive compounds through a diode array detector was performed, wherein catechin yielded the highest proportion (18.6%) of the total 6.88 mg/g dw. This study addressed inquiries regarding the valorization of bioactive compounds from carrot peels, as well as several strategies for recovering their diverse bioactive components using green procedures and solvents.
Full article
Figure 1
Open AccessReview
Potato Processing Waste as a Reservoir of Bioactive Hydroxycinnamates: A Critical Review
by
Dimitris P. Makris
Biomass 2025, 5(1), 2; https://doi.org/10.3390/biomass5010002 - 25 Dec 2024
Abstract
►▼
Show Figures
Natural resources are currently overexploited to provide food supply for the ever-increasing world population, and because of the intensification of agricultural and food production, there is a growing rate of waste generation. This waste biomass is usually dumped into landfills, causing unprecedented damage
[...] Read more.
Natural resources are currently overexploited to provide food supply for the ever-increasing world population, and because of the intensification of agricultural and food production, there is a growing rate of waste generation. This waste biomass is usually dumped into landfills, causing unprecedented damage to ecosystems. Nowadays, circular economy strategies are channeled towards waste harnessing, aiming at reducing the irrational use of resources and minimizing waste generation. Potatoes are the second largest food crop after cereals, and there is an overwhelming amount of waste derived from potato tuber processing, composed almost exclusively of peels. Potato peels (PPs) are considered a source of polyphenolic compounds, largely represented by chlorogenic acid and other structurally related hydroxycinnamates, which possess a spectrum of bioactivities; however, there is a lack of analytical data compilations that could be of assistance in pertinent studies. With this as the conceptual basis, the scope of this review focused on a particular class of polyphenols, the so-called hydroxycinnamates, to deliver compiled data associated with the occurrence, retrieval, and application of this group of compounds derived from potato waste with major emphasis being given to PPs. It is believed that the collection of data of this nature, due to their undisputed significance in studies pertaining to bioeconomy, biorefinery, and food waste valorization, would provide a highly useful contribution to the field.
Full article
Figure 1
Open AccessArticle
The Influence of Biomass Burning on the Organic Content of Urban Aerosols
by
Suzana Sopčić, Ranka Godec, Ivana Jakovljević and Ivan Bešlić
Biomass 2025, 5(1), 1; https://doi.org/10.3390/biomass5010001 - 24 Dec 2024
Abstract
►▼
Show Figures
This study examines the influence of biomass burning on the organic content of urban aerosols in Zagreb, Croatia, by analyzing anhydrosugars, elemental carbon (EC), organic carbon (OC), and water-soluble organic carbon (WSOC) in PM2.5 and PM1 fractions collected during different seasons
[...] Read more.
This study examines the influence of biomass burning on the organic content of urban aerosols in Zagreb, Croatia, by analyzing anhydrosugars, elemental carbon (EC), organic carbon (OC), and water-soluble organic carbon (WSOC) in PM2.5 and PM1 fractions collected during different seasons of 2022. Seasonal trends showed that the highest average concentrations of PM2.5 (27 µg m−3) and PM1 (17 µg m−3) were measured during the winter and decreased in the spring, summer, and autumn, which is in accordance with the specific activities and environmental conditions typical for each season. Different sources of OC and WSOC were noticed across different seasons; levoglucosan (LG) was measured during the winter (1314 ng m−3 in PM2.5 and 931 ng m−3 in PM1), indicating that biomass that was mostly used for residential heating was the main source rather than the agricultural activities that are usually common during warmer seasons. The contribution of LG to PM was 5.3%, while LG contributed to OC by up to 13.4% and LG contributed to WSOC by up to 36.5%. Deviations in typical seasonal variability of LG/WSOC revealed more intense biomass burning episodes during the autumn and several times during the winter season. A back trajectories HYSPLIT model revealed a long-range transport biomass emission source. The levoglucosan-to-mannosan (LG/MNS) ratios indicated the burning of mixed softwood and hardwood during colder seasons and the burning of softwood during warmer seasons. Spearman’s correlation tests and principal component analysis showed a strong and statistically significant (p < 0.05) correlation between LG, PM, OC, EC, and WSOC only during the winter season, demonstrating that they had the same origin in the winter, while their sources in other seasons were diverse.
Full article
Figure 1
Open AccessArticle
Biomass Refined: 99% of Organic Carbon in Soils
by
Robert J. Blakemore
Biomass 2024, 4(4), 1257-1300; https://doi.org/10.3390/biomass4040070 - 20 Dec 2024
Abstract
►▼
Show Figures
Basic inventory is required for proper understanding and utilization of Earth’s natural resources, especially with increasing soil degradation and species loss. Soil carbon is newly refined at >30,000 Gt C (gigatonnes C), ten times above prior totals. Soil organic carbon (SOC) is up
[...] Read more.
Basic inventory is required for proper understanding and utilization of Earth’s natural resources, especially with increasing soil degradation and species loss. Soil carbon is newly refined at >30,000 Gt C (gigatonnes C), ten times above prior totals. Soil organic carbon (SOC) is up to 24,000 Gt C, plus plant stocks at ~2400 Gt C, both above- and below-ground, hold >99% of Earth’s biomass. On a topographic surface area of 25 Gha with mean 21 m depth, Soil has more organic carbon than all trees, seas, fossil fuels, or the Atmosphere combined. Soils are both the greatest biotic carbon store and the most active CO2 source. Values are raised considerably. Disparity is due to lack of full soil depth survey, neglect of terrain, and other omissions. Herein, totals for mineral soils, Permafrost, and Peat (of all forms and ages), are determined to full depth (easily doubling shallow values), then raised for terrain that is ignored in all terrestrial models (doubling most values again), plus SOC in recalcitrant glomalin (+25%) and friable saprock (+26%). Additional factors include soil inorganic carbon (SIC some of biotic origin), aquatic sediments (SeOC), and dissolved fractions (DIC/DOC). Soil biota (e.g., forests, fungi, bacteria, and earthworms) are similarly upgraded. Primary productivity is confirmed at >220 Gt C/yr on land supported by Barrow’s “bounce” flux, C/O isotopes, glomalin, and Rubisco. Priority issues of species extinction, humic topsoil loss, and atmospheric CO2 are remedied by SOC restoration and biomass recycling via (vermi-)compost for 100% organic husbandry under Permaculture principals, based upon the Scientific observation of Nature.
Full article
Figure 1
Open AccessArticle
Time-Dependent Analysis of Catalytic Biomass Pyrolysis in a Continuous Drop Tube Reactor: Evaluating HZSM-5 Stability and Product Evolution
by
Chetna Mohabeer, Zineb Boutamine, Lokmane Abdelouahed, Antoinette Maarawi and Bechara Taouk
Biomass 2024, 4(4), 1238-1256; https://doi.org/10.3390/biomass4040069 - 6 Dec 2024
Abstract
►▼
Show Figures
This study investigates a continuous deoxygenation of bio-oil vapor in a catalytic fixed-bed reactor coupled to a continuous drop tube reactor (DTR) for biomass pyrolysis. Beech wood pyrolysis was initially examined without catalysts at various temperatures (500–600 °C). The products were characterised using
[...] Read more.
This study investigates a continuous deoxygenation of bio-oil vapor in a catalytic fixed-bed reactor coupled to a continuous drop tube reactor (DTR) for biomass pyrolysis. Beech wood pyrolysis was initially examined without catalysts at various temperatures (500–600 °C). The products were characterised using GC-MS, Karl Fischer titration, GC-FID/TCD, and thermogravimetric analysis. The highest bio-oil yield (58.8 wt.%) was achieved at 500 °C with a 500 mL/min N2 flow rate. Subsequently, ex situ catalytic pyrolysis was performed using an HZSM-5 catalyst in a fixed-bed reactor at a DTR outlet, operating at 425 °C, 450 °C, and 500 °C. The HZSM-5 catalyst exhibited declining deoxygenation efficiency over time, which was evidenced by decreasing conversion rates of chemical families. Principal component analysis was employed to interpret the complex dataset, facilitating a visualisation of the relationships between the experimental conditions and product compositions. This study highlights the challenges of continuous operation as experimental durations were limited to 120 min due to clogging issues. This research contributes to understanding continuous biomass pyrolysis coupled with catalytic deoxygenation, providing insights into the reactor configuration, process parameters, and catalyst performance crucial for developing efficient and sustainable biofuel production processes.
Full article
Figure 1
Open AccessArticle
Catalytic Evaluation of an Optimized Heterogeneous Composite Catalyst Derived from Fusion of Tri-Biogenic Residues
by
Oyelayo Ajamu Oyedele, Simeon Olatayo Jekayinfa, Abass O. Alade and Christopher Chintua Enweremadu
Biomass 2024, 4(4), 1219-1237; https://doi.org/10.3390/biomass4040068 - 2 Dec 2024
Abstract
►▼
Show Figures
This study analyzes the elemental and oxide compositions of three selected agricultural residues—Dried Pawpaw Leaves (DPL), Kola Nut Pod (KNP), and Sweet Orange Peel (SOP)—for their potential as heterogeneous catalysts. Energy Dispersive X-ray (EDX) analysis identified calcium (25%) and potassium (29%) as the
[...] Read more.
This study analyzes the elemental and oxide compositions of three selected agricultural residues—Dried Pawpaw Leaves (DPL), Kola Nut Pod (KNP), and Sweet Orange Peel (SOP)—for their potential as heterogeneous catalysts. Energy Dispersive X-ray (EDX) analysis identified calcium (25%) and potassium (29%) as the primary elements in DPL and KNP, with calcium oxide (CaO) and potassium oxide (K2O) as the dominant oxides. SOP had a similar composition but lacked vanadium. Calcined residues were analyzed at temperatures ranging from 500 °C to 900 °C using X-ray Fluorescence (XRF), revealing stable silicon dioxide (SiO2) content and temperature-dependent variations in CaO and K2O, indicating their catalytic potential for transesterification processes. Scanning Electron Microscopy (SEM) showed non-uniform, spongy microstructures, enhancing the surface area and catalytic efficiency. Fourier Transform Infrared Spectroscopy (FTIR) identified functional groups essential for catalytic activity, such as hydroxyls, methyl, and carboxyl. X-ray Diffraction (XRD) confirmed the presence of crystalline phases like calcium carbonate and calcium oxide, crucial for catalytic performance. Experimental biodiesel production using a mixture of the calcined residues (33.33% each of KNPA, SOPA, and DPLA) resulted in the highest biodiesel yield at 65.3%. Model summary statistics, including R2 (0.9824) values and standard deviations (0.0026), validated the experimental design, indicating high precision and prediction accuracy. These results suggest that the selected agricultural residues, when calcined and mixed properly, can serve as effective heterogeneous catalysts, with significant implications for biodiesel production, supporting previous research on the importance of calcium in catalytic processes.
Full article
Figure 1
Open AccessFeature PaperArticle
Hybrid Solar PV–Agro-Waste-Driven Combined Heat and Power Energy System as Feasible Energy Source for Schools in Sub-Saharan Africa
by
Ogheneruona Endurance Diemuodeke, David Vera, Mohammed Moore Ojapah, Chinedum Oscar Nwachukwu, Harold U. Nwosu, Daniel O. Aikhuele, Joseph C. Ofodu and Banasco Seidu Nuhu
Biomass 2024, 4(4), 1200-1218; https://doi.org/10.3390/biomass4040067 - 19 Nov 2024
Abstract
►▼
Show Figures
Poor access to electricity in rural communities has been linked to a poor educational system, as electricity is essential for supporting laboratories, technical practice, and long study hours for students. Therefore, this work presents the techno-economic analysis of a hybrid solar PV–agro-wastes (syngas)
[...] Read more.
Poor access to electricity in rural communities has been linked to a poor educational system, as electricity is essential for supporting laboratories, technical practice, and long study hours for students. Therefore, this work presents the techno-economic analysis of a hybrid solar PV–agro-wastes (syngas) energy system for electricity, heat, and cooling generation to improve energy access in rural schools. The system is located in Ghana at Tuna (lat. 9°29′18.28″ N and long. 2°25′51.02″ W) and serves a secondary school for enhanced quality education. The system relies on agro-waste (gasifier-generator) and sunlight (solar PV), with a battery energy storage system, to meet the school’s energy demand. The study employs HOMER Pro Version 3.16.2 software to comprehensively analyze technical, economic, and environmental aspects. The system can generate 221,621 kWh of electricity (at a unit cost of electricity of 0.295 EUR/kWh) and 110,896 kWh of thermal energy yearly. The cost of electricity from the proposed system is cheaper than the cost of electricity from an equivalent diesel generator at 0.380 EUR/kWh. The thermal energy can meet the heating demand of the school in addition to powering a vapor absorption chiller. The system is environmentally friendly, with the capacity to sink 0.526 kg of CO2 yearly. Government policies that moderate interest rates for bioenergy/solar PV systems and social solution on feedstock pricing will favor the economic sustainability of the proposed system. The system will address the energy access challenge (SDG 7), enhance the quality of education (SDG 4), and contribute to climate mitigation through carbon sequestration (SDG 13).
Full article
Figure 1
Open AccessArticle
Estimating Herbaceous Aboveground Biomass Using an Indirect Method Based on the Herbaceous Layer Characteristics
by
Ousmane Diatta, Adjoua Ange-Jokébed N’goran, Cofélas Fassinou, Paulo Salgado, Ousmane Ndiaye, Sékouna Diatta, Daouda Ngom, Torbern Tagesson and Simon Taugourdeau
Biomass 2024, 4(4), 1191-1199; https://doi.org/10.3390/biomass4040066 - 15 Nov 2024
Abstract
Background: In the Sahel, one of the largest semi-arid areas in the world, pastoral livestock is the main source of protein for the local population. The quantification of herbaceous biomass in the Sahelian rangelands is of major importance since it provides food for
[...] Read more.
Background: In the Sahel, one of the largest semi-arid areas in the world, pastoral livestock is the main source of protein for the local population. The quantification of herbaceous biomass in the Sahelian rangelands is of major importance since it provides food for the livestock. The main method used to monitor the biomass consists of cutting, drying, and weighting it. However, indirect methods are available and allow a reliable biomass estimation. Methods: In this study, we developed a non-destructive method for estimating herbaceous biomass for the Sahelian rangelands based on measurements of its height and coverage. Results: Results show that the fit is better in the fenced area. The volume index (height × coverage) provides a better biomass prediction with relative differences between measured and predicted biomass of 11% in 2017 and 8% in 2019. Conclusions: Monitoring herbaceous biomass without destroying it is possible by measuring only its height and coverage.
Full article
(This article belongs to the Special Issue Innovative Systems for Biomass Crop Production and Use)
►▼
Show Figures
Figure 1
Open AccessArticle
Advancing Circular Economy in Olive Oil Production: Comparing Maturation Systems for Vermicompost Creation from Olive Pomace
by
Giulia Angeloni, Agnese Spadi, Ferdinando Corti, Marco Calcaprina, Giulia Carpi, Francesco Maioli, Alessandro Parenti and Piernicola Masella
Biomass 2024, 4(4), 1178-1190; https://doi.org/10.3390/biomass4040065 - 8 Nov 2024
Abstract
►▼
Show Figures
The production of extra virgin olive oil (EVOO) creates by-products like olive pomace, which brings environmental issues due to its strong odors and the challenges involved in storage. To address this within a circular economy framework, this study explores the potential of olive
[...] Read more.
The production of extra virgin olive oil (EVOO) creates by-products like olive pomace, which brings environmental issues due to its strong odors and the challenges involved in storage. To address this within a circular economy framework, this study explores the potential of olive pomace as a nutrient source for earthworms, aiming to transform it into a beneficial soil amendment. Key nutrients in the pomace, such as polyphenols, sugars, and organic matter, were examined for their effectiveness in nourishing earthworms. Four distinct treatments were applied to the pomace: mechanical mixing, aeration, a combination of both, and no treatment. For a period of 30 days, chemical parameters including pH, polyphenol levels, and moisture content were monitored, while earthworm preferences were assessed at Centro Lombricoltura Toscano (CLT). The study revealed significant differences in the chemical composition of the pomace depending on the treatment, especially regarding polyphenol and total sugar content. These changes influenced the palatability for earthworms, with the combined treatment producing the most appealing pomace, likely due to the increased nutrient availability. Ultimately, olive pomace has promising potential to be repurposed into a nutrient-dense soil amendment, alleviating environmental concerns and contributing to more sustainable waste management within the olive oil industry.
Full article
Figure 1
Open AccessFeature PaperArticle
Optimized Polyhydroxybutyrate Production by Neobacillus niacini GS1 Utilizing Corn Flour, Wheat Bran, and Peptone: A Sustainable Approach
by
Gaurav Shrimali, Ajit Gangawane, Esha Rami, Hardik Shah, Kashyap Thummar, Dipak Kumar Sahoo, Ashish Patel and Jens Ejbye Schmidt
Biomass 2024, 4(4), 1164-1177; https://doi.org/10.3390/biomass4040064 - 8 Nov 2024
Abstract
►▼
Show Figures
Plastic pollution is a pressing environmental challenge, necessitating the development of biodegradable alternatives like polyhydroxybutyrate (PHB). This study focuses on optimizing PHB production by Neobacillus niacini GS1, a bacterium isolated from a municipal dumping site. By utilizing agricultural residues such as corn flour,
[...] Read more.
Plastic pollution is a pressing environmental challenge, necessitating the development of biodegradable alternatives like polyhydroxybutyrate (PHB). This study focuses on optimizing PHB production by Neobacillus niacini GS1, a bacterium isolated from a municipal dumping site. By utilizing agricultural residues such as corn flour, wheat bran, and peptone as substrates, we aimed to establish an eco-friendly method for biopolymer production, contributing to sustainable agricultural residue management and bioplastic innovation. The bacterium was identified using morphological, biochemical, and molecular techniques. The optimization process involved adjusting variables such as inoculum age, inoculum size, incubation time, agitation rate, incubation temperature, pH of the medium, carbon sources, and nitrogen sources. Response surface methodology (RSM) was employed to identify optimal conditions, with the highest PHB yield of 61.1% achieved under specific conditions: 37 °C, pH 7, and an agitation rate of 150 rpm. These findings underscore the potential of Neobacillus niacini GS1 in converting agro-industrial residues into valuable biopolymers, promoting sustainable bioplastic production, and advancing agricultural residue valorization efforts through the use of eco-friendly materials.
Full article
Figure 1
Open AccessArticle
Utilization of Palm Frond Waste as Fuel for Co-Firing Coal and Biomass in a Tangentially Pulverized Coal Boiler Using Computational Fluid Dynamic Analysis
by
Sobar Ihsan, Prabowo, Wawan Aries Widodo, I Nyoman Agus Adi Saputra and Hariana
Biomass 2024, 4(4), 1142-1163; https://doi.org/10.3390/biomass4040063 - 31 Oct 2024
Abstract
►▼
Show Figures
Renewable energy sources are becoming increasingly crucial in the global energy industry and are acknowledged as a significant substitute for fossil fuels. Oil palm fronds are a type of biomass fuel that can be utilized as a substitute for fossil fuels in the
[...] Read more.
Renewable energy sources are becoming increasingly crucial in the global energy industry and are acknowledged as a significant substitute for fossil fuels. Oil palm fronds are a type of biomass fuel that can be utilized as a substitute for fossil fuels in the combustion process of boilers. Co-firing (HT-FRD) is a beneficial technology for reducing exhaust gas emissions generated by coal-burning power stations. By utilizing computational fluid dynamics (CFD), this study has modeled and evaluated co-firing palm frond residue (HT-FRD) with hydrothermal treatment into a 315 MWe boiler. In the simulation, six different HT-FRD co-firing ratios, 0%, 5%, 15%, 25%, 35%, and 50%, were used to demonstrate the differences in combustion characteristics and emissions in the combustion chamber. The data indicate that HT-FRD co-firing can enhance temperature distribution, velocity, and unburned particles. All in all, co-firing conditions with 5–15% HT-FRD ratios appear to have the most favorable combustion temperature, velocity, and exhaust gas characteristics.
Full article
Figure 1
Open AccessFeature PaperArticle
Biomass Demineralization and Pretreatment Strategies to Reduce Inhibitor Concentrations in Itaconic Acid Fermentation by Aspergillus terreus
by
Gregory J. Kennedy, Michael J. Bowman, Kim L. Ascherl, Nancy N. Nichols and Badal C. Saha
Biomass 2024, 4(4), 1122-1141; https://doi.org/10.3390/biomass4040062 - 27 Oct 2024
Abstract
►▼
Show Figures
Itaconic acid (IA) is a platform chemical, derived from non-petroleum sources, produced through the fermentation of glucose by Aspergillus terreus. However, producing IA from alternative sugar sources (e.g., lignocellulose) has been shown to be problematic, requiring post-hydrolysis mitigation to allow growth and
[...] Read more.
Itaconic acid (IA) is a platform chemical, derived from non-petroleum sources, produced through the fermentation of glucose by Aspergillus terreus. However, producing IA from alternative sugar sources (e.g., lignocellulose) has been shown to be problematic, requiring post-hydrolysis mitigation to allow growth and IA production by the fungus. It is well known that the side products of lignocellulosic biomass conversion to sugars act as microbial growth inhibitors. An uncommon feature of fungal organic acid fermentations is production inhibition caused by mineral ions in biomass hydrolysate after pretreatment and enzymatic hydrolysis. To minimize mineral introduction during pretreatment and hydrolysis, we determined the sources of growth and production inhibitors at each of these steps. Biomass demineralization and four pretreatment strategies were evaluated for inhibitor introduction. Dilution assays determined the approximate degree of inhibition for each hydrolysate. An ammonium hydroxide pretreatment of demineralized wheat straw presented the lowest concentration of inhibitors and concomitant lowest inhibition: subsequent fermentations produced 35 g L−1 IA from wheat straw hydrolysate (91 g L−1 sugar) without post-hydrolysis mitigation.
Full article
Graphical abstract
Open AccessFeature PaperReview
Thermoeconomic Evaluation and Sustainability Insights of Hybrid Solar–Biomass Powered Organic Rankine Cycle Systems: A Comprehensive Review
by
Jahan Zeb Alvi, Zhengjun Guan and Muhammad Imran
Biomass 2024, 4(4), 1092-1121; https://doi.org/10.3390/biomass4040061 - 22 Oct 2024
Abstract
►▼
Show Figures
Hybrid solar–biomass organic Rankine cycle (ORC) systems represent a promising avenue for sustainable energy production by combining abundant but intermittent solar energy with the reliable biomass energy. This study conducts a detailed thermodynamic and economic assessment of these hybrid systems, focusing on their
[...] Read more.
Hybrid solar–biomass organic Rankine cycle (ORC) systems represent a promising avenue for sustainable energy production by combining abundant but intermittent solar energy with the reliable biomass energy. This study conducts a detailed thermodynamic and economic assessment of these hybrid systems, focusing on their potential to enhance energy efficiency and reduce greenhouse gas emissions. The study also evaluates the performance of various working fluids, identifying optimal configurations for different operating conditions. A key finding is that the hybrid system, with an optimized solar–biomass ratio, achieves up to a 21 to 31% improvement in efficiency and a 33% reduction in levelized cost of electricity (LCOE) compared to solar-only systems. Additionally, the study examines case studies of real-world applications, offering insights into the scalability and cost-effectiveness of these systems in regions with high solar irradiation and biomass availability. These results underline the need for continued technological innovation and policy support to promote widespread adoption of hybrid ORC systems, particularly in the context of global decarbonization efforts.
Full article
Figure 1
Open AccessFeature PaperArticle
Sonication-Assisted Decellularization of Waste Tilapia (Oreochromis niloticus) Heads for Extracellular Matrix Extraction
by
Lean Baclayon, Ronald Bual, Marionilo Labares, Jr., Kit Dominick Don Valle, Job Pague, Jr., Johnel Alimasag, Gladine Lumancas, Fernan Arellano, Michael John Nisperos, Jemwel Aron and Hernando Bacosa
Biomass 2024, 4(4), 1078-1091; https://doi.org/10.3390/biomass4040060 - 8 Oct 2024
Abstract
►▼
Show Figures
Tilapia (Oreochromis niloticus), which is extensively farmed globally and ranks as the second most cultivated fish in the Philippines, generates significant amounts of waste that are often underutilized. One specific type of waste material consists of fish heads, which contain a
[...] Read more.
Tilapia (Oreochromis niloticus), which is extensively farmed globally and ranks as the second most cultivated fish in the Philippines, generates significant amounts of waste that are often underutilized. One specific type of waste material consists of fish heads, which contain a valuable source of extracellular matrix (ECM). This study aims to evaluate the effects of sonication as a viable decellularization method for the extraction of ECM from tilapia fish heads. Particularly, two treatments were tested on the head samples: sonication-assisted decellularization (dWS) using a water bath sonicator, and decellularization without sonication (dNS), each with different contact times (5 min and 10 min). Histological analysis with H and E staining and DNA quantification revealed that sonication-assisted samples (dWS) showed a greater reduction in basophilic components and DNA content, achieving a 93.7% removal rate. These dWS samples also had the highest protein loss, retaining only 33.86% of the original protein. SDS–PAGE analysis indicated that both dWS and dNS samples maintained similar collagen structures, as evidenced by identical subunit bands. ATR–FTIR spectra confirmed the presence of collagen type I in all samples, detecting characteristic amides A, B, I, II, and III. The results revealed that varying treatments and contact times had significant effects on the physical and mechanical properties of the decellularized extracellular matrix (ECM). These findings highlight the effectiveness of sonication in the decellularization process, particularly for utilizing waste tilapia heads.
Full article
Graphical abstract
Open AccessFeature PaperReview
Phycoremediated Microalgae and Cyanobacteria Biomass as Biofertilizer for Sustainable Agriculture: A Holistic Biorefinery Approach to Promote Circular Bioeconomy
by
Prabhaharan Renganathan, Lira A. Gaysina, Ramón Jaime Holguín-Peña, Juan Carlos Sainz-Hernández, Jesus Ortega-García and Edgar Omar Rueda-Puente
Biomass 2024, 4(4), 1047-1077; https://doi.org/10.3390/biomass4040059 - 24 Sep 2024
Abstract
►▼
Show Figures
The increasing global population has raised concerns about meeting growing food demand. Consequently, the agricultural sector relies heavily on chemical fertilizers to enhance crop production. However, the extensive use of chemical fertilizers can disrupt the natural balance of the soil, causing structural damage
[...] Read more.
The increasing global population has raised concerns about meeting growing food demand. Consequently, the agricultural sector relies heavily on chemical fertilizers to enhance crop production. However, the extensive use of chemical fertilizers can disrupt the natural balance of the soil, causing structural damage and changes in the soil microbiota, as well as affecting crop yield and quality. Biofertilizers and biostimulants derived from microalgae and cyanobacteria are promising sustainable alternatives that significantly influence plant growth and soil health owing to the production of diverse biomolecules, such as N-fixing enzymes, phytohormones, polysaccharides, and soluble amino acids. Despite these benefits, naturally producing high-quality microalgal biomass is challenging owing to various environmental factors. Controlled settings, such as artificial lighting and photobioreactors, allow continuous biomass production, but high capital and energy costs impede large-scale production of microalgal biomass. Sustainable methods, such as wastewater bioremediation and biorefinery strategies, are potential opportunities to overcome these challenges. This review comprehensively summarizes the plant growth-promoting activities of microalgae and elucidates the mechanisms by which various microalgal metabolites serve as biostimulants and their effects on plants, using distinct application methods. Furthermore, it addresses the challenges of biomass production in wastewater and explores biorefinery strategies for enhancing the sustainability of biofertilizers.
Full article
Figure 1
Open AccessArticle
Fatty Acid Bioconversion and Scaling-Up Effects of Swine Manure Treatment with Black Soldier Fly Larvae
by
Wenyue Shen, Xiangwei Ma, Hang Liu, Chuheng Jia, Ranxia Xue, Han Ouyang, Yuxin Li, Shibo Sun, Xiaoying Dong, Fengyun Ji, Jianqiang Xu and Weiping Xu
Biomass 2024, 4(3), 1031-1046; https://doi.org/10.3390/biomass4030058 - 9 Sep 2024
Abstract
►▼
Show Figures
Black soldier fly larvae (BSFL) treatment offers a promising avenue for manure valorization. However, there is a lack of larval density studies and ton-scale exploration in swine manure bioconversion. This study delves into the efficiency of larval fatty acid (FA) bioconversion, examining the
[...] Read more.
Black soldier fly larvae (BSFL) treatment offers a promising avenue for manure valorization. However, there is a lack of larval density studies and ton-scale exploration in swine manure bioconversion. This study delves into the efficiency of larval fatty acid (FA) bioconversion, examining the impact of larval density on a kilogram scale and extending the analysis to a ton scale. Across a range of 50 to 600 larvae/kg, the larval FA content decreased from 15.3% to 7.85%. The peak larval FA yield, at 3.04% (based on manure dry matter), occurred at a density of 200 larvae/kg. Both low (50 larvae/kg) and high (600 larvae/kg) densities adversely affected BSFL bioconversion performance. Dominant larval FAs included C12:0 (39.7%), C16:1 (24.2%), C18:1 (17.5%), and C16:0 (8.3%). The scaling-up process maintained a consistent larval FA content and composition but resulted in decreased larvae FA yield due to increased larval mortality. Ultimately, each ton of swine manure yielded 12.4 kg of fresh larvae or 0.71 kg of larval FA components, corresponding to a 1.14% larval FA yield. This study underscores the feasibility of upscaling swine manure treatment using BSFL for FA bioconversion and emphasizes the necessity for large-scale studies to enhance larval survivorship and bioconversion efficiency.
Full article
Figure 1
Open AccessArticle
Sorghum Biomass as an Alternative Source for Bioenergy
by
Marina Moura Morales, Aaron Kinyu Hoshide, Leticia Maria Pavesi Carvalho and Flavio Dessaune Tardin
Biomass 2024, 4(3), 1017-1030; https://doi.org/10.3390/biomass4030057 - 5 Sep 2024
Abstract
►▼
Show Figures
Alternative biomass for energy can reduce fossil fuel use and environmental impacts, providing energy security in semi-arid areas with shallow soils that are not ideal for agro-forestry. The densification of sorghum biomass (SB) brings its energetic characteristics closer those of wood. Higher heating
[...] Read more.
Alternative biomass for energy can reduce fossil fuel use and environmental impacts, providing energy security in semi-arid areas with shallow soils that are not ideal for agro-forestry. The densification of sorghum biomass (SB) brings its energetic characteristics closer those of wood. Higher heating value (HHV) represents the heat produced by a given quantity of fuel. This Brazilian research tested different mixtures of SB, eucalyptus wood (W), and eucalyptus bio-oil (Bo) as briquettes for HHV and least ash. Compressed mixtures of SB+B were compared to W+Bo and SB+W+Bo. The concentrations of bio-oil added to SB/W were 1%, 3%, 4%, and 5%. SB+W+Bo composites’ W content was 0%, 25%, 50%, 75%, and 100%, with Bo as 3% of the weight. Sorghum biomass’ HHV is equivalent to W at 3%Bo. Bo doses of 4% and 5% had the same HHV as 3%. Eucalyptus wood did not have a significantly greater HHV with any amount of Bo. SB+W+3%Bo had the same HHV as W when W was at least 50% of the mixture. At greater than 36%W, the ash content was lower than 3%, meeting the EN-B international standard. The optimal composite mixture was 64%SB+36%W+3%Bo for HHV and ash content. SB briquettes can be more widely adopted given sorghum’s prevalence in semi-arid environments.
Full article
Figure 1
Open AccessArticle
Enhancing the Release of Ellagic Acid from Mexican Rambutan Peel Using Solid-State Fermentation
by
Nadia D. Cerda-Cejudo, José J. Buenrostro-Figueroa, Leonardo Sepúlveda, L. E. Estrada-Gil, Cristian Torres-León, Mónica L. Chávez-González, Cristóbal N. Aguilar and J. A. Ascacio-Valdés
Biomass 2024, 4(3), 1005-1016; https://doi.org/10.3390/biomass4030056 - 2 Sep 2024
Abstract
►▼
Show Figures
This work describes research focused on the recovery of ellagic acid (EA) using solid-state fermentation-assisted extraction (SSF) with Aspergillus niger GH1 and Mexican rambutan peel as support. Several culture conditions (temperature, initial moisture, levels of inoculum, and concentration of salts) were evaluated using
[...] Read more.
This work describes research focused on the recovery of ellagic acid (EA) using solid-state fermentation-assisted extraction (SSF) with Aspergillus niger GH1 and Mexican rambutan peel as support. Several culture conditions (temperature, initial moisture, levels of inoculum, and concentration of salts) were evaluated using a Placket–Burman design (PBD) for screening culture factors followed by a central composite design (CCD) for enhancing the EA. Antioxidant activity and polyphenol content were evaluated in SSF. Temperature (28.2 °C), inoculum (2 × 107 spores/g), and NaNO3 (3.83 g/L) concentration were identified as a significant parameter for EA in SSF. This enhancing procedure resulted in an increase in EA recovery [201.53 ± 0.58–392.23 ± 17.53 mg/g] and, with two steps of purification, [396.9 ± 65.2 mg/g] of EA compound was recovered per gram of recovered powder. Fermentation extracts reflect inhibition of radicals and the presence of polyphenol content. This work proposes to identify the ideal conditions of fermentation in order to obtain a higher yield high-quality compound from agro-industrial wastes through SSF.
Full article
Figure 1
Open AccessArticle
Valorisation of Tomato Waste as a Source of Cutin for Hydrophobic Surface Coatings to Protect Starch- and Gelatine-Blend Bioplastics
by
Marta Mroczkowska, David Culliton, Kieran J. Germaine, Manasa Hegde, Edmond F. Tobin and Adriana Cunha Neves
Biomass 2024, 4(3), 990-1004; https://doi.org/10.3390/biomass4030055 - 2 Sep 2024
Abstract
The valorisation of food by-products is an important step towards sustainability in food production. Tomatoes constitute one of the most processed crops in the world (160 million tonnes of tomatoes are processed every year), of which 4% is waste. This translates to 6.4
[...] Read more.
The valorisation of food by-products is an important step towards sustainability in food production. Tomatoes constitute one of the most processed crops in the world (160 million tonnes of tomatoes are processed every year), of which 4% is waste. This translates to 6.4 million tonnes of tomato skins and seeds. Currently, this waste is composted or is used in the production of low-value animal feed; higher value can be achieved if this waste stream is re-appropriated for more advanced purposes. Plant cuticle is a membrane structure found on leaves and fruit, including tomatoes, and is mainly composed of cutin. The main function of plant cuticle is to limit water loss from the internal tissue of the plant. Cutin, which can be recovered from the tomato skins by pH shift extraction, has hydrophobic (water repellent) properties and is therefore an ideal raw material for the development of a novel water-resistant coating. In this study, biomass-based bioplastics were developed. Unfortunately, although these bioplastics have good mechanical properties, their hydrophilic nature results in poor water barrier properties. To mitigate this, a very effective water-resistant coating was formulated using the cutin extracted from tomato peels. The water vapour permeability rates of the bioplastics improved by 74% and the percentage swelling of the bioplastic improved by 84% when treated with the cutin coating. With physicochemical properties that can compete with petroleum-based plastics, these bioplastics have the potential to address the growing market demand for sustainable alternatives for food packaging. Using ingredients generated from by-products of the food processing industries (circular economy), the development of these bioplastics also addresses the UN’s Sustainable Development Goal (SDG) 12, Sustainable Consumption and Production (SCP).
Full article
(This article belongs to the Special Issue Biomass Materials: Synthesis, Functionalisation, and Applications)
►▼
Show Figures
Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Biomass, Microorganisms, Sustainability, Water, Fermentation, Energies, Materials
Recovery and Use of Bioactive Materials and Biomass
Topic Editors: Xiang Li, Tianfeng Wang, Xianbao XuDeadline: 25 November 2025
Topic in
Energies, Materials, Catalysts, Processes, Biomass
Advances in Biomass Conversion, 2nd Edition
Topic Editors: Jacek Grams, Agnieszka RuppertDeadline: 20 December 2025
Topic in
Biomass, Energies, Materials, Molecules, Nanomaterials, Polymers
Biomass for Energy, Chemicals and Materials
Topic Editors: Shaohua Jiang, Changlei Xia, Shifeng Zhang, Xiaoshuai HanDeadline: 31 December 2025
Conferences
Special Issues
Special Issue in
Biomass
Homogeneous Catalysis for Sustainable Energy: Fuels from Biomass
Guest Editors: Jianjun Cai, Xingying TangDeadline: 31 January 2025
Special Issue in
Biomass
Selected Papers from the "2nd European Congress on Renewable Energy and Sustainable Development—Energy Trends 2024"
Guest Editor: Olga TironDeadline: 31 March 2025