Prospects for Biomass Heat Energy in Kosovo: Environmental Considerations and Usage Limitations
Abstract
:1. Introduction
1.1. Energy Transition Priorities and Insights from BWS Studies
1.2. Main Characteristics of the Kosovar Energy System, Highlighting RES Regulation and People’s Attitude
1.3. Public Perception, Education and Acceptance of Renewable Energy in International Surveys
1.4. Marketing and Renewable Energy
2. Materials and Methods
Description of the Sample
3. Results and Discussion
3.1. Student’s Attitude Towards Renewable Energy
3.2. Evaluation of Cluster Analysis Results
4. Conclusions
- What is worth growing on arable land: food, feed, or energy [82]?
- What is the role of education in sustainability?
- The latter article may be particularly useful in elucidating the manner in which economic development and country-specific factors influence the utilization of renewable energy sources.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ANOVA | Analysis of Variance |
BWS | Best−Worst Scale |
χ2 | Chi-Square |
DH | District Heating |
EE | Energy Efficiency |
FFA | Free Fatty Acid |
GPP | Green Pricing Program |
GHGs | Greenhouse Gasses |
GWh | Gigawatt hours |
HUPX | Hungarian Electricity Exchange |
Kj/kg | Kilojoule per kilogram |
Ktoe | Kilotonnes of oil equivalent |
KWh | Kilowatt-hour |
MWh | Megawatt hours |
PM | Particulate matter |
PST | Preservice Teachers |
RECs | Renewable Energy Cooperatives |
RES | Renewable Energy Source |
SEM | Structural Equation Modeling |
SPSS | Statistical Package for the Social Sciences |
TPB | Theory of Planned Behavior |
WTP | Willingness to pay |
References
- Popp, J.; Harangi-rákos, M.; Petô, K.; Nagy, A. Bioenergy: Risks to Food-; Energy-; Environmental Security. 2013. Available online: https://ojs.lib.unideb.hu/apstract/article/view/6212 (accessed on 10 February 2025).
- Vida, V.; Szűcs, I. Pork production and consumption issues from the perspective of the religion and the World’s growing population. Appl. Stud. Agribus. Commer. 2020, 14, 121–128. [Google Scholar] [CrossRef]
- Tumiwa, J.R.; Tuegeh, O.; Bittner, B.; Nagy, A. The challenges to developing smart agricultural village in the industrial revolution 4.0.: The case of indonesia. Torun Int. Stud. 2022, 1, 25–45. [Google Scholar] [CrossRef]
- Ministry of Economy, Energy Strategy of the Republic of Kosovo 2022–2031. 2021. Available online: https://me.rks-gov.net/wp-content/uploads/2023/04/Energy-Strategy-of-the-Republic-of-Kosovo-2022-2031-1-1.pdf (accessed on 30 September 2024).
- ERO. Annual Report 2021. 2021. Available online: https://www.ero-ks.org/zrre/en/publikimet/raportet-vjetore?q=sq/publikimet/raportet-vjetore (accessed on 15 September 2024).
- Ymeri, P.; Gyuricza, C.; Fogarassy, C. Farmers’ Attitudes Towards the Use of Biomass as Renewable Energy—A Case Study from Southeastern Europe. Sustainability 2020, 12, 4009. [Google Scholar] [CrossRef]
- FAO. Commercialization of Smallholder Farms in Kosovo; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Miftari, A.I.; Hoxha, B.; Gjokaj, E. Kosovo*: Agricultural Policy Brief (CAPB). 2015. Available online: https://app.seerural.org/wp-content/uploads/2016/11/2015-10_Country-policy-brief-Kosovo-Final.pdf (accessed on 20 September 2024).
- Babaei, A.; Tirkolaee, E.B.; Boz, E. Optimizing energy consumption for blockchain adoption through renewable energy sources. Renew. Energy 2025, 238, 121936. [Google Scholar] [CrossRef]
- Okur, Ö.; Fiori, F.; Fouladvand, J. Adoption of renewable heating systems and thermal energy communities in the Netherlands: An empirical study. Energy Rep. 2024, 11, 3815–3823. [Google Scholar] [CrossRef]
- Bai, A.; Durkó, E.; Tar, K.; Tóth, J.B.; Lázár, I.; Kapocska, L.; Kircsi, A.; Bartók, B.; Vass, R.; Pénzes, J.; et al. Social and economic possibilities for the energy utilization of fitomass in the valley of the river Hernád. Renew. Energy 2016, 85, 777–789. [Google Scholar] [CrossRef]
- Ang, T.-Z.; Salem, M.; Kamarol, M.; Das, H.S.; Nazari, M.A.; Prabaharan, N. A comprehensive study of renewable energy sources: Classifications, challenges and suggestions. Energy Strat. Rev. 2022, 43, 100939. [Google Scholar] [CrossRef]
- Toklu, E. Biomass energy potential and utilization in Turkey. Renew. Energy 2017, 107, 235–244. [Google Scholar] [CrossRef]
- Alatzas, S.; Moustakas, K.; Malamis, D.; Vakalis, S. Biomass potential from agricultural waste for energetic utilization in Greece. Energies 2019, 12, 1095. [Google Scholar] [CrossRef]
- Bilandzija, N.; Voca, N.; Jelcic, B.; Jurisic, V.; Matin, A.; Grubor, M.; Kricka, T. Evaluation of Croatian agricultural solid biomass energy potential. Renew. Sustain. Energy Rev. 2018, 93, 225–230. [Google Scholar] [CrossRef]
- Tun, M.M.; Juchelkova, D.; Win, M.M.; Thu, A.M.; Puchor, T. Biomass energy: An overview of biomass sources, energy potential, and management in Southeast Asian countries. Resources 2019, 8, 81. [Google Scholar] [CrossRef]
- Okafor, C.C.; Nzekwe, C.A.; Ajaero, C.C.; Ibekwe, J.C.; Otunomo, F.A. Biomass utilization for energy production in Nigeria: A review. Clean. Energy Syst. 2022, 3, 100043. [Google Scholar] [CrossRef]
- Popp, J.; Kovács, S.; Oláh, J.; Divéki, Z.; Balázs, E. Bioeconomy: Biomass and biomass-based energy supply and demand. N. Biotechnol. 2021, 60, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Gabnai, Z. Energy alternatives in large-scale wastewater treatment. Appl. Stud. Agribus. Commer. 2017, 11, 141–146. [Google Scholar] [CrossRef]
- Gabnai, Z. Development of the European Union’s environmental policy and its measures for climate protection—A review. Appl. Stud. Agribus. Commer. 2022, 15, 1–9. [Google Scholar] [CrossRef]
- Gaurav, A.; Dumas, S.; Mai, C.T.Q.; Ng, F.T.T. A kinetic model for a single step biodiesel production from a high free fatty acid (FFA) biodiesel feedstock over a solid heteropolyacid catalyst. Green Energy Environ. 2019, 4, 328–341. [Google Scholar] [CrossRef]
- Viswanathan, K.; Wang, S. Experimental investigation on the application of preheated fish oil ethyl ester as a fuel in diesel engine. Fuel 2021, 285, 119244. [Google Scholar] [CrossRef]
- Babadi, A.A.; Rahmati, S.; Fakhlaei, R.; Barati, B.; Wang, S.; Doherty, W.; Ostrikov, K. Emerging technologies for biodiesel production: Processes, challenges, and opportunities. Biomass Bioenergy 2022, 163, 106521. [Google Scholar] [CrossRef]
- Yuan, C.; Xu, H.; El-Khodary, S.A.; Ni, G.; Esakkimuthu, S.; Zhong, S.; Wang, S. Recent advances and challenges in biomass-derived carbon materials for supercapacitors: A review. Fuel 2024, 362, 130795. [Google Scholar] [CrossRef]
- European Commission. Renewable Energy Targets. 2023. Available online: https://energy.ec.europa.eu/topics/renewable-energy/renewable-energy-directive-targets-and-rules/renewable-energy-targets_en (accessed on 18 September 2024).
- Fejzulla, A.A.; Pare, J.; Parkins, J.R. Knowledge, Attitudes, and Willingness to Invest in Renewable Energy Cooperatives in Alberta. 2024. Available online: https://era.library.ualberta.ca/items/cbeda637-f299-4c47-b27a-cebf6fcd6bd0 (accessed on 25 September 2024).
- Oluoch, S.; Lal, P.; Susaeta, A.; Smith, M.; Wolde, B. Consumer Preferences for Wood-Pellet-Based Green Pricing Programs in the Eastern United States. Energies 2024, 17, 1821. [Google Scholar] [CrossRef]
- Zander, K.K.; Nepal, R.; Garnett, S.T. Assessing good governance principles of renewable energy megaprojects. J. Clean. Prod. 2024, 477, 143848. [Google Scholar] [CrossRef]
- Tiganis, A.; Chrysochou, P. Exploring tourist preferences for local food: A Best-Worst Scaling analysis and market segmentation approach. Br. Food J. 2024, 126, 4093–4107. [Google Scholar] [CrossRef]
- Ugarte Lucas, P.; Gamborg, C.; Lund, T.B. Sustainability concerns are key to understanding public attitudes toward woody biomass for energy: A survey of Danish citizens. Renew. Energy 2022, 194, 181–194. [Google Scholar] [CrossRef]
- Danijela Mitić and Nuno Queirós, Towards Clean Energy, One Step at a Time. Prishtina. Available online: https://kosovoteam.un.org/en/134090-towards-clean-energy-one-step-time (accessed on 18 October 2024).
- Lignite Mining Development Strategy. Available online: https://www.esiweb.org/pdf/bridges/kosovo/10/11.pdf (accessed on 21 October 2024).
- Pestisha, A.; Bai, A. Preferences and knowledge of farmers and internet-orientated population about renewable energy sources in Kosovo. Int. Rev. Appl. Sci. Eng. 2023, 14, 230–240. [Google Scholar] [CrossRef]
- Tchounikine, M. Air Quality in Kosovo: Towards European Standards-INDEP. 2019. Available online: https://indep.info/wp-content/uploads/2019/08/INDEP_June-2019_Air-Quality-in-Kosovo.pdf (accessed on 14 October 2024).
- Energy Regulatory Office. Annual Report ERO 2023. 2024. Available online: https://www.ero-ks.org/zrre/sites/default/files/Publikimet/Raportet%20Vjetor/01.%20Raporti%20vjetor%202023_Final%20(2)%20-%20ANG.BA.pdf (accessed on 16 October 2024).
- Ministry of Economy. Ministry of Economy opens the Call for Subsidy of Efficient Heating Equipment for Households. 2024. Available online: https://me.rks-gov.net/en/blog/ministry-of-economy-opens-the-call-for-subsidy-of-efficient-heating-equipment-for-households/ (accessed on 27 September 2024).
- E. Regulatory Office. KESCO 2022.pdf. Prishtine, 2022. Available online: https://www.kesco-energy.com/Uploads/Data/Docs/Tarifatmepakiceteenergjiseelekrike,2022_gsXsvRSzHE.pdf (accessed on 23 September 2024).
- Energy Regulatory Office. Decision on Retail Tariffs ERO. Prishtine, 2024. pp. 1–4. Available online: https://www.ero-ks.org/zrre/sites/default/files/2024-04/V_1926_2024_Vendimipertarifatmepakice.pdf (accessed on 15 December 2024).
- Hiloidhari, M.; Sharno, M.A.; Baruah, D.C.; Bezbaruah, A.N. Green and sustainable biomass supply chain for environmental, social and economic benefits. Biomass Bioenergy 2023, 175, 106893. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Kim, J.; Yang, M. The hidden costs of energy and mobility: A global meta-analysis and research synthesis of electricity and transport externalities. Energy Res. Soc. Sci. 2021, 72, 101885. [Google Scholar] [CrossRef]
- Dadzie, J.; Runeson, G.; Ding, G.; Bondinuba, F.K. Barriers to adoption of sustainable technologies for energy-efficient building upgrade-Semi-structured interviews. Buildings 2018, 8, 57. [Google Scholar] [CrossRef]
- Djurisic, V.; Smolovic, J.C.; Misnic, N.; Rogic, S. Analysis of public attitudes and perceptions towards renewable energy sources in Montenegro. Energy Rep. 2020, 6, 395–403. [Google Scholar] [CrossRef]
- Bidwell, D. The Effects of Information on Public Attitudes Toward Renewable Energy. Environ. Behav. 2016, 48, 743–768. [Google Scholar] [CrossRef]
- IRENA. World Energy Transitions Outlook 2023: 1.5 °C Pathway. 2023. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2023/Jun/IRENA_World_energy_transitions_outlook_2023.pdf?rev=db3ca01ecb4a4ef8accb31d017934e97 (accessed on 13 December 2024).
- Abrahamse, W.; Steg, L.; Vlek, C.; Rothengatter, T. The effect of tailored information, goal setting, and tailored feedback on household energy use, energy-related behaviors, and behavioral antecedents. J. Environ. Psychol. 2007, 27, 265–276. [Google Scholar] [CrossRef]
- van Dijk, M.; Goedegebure, R.; Nap, J.P. Public acceptance of biomass for bioenergy: The need for feedstock differentiation and communicating a waste utilization frame. Renew. Sustain. Energy Rev. 2024, 202, 114670. [Google Scholar] [CrossRef]
- Namkung, Y.; Jang, S.C.S. Effects of restaurant green practices on brand equity formation: Do green practices really matter? Int. J. Hosp. Manag. 2013, 33, 85–95. [Google Scholar] [CrossRef]
- Clorion, F.D.D.; Berganio, M.E.C.; Ceballos, J.C.; Labastilla, F.C.; Natividad, E.-R.R.; Ricohermoso, C.D.R.; Tolentino, M.A.G.; Toriano, T.T.; Alieto, E.O. Are future teachers ‘green’? A quantitative analysis of ability, knowledge, perception, and attitude toward renewable energy. Procedia Comput. Sci. 2024, 236, 558–565. [Google Scholar] [CrossRef]
- Almulhim, A.I. Understanding public awareness and attitudes toward renewable energy resources in Saudi Arabia. Renew. Energy 2022, 192, 572–582. [Google Scholar] [CrossRef]
- Acikgoz, F.; Yorulmaz, O. Renewable energy adoption among Türkiye’s future generation: What influences their intentions? Energy Sustain. Dev. 2024, 80, 101467. [Google Scholar] [CrossRef]
- Yazdanpanah, M.; Komendantova, N.; Shirazi, Z.N.; Bayer, J.L.B. Green or in between? Examining youth perceptions of renewable energy in Iran. Energy Res. Soc. Sci. 2015, 8, 78–85. [Google Scholar] [CrossRef]
- Yazdanpanah, M.; Komendantova, N.; Ardestani, R.S. Governance of energy transition in Iran: Investigating public acceptance and willingness to use renewable energy sources through socio-psychological model. Renew. Sustain. Energy Rev. 2015, 45, 565–573. [Google Scholar] [CrossRef]
- Oluoch, S.; Lal, P.; Susaeta, A.; Vedwan, N. Assessment of public awareness, acceptance and attitudes towards renewable energy in Kenya. Sci. Afr. 2020, 9, e00512. [Google Scholar] [CrossRef]
- Liobikienė, G.; Dagiliūtė, R.; Juknys, R. The determinants of renewable energy usage intentions using theory of planned behaviour approach. Renew. Energy 2021, 170, 587–594. [Google Scholar] [CrossRef]
- Sadjadi, E.N. Relational Marketing Promotes Sustainable Consumption Behavior in Renewable Energy Production. Sustainability 2023, 15, 5714. [Google Scholar] [CrossRef]
- Dehghani, M.; Tumer, M. A research on effectiveness of Facebook advertising on enhancing purchase intention of consumers. Comput. Human Behav. 2015, 49, 597–600. [Google Scholar] [CrossRef]
- Eagle, L.; Osmond, A.; Mccarthy, B.; Low, D.; Lesbirel, H. Social marketing strategies for renewable energy transitions. Australas. Mark. J. 2017, 25, 141–148. [Google Scholar] [CrossRef]
- Zenetti, G.; Klapper, D. Advertising Effects Under Consumer Heterogeneity—The Moderating Role of Brand Experience, Advertising Recall and Attitude. J. Retail. 2016, 92, 352–372. [Google Scholar] [CrossRef]
- Wilcox, G.B.; Kang, E.Y.; Chilek, L.A. Beer, wine, or spirits? Advertising’s impact on four decades of category sales. Int. J. Advert. 2015, 34, 641–657. [Google Scholar] [CrossRef]
- Cheah, S.K.A.; Low, B. The impact of public policy marketing, institutional narratives and discourses on renewable energy consumption in a developing economy. Asia Pacific J. Mark. Logist. 2022, 34, 944–962. [Google Scholar] [CrossRef]
- Flynn, T.N. Valuing citizen and patient preferences in health: Recent developments in three types of best-worst scaling. Expert Rev. Pharmacoecon. Outcomes Res. 2010, 10, 259–267. [Google Scholar] [CrossRef]
- Török, Á.; Yeh, C.H.; Menozzi, D.; Balogh, P.; Czine, P. Consumers’ preferences for processed meat: A best–worst scaling approach in three European countries. Agric. Food Econ. 2023, 4, 33. [Google Scholar] [CrossRef]
- Török, Á.; Yeh, C.H.; Menozzi, D.; Balogh, P.; Czine, P. European consumers’ preferences for fresh fruit and vegetables—A cross-country analysis. J. Agric. Food Res. 2023, 14, 100883. [Google Scholar] [CrossRef]
- CRAN: Package Support. BWS. Available online: https://cran.r-project.org/web/packages/support.BWS/index.html (accessed on 12 February 2025).
- Bathaei, A.; Štreimikienė, D. Renewable Energy and Sustainable Agriculture: Review of Indicators. Sustainability 2023, 15, 14307. [Google Scholar] [CrossRef]
- Wang, T.; Wu, G.; Chen, J.; Cui, P.; Chen, Z.; Yan, Y.; Zhang, Y.; Li, M.; Niu, D.; Li, B.; et al. Integration of solar technology to modern greenhouse in China: Current status, challenges and prospect. Renew. Sustain. Energy Rev. 2017, 70, 1178–1188. [Google Scholar] [CrossRef]
- Wang, S.; Du, A.M.; Lin, B. Market mechanisms for energy transition: Fossil energy price shocks and irrational renewable energy financing. J. Int. Money Financ. 2025, 151, 103251. [Google Scholar] [CrossRef]
- Yang, S.; Fang, J.; Zhang, Z.; Lv, S.; Lin, H.; Ju, L. Two-stage coordinated optimal dispatching model and benefit allocation strategy for rural new energy microgrid. Energy 2024, 292, 130274. [Google Scholar] [CrossRef]
- Gergely, B.; Péter, L.; Péter, C. A survey of the preferences of Hungarian e-sports consumers. Statisztikai Szle. 2023, 101, 635–657. [Google Scholar] [CrossRef]
- Aizaki, H.; Fogarty, J. R packages and tutorial for case 1 best–worst scaling. J. Choice Model. 2023, 46, 100394. [Google Scholar] [CrossRef]
- Fraune, C. Gender matters: Women; renewable energy, and citizen participation in Germany. Energy Res. Soc. Sci. 2015, 7, 55–65. [Google Scholar] [CrossRef]
- Arias, K.; López, D.; Camino-Mogro, S.; Weiss, M.; Walsh, D.; Gomes, L.G.; Hallack, M.C.M. Green transition and gender bias: An analysis of renewable energy generation companies in Latin America. Energy Res. Soc. Sci. 2023, 101, 103151. [Google Scholar] [CrossRef]
- Vogel, M.; Kacperski, C.; Bielig, M.; Kutzner, F. Doing gender in energy communities: A gendered perspective on barriers and motivators. Environ. Innov. Soc. Transitions 2024, 53, 100902. [Google Scholar] [CrossRef]
- Aruga, K.; Bolt, T.; Pest, P. Energy policy trade-offs in Poland: A best-worst scaling discrete choice experiment. Energy Policy 2021, 156, 112465. [Google Scholar] [CrossRef]
- Ntanos, S.; Kyriakopoulos, G.; Chalikias, M.; Arabatzis, G.; Skordoulis, M. Public perceptions and willingness to pay for renewable energy: A case study from Greece. Sustainability 2018, 10, 687. [Google Scholar] [CrossRef]
- Mittal, S.; Ahlgren, E.O.; Shukla, P.R. Barriers to biogas dissemination in India: A review. Energy Policy 2018, 112, 361–370. [Google Scholar] [CrossRef]
- de Carvalho, A.L.; Antunes, C.H.; Freire, F. Economic-energy-environment analysis of prospective sugarcane bioethanol production in Brazil. Appl. Energy 2016, 181, 514–526. [Google Scholar] [CrossRef]
- Szakály, Z.; Balogh, P.; Kontor, E.; Gabnai, Z.; Bai, A. Attitude toward and Awareness of Renewable Energy Sources: Hungarian Experience and Special Features. Energies 2021, 14, 22. [Google Scholar] [CrossRef]
- Cohen, E. Applying best-worst scaling to wine marketing. Int. J. Wine Bus. Res. 2009, 21, 8–23. [Google Scholar] [CrossRef]
- Meha, D.; Pfeifer, A.; Duić, N.; Lund, H. Increasing the integration of variable renewable energy in coal-based energy system using power to heat technologies: The case of Kosovo. Energy 2020, 212, 118762. [Google Scholar] [CrossRef]
- Bai, A.; Czibere, I. The monetary value of convenience and environmental features in residential heat energy consumption, in particular its social determinants. Energy Strat. Rev. 2023, 50, 101192. [Google Scholar] [CrossRef]
- Popp, J.; Harangi-Rákos, M.; Gabnai, Z.; Balogh, P.; Antal, G.; Bai, A. Biofuels and Their Co-Products as Livestock Feed: Global Economic and Environmental Implications. Molecules 2016, 21, 285. [Google Scholar] [CrossRef]
Price 2022 | Price 2024 | ||||
---|---|---|---|---|---|
0.4 kV (domestic 2-rate meter) | Standing (costumer) charge | €/customer/month | 1.74 | 2.00 | |
0−800 (First block) | €c/kWh | High Tariff | 6.75 | 7.79 | |
€c/kWh | Low Tariff | 2.89 | 3.34 | ||
>800 (Second block) | €c/kWh | High Tariff | 12.52 | 13.39 | |
€c/kWh | Low Tariff | 5.90 | 6.27 | ||
0.4 kV (domestic, 1-rate meter) | Standing (costumer) charge | €/customer/month | 1.74 | 2.00 | |
0−800 (First block) | €c/kWh | Single Tariff | 5.32 | 6.13 | |
>800 (Second block) | €c/kWh | Single Tariff | 10.07 | 10.67 |
What Factors Do You Consider Most Important and Least Important Regarding the Use of Renewable Resources? | ||
---|---|---|
Feature | The most important | The least important |
Price | ||
Availability | ||
Knowledge |
No. | Attributes |
---|---|
1 | Eco-friendliness |
2 | Price |
3 | Investment cost |
4 | Convenience |
5 | Multifunction |
6 | Knowledge |
7 | Availability |
Denomination | Categories | Percentage |
---|---|---|
Gender | Male | 16 |
Female | 84 | |
Field of study | Food Technology | 49 |
Agricultural Economics | 33 | |
Plant Production | 18 | |
Region | Other region | 39 |
Prishtinë | 61 | |
Type of residence | Flat | 15 |
House | 85 | |
Employment | Unemployed student | 80 |
Employed student | 20 |
Question | Alternatives | Frequency |
---|---|---|
How environmentally conscious do you consider yourself? | Mostly not environmentally conscious | 4 |
Mostly environmentally conscious | 72 | |
Very environmentally conscious | 24 | |
How important do you consider the level of knowledge to switch from fossil fuels to RE | Neutral | 20 |
Important | 39 | |
Very important | 41 | |
If you use electric heating and the price of electricity will increase by 15%, would you consider changing the way of heating? | I would not change it | 4 |
Perhaps | 48 | |
I would change it | 33 | |
I would definitely change | 15 | |
In your opinion, do you think that adervtising (marketing) would play a big role in the energy transition? | I disagree | 2 |
Neutral | 9 | |
I agree | 51 | |
I totally agree | 38 | |
Based on the current energy supply patterns, do you think that renewable energy sources will be the most important energy source for Kosovo’s enegy sector in 2040? | I disagree | 6 |
Neutral | 27 | |
I agree | 52 | |
I totally agree | 15 | |
In your opinion, do you think that the deployment of RES in Kosovo’s energy mix would be more desirable than coal? | I disagree | 3 |
Neutral | 10 | |
I agree | 42 | |
I totally agree | 45 | |
Based on current energy supply patterns, what do you think would be the most important source of energy for heating in the future of energy sector in Kosovo? | Wood | 9 |
Electricity | 19 | |
Solar panel | 57 | |
Other energy source | 15 | |
Denomination | Mean | Standard Deviation |
Age (year) | 20.63 | 1.88 |
Subsidy for solar panel (%) | 56 | 17.75 |
Multifunction | −0.57 | 1.65 |
Convenience | 0.07 | 1.53 |
Availability | −1.14 | 1.14 |
Price | 1.18 | 1.50 |
Knowledge | −0.89 | 1.38 |
Investment cost | 0.13 | 1.69 |
Eco-friendliness | 1.22 | 1.50 |
Designation | Eco-Friendliness | Price | Investment Cost | Convenience | Multifunction | Knowledge | Availability |
---|---|---|---|---|---|---|---|
The most important | 24.14 | 23.57 | 14.57 | 16.43 | 11.00 | 6.14 | 4.14 |
The least important | 6.71 | 6.71 | 12.71 | 15.43 | 19.14 | 18.86 | 20.43 |
BWS value | 122 | 118 | 13 | 7 | −57 | −89 | −114 |
Standard value | 0.41 | 0.39 | 0.04 | 0.02 | −0.19 | −0.30 | −0.38 |
Rank order | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Square root a | 1.90 | 1.87 | 1.07 | 1.03 | 0.76 | 0.57 | 0.45 |
Relative b % | 100.00 | 98.81 | 56.46 | 54.42 | 39.98 | 30.10 | 23.75 |
Rank order | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Denomination * | Cluster 1 ‘Greenies’ | Cluster 2 ‘Passive Environmentalist’ | Cluster 3 ‘Eco-Skeptics’ | Cluster 4 ‘Moderate Adopters’ | Test-Value | Significance Value | |
---|---|---|---|---|---|---|---|
Respondent number (100) | 30 | 22 | 23 | 25 | |||
BWS Convenience ** | −1.20 c | 1.27 a | 0.61 ab | 0.04 b | F = 29.32 | p < 0.001 | |
BWS Availability | −1.73 b | −1.23 ab | −0.48 a | −0.96 ab | F = 6.49 | p < 0.001 | |
BWS Price ** | 1.90 a | −0.18 b | 1.96 a | 0.80 b | F = 12.59 | p < 0.001 | |
BWS Knowledge | −1.3 | −0.36 | −1.13 | −0.64 | F = 2.58 | p = 0.058 | |
BWS Investment cost | 1.20 a | 0.09 b | 0.78 ab | −1.72 c | F = 27.03 | p < 0.001 | |
BWS Eco friendliness ** | 1.53 ab | 2.23 a | −0.39 c | 1.44b | F = 17.56 | p < 0.001 | |
Age (year) | Mean: 20.63 | 20.97 | 21.09 | 20.52 | 19.92 | F = 2.04 | p = 0.113 |
Gender | Male (n = 16) | 6 | 3 | 2 | 5 | χ2 = 1.66 | p = 0.646 |
Female (n = 84) | 24 | 19 | 21 | 20 | |||
Field of study | Food Technology (n = 67) | 20 | 15 | 16 | 16 | χ2 = 0.19 | p = 0.980 |
Agricultural Economics (n = 33) | 10 | 7 | 7 | 9 | |||
Knowledge fossil fuels to RE (rank means) | 62.67 a | 46.02 ab | 46.22 ab | 43.78 b | Kruskal-Wallis H value: 8.85 | p = 0.031 | |
Environmentally consciousness (rank means) | 54.9 | 43.59 | 51.37 | 50.5 | Kruskal-Wallis H value: 3.19 | p = 0.362 | |
Electricity price increase by 15% (rank means) | 52.98 | 47.82 | 48.43 | 51.78 | Kruskal-Wallis H value: 0.67 | p = 0.879 | |
Marketing energy transition (rank means) | 54.28 | 49.8 | 45.48 | 51.2 | Kruskal-Wallis H value: 1.51 | p = 0.680 | |
RES Kosovo 2040 (rank means) | 58.3 | 52.27 | 39.2 | 49.98 | Kruskal-Wallis H value: 6.88 | p = 0.076 | |
RES vs. coal (rank means) | 59.15 | 54.68 | 45.59 | 40.96 | Kruskal-Wallis H value: 7.78 | p = 0.051 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sertolli, A.; Bai, A.; Pestisha, A.; Balogh, P. Prospects for Biomass Heat Energy in Kosovo: Environmental Considerations and Usage Limitations. Biomass 2025, 5, 14. https://doi.org/10.3390/biomass5010014
Sertolli A, Bai A, Pestisha A, Balogh P. Prospects for Biomass Heat Energy in Kosovo: Environmental Considerations and Usage Limitations. Biomass. 2025; 5(1):14. https://doi.org/10.3390/biomass5010014
Chicago/Turabian StyleSertolli, Ardit, Attila Bai, Albiona Pestisha, and Péter Balogh. 2025. "Prospects for Biomass Heat Energy in Kosovo: Environmental Considerations and Usage Limitations" Biomass 5, no. 1: 14. https://doi.org/10.3390/biomass5010014
APA StyleSertolli, A., Bai, A., Pestisha, A., & Balogh, P. (2025). Prospects for Biomass Heat Energy in Kosovo: Environmental Considerations and Usage Limitations. Biomass, 5(1), 14. https://doi.org/10.3390/biomass5010014