The In Vitro Virucidal Effects of Mouthwashes on SARS-CoV-2
Abstract
:1. Introduction
2. Oral Antiseptic Mouthwashes
3. In vitro Studies assessing Virucidal Activity
4. Safety of Antiseptic Mouthwashes
5. Effectiveness of Oral Antiseptic Mouthwashes
6. Other Effects of Mouthwashes on SARS-CoV-2
7. Biocide Resistance of Mouthwashes
8. Limitations of In Vitro Studies
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ting, M.; Suzuki, J.B. SARS-CoV-2: Overview and Its Impact on Oral Health. Biomedicines 2021, 9, 1690. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Lin, Q.; Ran, J.; Musa, S.S.; Yang, G.; Wang, W.; Lou, Y.; Gao, D.; Yang, L.; He, D.; et al. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. Int. J. Infect. Dis 2020, 92, 214–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, L.; Ruan, F.; Huang, M.; Liang, L.; Huang, H.; Hong, Z.; Yu, J.; Kang, M.; Song, Y.; Xia, J.; et al. SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. N. Engl. J. Med. 2020, 382, 1177–1179. [Google Scholar] [CrossRef] [PubMed]
- Sungnak, W.; Huang, N.; Becavin, C.; Berg, M.; Queen, R.; Litvinukova, M.; Talavera-Lopez, C.; Maatz, H.; Reichart, D.; Sampaziotis, F.; et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat. Med. 2020, 26, 681–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrel, S.K.; Molinari, J. Aerosols and splatter in dentistry: A brief review of the literature and infection control implications. J. Am. Dent. Assoc. 2004, 135, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Micik, R.E.; Miller, R.L.; Mazzarella, M.A.; Ryge, G. Studies on dental aerobiology. I. Bacterial aerosols generated during dental procedures. J. Dent. Res. 1969, 48, 49–56.e11. [Google Scholar] [CrossRef] [PubMed]
- Enciso, R.; Keaton, J.; Saleh, N.; Ahmadieh, A.; Clark, G.T.; Sedghizadeh, P.P. Assessing the utility of serum C-telopeptide cross-link of type 1 collagen as a predictor of bisphosphonate-related osteonecrosis of the jaw: A systematic review and meta-analysis. J. Am. Dent. Assoc. 2016, 147, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Bordea, I.R.; Xhajanka, E.; Candrea, S.; Bran, S.; Onisor, F.; Inchingolo, A.D.; Malcangi, G.; Pham, V.H.; Inchingolo, A.M.; Scarano, A.; et al. Coronavirus (SARS-CoV-2) Pandemic: Future Challenges for Dental Practitioners. Microorganisms 2020, 8, 1704. [Google Scholar] [CrossRef] [PubMed]
- Wolfel, R.; Corman, V.M.; Guggemos, W.; Seilmaier, M.; Zange, S.; Muller, M.A.; Niemeyer, D.; Jones, T.C.; Vollmar, P.; Rothe, C.; et al. Virological assessment of hospitalized patients with COVID-2019. Nature 2020, 581, 465–469. [Google Scholar] [CrossRef] [Green Version]
- To, K.K.; Tsang, O.T.; Leung, W.S.; Tam, A.R.; Wu, T.C.; Lung, D.C.; Yip, C.C.; Cai, J.P.; Chan, J.M.; Chik, T.S.; et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: An observational cohort study. Lancet Infect. Dis 2020, 20, 565–574. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Yao, L.; Wei, T.; Tian, F.; Jin, D.Y.; Chen, L.; Wang, M. Presumed Asymptomatic Carrier Transmission of COVID-19. JAMA 2020, 323, 1406–1407. [Google Scholar] [CrossRef] [Green Version]
- Bordea, I.R.; Candrea, S.; Salagean, T.; Pop, I.D.; Lucaciu, O.; Ilea, A.; Manole, M.; Babtan, A.M.; Sirbu, A.; Hanna, R. Impact of COVID-19 Pandemic on Healthcare Professionals and Oral Care Operational Services: A Systemic Review. Risk Manag. Healthc. Policy 2021, 14, 453–463. [Google Scholar] [CrossRef]
- Inchingolo, A.D.; Inchingolo, A.M.; Bordea, I.R.; Malcangi, G.; Xhajanka, E.; Scarano, A.; Lorusso, F.; Farronato, M.; Tartaglia, G.M.; Isacco, C.G.; et al. SARS-CoV-2 Disease through Viral Genomic and Receptor Implications: An Overview of Diagnostic and Immunology Breakthroughs. Microorganisms 2021, 9, 793. [Google Scholar] [CrossRef] [PubMed]
- Davies, K.; Buczkowski, H.; Welch, S.R.; Green, N.; Mawer, D.; Woodford, N.; Roberts, A.D.G.; Nixon, P.J.; Seymour, D.W.; Killip, M.J. Effective in vitro inactivation of SARS-CoV-2 by commercially available mouthwashes. J. Gen. Virol. 2021, 102, 001578. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.E.; Sivalingam, V.; Kang, A.E.Z.; Ananthanarayanan, A.; Arumugam, H.; Jenkins, T.M.; Hadjiat, Y.; Eggers, M. Povidone-Iodine Demonstrates Rapid In Vitro Virucidal Activity Against SARS-CoV-2, The Virus Causing COVID-19 Disease. Infect. Dis. Ther. 2020, 9, 669–675. [Google Scholar] [CrossRef] [PubMed]
- Bidra, A.S.; Pelletier, J.S.; Westover, J.B.; Frank, S.; Brown, S.M.; Tessema, B. Comparison of In Vitro Inactivation of SARS CoV-2 with Hydrogen Peroxide and Povidone-Iodine Oral Antiseptic Rinses. J. Prosthodont. 2020, 29, 599–603. [Google Scholar] [CrossRef] [PubMed]
- Bidra, A.S.; Pelletier, J.S.; Westover, J.B.; Frank, S.; Brown, S.M.; Tessema, B. Rapid In-Vitro Inactivation of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Using Povidone-Iodine Oral Antiseptic Rinse. J. Prosthodont. 2020, 29, 529–533. [Google Scholar] [CrossRef] [PubMed]
- Hassandarvish, P.; Tiong, V.; Mohamed, N.A.; Arumugam, H.; Ananthanarayanan, A.; Qasuri, M.; Hadjiat, Y.; Abubakar, S. In vitro virucidal activity of povidone iodine gargle and mouthwash against SARS-CoV-2: Implications for dental practice. Br. Dent. J. 2020, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Kariwa, H.; Fujii, N.; Takashima, I. Inactivation of SARS coronavirus by means of povidone-iodine, physical conditions and chemical reagents. Dermatology 2006, 212 (Suppl. 1), 119–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koch-Heier, J.; Hoffmann, H.; Schindler, M.; Lussi, A.; Planz, O. Inactivation of SARS-CoV-2 through Treatment with the Mouth Rinsing Solutions ViruProX((R)) and BacterX((R)) Pro. Microorganisms 2021, 9, 521. [Google Scholar] [CrossRef]
- Komine, A.; Yamaguchi, E.; Okamoto, N.; Yamamoto, K. Virucidal activity of oral care products against SARS-CoV-2 in vitro. J. Oral. Maxillofac. Surg. Med. Pathol. 2021, 33, 475–477. [Google Scholar] [CrossRef] [PubMed]
- Meister, T.L.; Bruggemann, Y.; Todt, D.; Conzelmann, C.; Muller, J.A.; Gross, R.; Munch, J.; Krawczyk, A.; Steinmann, J.; Steinmann, J.; et al. Virucidal Efficacy of Different Oral Rinses Against Severe Acute Respiratory Syndrome Coronavirus 2. J. Infect. Dis. 2020, 222, 1289–1292. [Google Scholar] [CrossRef] [PubMed]
- Moskowitz, H.; Mendenhall, M. Comparative Analysis of Antiviral Efficacy of Four Different Mouthwashes against Severe Acute Respiratory Syndrome Coronavirus 2: An In Vitro Study. Int. J. Exp. Dent. Sci. 2020, 9, 1–3. [Google Scholar] [CrossRef]
- Pelletier, J.S.; Tessema, B.; Frank, S.; Westover, J.B.; Brown, S.M.; Capriotti, J.A. Efficacy of Povidone-Iodine Nasal and Oral Antiseptic Preparations Against Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2). Ear. Nose. Throat. J. 2021, 100, 192S–196S. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.; da Fonseca Orcina, B.; Brito Reia, V.C.; Ribeiro, L.G.; Grotto, R.M.T.; Prudenciatti, A.; de Moraes, L.N.; Ragghianti Zangrando, M.; Vilhena, F.V.; da Silva Santos, P.S. Virucidal Activity of the Antiseptic Mouthwash and Dental Gel Containing Anionic Phthalocyanine Derivative: In vitro Study. Clin. Cosmet. Investig. Dent. 2021, 13, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Shet, M.; Westover, J.; Hong, R.; Igo, D.; Cataldo, M.; Bhaskar, S. In vitro inactivation of SARS-CoV-2 using a povidone-iodine oral rinse. BMC Oral Health 2022, 22, 47. [Google Scholar] [CrossRef] [PubMed]
- Shewale, J.G.; Gelhaus, H.C.; Ratcliff, J.L.; Hernandez-Kapila, Y.L. In vitro antiviral activity of stabilized chlorine dioxide containing oral care products. Oral Dis. 2021, 00, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Steinhauer, K.; Meister, T.L.; Todt, D.; Krawczyk, A.; Passvogel, L.; Becker, B.; Paulmann, D.; Bischoff, B.; Pfaender, S.; Brill, F.H.H.; et al. Comparison of the in-vitro efficacy of different mouthwash solutions targeting SARS-CoV-2 based on the European Standard EN 14476. J. Hosp. Infect. 2021, 111, 180–183. [Google Scholar] [CrossRef]
- Tiong, V.; Hassandarvish, P.; Bakar, S.A.; Mohamed, N.A.; Wan Sulaiman, W.S.; Baharom, N.; Abdul Samad, F.N.; Isahak, I. The effectiveness of various gargle formulations and salt water against SARS-CoV-2. Sci. Rep. 2021, 11, 20502. [Google Scholar] [CrossRef] [PubMed]
- Eggers, M.; Koburger-Janssen, T.; Eickmann, M.; Zorn, J. In Vitro Bactericidal and Virucidal Efficacy of Povidone-Iodine Gargle/Mouthwash Against Respiratory and Oral Tract Pathogens. Infect. Dis. Ther. 2018, 7, 249–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spearman, C. The method of ‘Right and Wrong cases’ (“Constant Stimuli”) without Gauss’s Formulae. Br. J. Psychol. 1908, 2, 227–242. [Google Scholar] [CrossRef]
- Kärber, G. Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche. Naunyn-Schmiedebergs Arch. Für Exp. Pathol. Pharmakol. 1931, 162, 480–483. [Google Scholar] [CrossRef]
- Rupel, K.; Ottaviani, G.; Gobbo, M.; Contardo, L.; Tirelli, G.; Vescovi, P.; Di Lenarda, R.; Biasotto, M. A systematic review of therapeutical approaches in bisphosphonates-related osteonecrosis of the jaw (BRONJ). Oral Oncol. 2014, 50, 1049–1057. [Google Scholar] [CrossRef]
- Yasumura, Y.; Kawakita, M. The research for the SV40 by means of tissue culture technique. Nippon. Rinsho. 1963, 21, 1201–1219. [Google Scholar]
- Banerjee, A.; Nasir, J.A.; Budylowski, P.; Yip, L.; Aftanas, P.; Christie, N.; Ghalami, A.; Baid, K.; Raphenya, A.R.; Hirota, J.A.; et al. Isolation, Sequence, Infectivity, and Replication Kinetics of Severe Acute Respiratory Syndrome Coronavirus 2. Emerg. Infect. Dis. 2020, 26, 2054–2063. [Google Scholar] [CrossRef] [PubMed]
- Matsuyama, S.; Nao, N.; Shirato, K.; Kawase, M.; Saito, S.; Takayama, I.; Nagata, N.; Sekizuka, T.; Katoh, H.; Kato, F.; et al. Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc. Natl. Acad. Sci. USA 2020, 117, 7001–7003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tseng, C.T.; Tseng, J.; Perrone, L.; Worthy, M.; Popov, V.; Peters, C.J. Apical entry and release of severe acute respiratory syndrome-associated coronavirus in polarized Calu-3 lung epithelial cells. J. Virol. 2005, 79, 9470–9479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mossel, E.C.; Huang, C.; Narayanan, K.; Makino, S.; Tesh, R.B.; Peters, C.J. Exogenous ACE2 expression allows refractory cell lines to support severe acute respiratory syndrome coronavirus replication. J. Virol. 2005, 79, 3846–3850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaye, M. SARS-associated coronavirus replication in cell lines. Emerg. Infect. Dis. 2006, 12, 128–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillim-Ross, L.; Taylor, J.; Scholl, D.R.; Ridenour, J.; Masters, P.S.; Wentworth, D.E. Discovery of novel human and animal cells infected by the severe acute respiratory syndrome coronavirus by replication-specific multiplex reverse transcription-PCR. J. Clin. Microbiol. 2004, 42, 3196–3206. [Google Scholar] [CrossRef] [Green Version]
- De Clercq, E.; Stewart, W.E., 2nd; De Somer, P. Studies on the mechanism of the priming effect of interferon on interferon production by cell cultures exposed to poly(rI)-poly(rC). Infect. Immun. 1973, 8, 309–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frank, S.; Brown, S.M.; Capriotti, J.A.; Westover, J.B.; Pelletier, J.S.; Tessema, B. In Vitro Efficacy of a Povidone-Iodine Nasal Antiseptic for Rapid Inactivation of SARS-CoV-2. JAMA Otolaryngol. Head Neck Surg. 2020, 146, 1054–1058. [Google Scholar] [CrossRef] [PubMed]
- Reimer, K.; Wichelhaus, T.A.; Schafer, V.; Rudolph, P.; Kramer, A.; Wutzler, P.; Ganzer, D.; Fleischer, W. Antimicrobial effectiveness of povidone-iodine and consequences for new application areas. Dermatology 2002, 204 (Suppl. 1), 114–120. [Google Scholar] [CrossRef] [PubMed]
- Madan, P.D.; Sequeira, P.S.; Shenoy, K.; Shetty, J. The effect of three mouthwashes on radiation-induced oral mucositis in patients with head and neck malignancies: A randomized control trial. J. Cancer Res. 2008, 4, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Ader, A.W.; Paul, T.L.; Reinhardt, W.; Safran, M.; Pino, S.; McArthur, W.; Braverman, L.E. Effect of mouth rinsing with two polyvinylpyrrolidone-iodine mixtures on iodine absorption and thyroid function. J. Clin. Endocrinol. Metab. 1988, 66, 632–635. [Google Scholar] [CrossRef] [PubMed]
- Kovesi, G. [The use of Betadine antiseptic in the treatment of oral surgical, parodontological and oral mucosal diseases]. Fogorv. Szle. 1999, 92, 243–250. [Google Scholar] [PubMed]
- Domingo, M.A.; Farrales, M.S.; Loya, R.M.; Pura, M.A.; Uy, H. The effect of 1% povidone iodine as a pre-procedural mouthrinse in 20 patients with varying degrees of oral hygiene. J. Philipp. Dent. Assoc. 1996, 48, 31–38. [Google Scholar] [PubMed]
- Foley, T.P., Jr. The relationship between autoimmune thyroid disease and iodine intake: A review. Endokrynol. Pol. 1992, 43 (Suppl. 1), 53–69. [Google Scholar]
- Furudate, S.; Nishimaki, T.; Muto, T. 125I uptake competing with iodine absorption by the thyroid gland following povidone-iodine skin application. Exp. Anim. 1997, 46, 197–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gray, P.E.; Katelaris, C.H.; Lipson, D. Recurrent anaphylaxis caused by topical povidone-iodine (Betadine). J. Paediatr Child. Health 2013, 49, 506–507. [Google Scholar] [CrossRef] [PubMed]
- Kampf, G.; Todt, D.; Pfaender, S.; Steinmann, E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J. Hosp. Infect. 2020, 104, 246–251. [Google Scholar] [CrossRef] [Green Version]
- The Centers for Disease Control and Prevention (CDC). Interim Infection Prevention and Control Guidance for Dental Settings during the COVID-19 Response. Available online: https://www.cdc.gov/coronavirus/2019-ncov/hcp/dental-settings.html (accessed on 28 May 2020).
- Vogt, P.M.; Hauser, J.; Mueller, S.; Bosse, B.; Hopp, M. Efficacy of Conventional and Liposomal Povidone-Iodine in Infected Mesh Skin Grafts: An Exploratory Study. Infect. Dis. Ther. 2017, 6, 545–555. [Google Scholar] [CrossRef]
- O’Donnell, V.B.; Thomas, D.; Stanton, R.; Maillard, J.Y.; Murphy, R.C.; Jones, S.A.; Humphreys, I.; Wakelam, M.J.O.; Fegan, C.; Wise, M.P.; et al. Potential Role of Oral Rinses Targeting the Viral Lipid Envelope in SARS-CoV-2 Infection. Function 2020, 1, zqaa002. [Google Scholar] [CrossRef] [PubMed]
- Elliot, K.R.; Herbert, M.; Jack, K. Stable Compositions of Uncomplexed Iodine and Methods of Use. U.S. Patent No. 11,297,839, 9 October 2018. [Google Scholar]
- Popkin, D.L.; Zilka, S.; Dimaano, M.; Fujioka, H.; Rackley, C.; Salata, R.; Griffith, A.; Mukherjee, P.K.; Ghannoum, M.A.; Esper, F. Cetylpyridinium Chloride (CPC) Exhibits Potent, Rapid Activity Against Influenza Viruses in vitro and in vivo. Pathog. Immun. 2017, 2, 252–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, L.; Niu, J.; Wang, C.; Huang, B.; Wang, W.; Zhu, N.; Deng, Y.; Wang, H.; Ye, F.; Cen, S.; et al. High-Throughput Screening and Identification of Potent Broad-Spectrum Inhibitors.s of Coronaviruses. J. Virol. 2019, 93, e00023-19. [Google Scholar] [CrossRef] [Green Version]
- Munoz-Basagoiti, J.; Perez-Zsolt, D.; Leon, R.; Blanc, V.; Raich-Regue, D.; Cano-Sarabia, M.; Trinite, B.; Pradenas, E.; Blanco, J.; Gispert, J.; et al. Mouthwashes with CPC Reduce the Infectivity of SARS-CoV-2 Variants In Vitro. J. Dent. Res. 2021, 100, 1265–1272. [Google Scholar] [CrossRef] [PubMed]
- Elworthy, A.; Greenman, J.; Doherty, F.M.; Newcombe, R.G.; Addy, M. The substantivity of a number of oral hygiene products determined by the duration of effects on salivary bacteria. J. Periodontol. 1996, 67, 572–576. [Google Scholar] [CrossRef]
- Rodríguez-Casanovas, H.J.; la Rosa, M.D.; Bello-Lemus, Y.; Rasperini, G.; Acosta-Hoyos, A.J. Virucidal Activity of Different Mouthwashes Using a Novel Biochemical Assay. Healthcare 2022, 10, 63. [Google Scholar] [CrossRef]
- Huang, Y.H.; Huang, J.T. Use of chlorhexidine to eradicate oropharyngeal SARS-CoV-2 in COVID-19 patients. J. Med. Virol. 2021, 93, 4370–4373. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Bhat, N.; Asawa, K.; Tak, M.; Singh, A.; Shinde, K.; Gandhi, N.; Doshi, A. Effect of Training School Teachers on Oral Hygiene Status of 8-10 Years Old Government School Children of Udaipur City, India. J. Clin. Diagn. Res. JCDR 2016, 10, Zc95–Zc99. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, M.D.S.; Guedes, M.I.F.; Langa, G.P.J.; Rosing, C.K.; Cavagni, J.; Muniz, F. Virucidal efficacy of chlorhexidine: A systematic review. Odontology 2022, 110, 376–392. [Google Scholar] [CrossRef] [PubMed]
- Walsh, L.J. Safety issues relating to the use of hydrogen peroxide in dentistry. Aust Dent. J. 2000, 45, 257–269. [Google Scholar] [CrossRef] [Green Version]
- Caruso, A.A.; Del Prete, A.; Lazzarino, A.I. Hydrogen peroxide and viral infections: A literature review with research hypothesis definition in relation to the current covid-19 pandemic. Med. Hypotheses. 2020, 144, 109910. [Google Scholar] [CrossRef] [PubMed]
- Zanelli, M.; Ragazzi, M.; De Marco, L. Chemical gastritis and colitis related to hydrogen peroxide mouthwash. Br. J. Clin. Pharmacol. 2017, 83, 427–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kraus, F.W.; Perry, W.I.; Nickerson, J.F. Salivary catalase and peroxidase values in normal subjects and in persons with periodontal disease. Oral Surg. Oral Med. Oral Pathol. 1958, 11, 95–102. [Google Scholar] [CrossRef]
- Santos, C.; Teodoro, G.; Sibelino, S.; Novaes, P.; Farias, M.; Vilhena, F. Antibiofilm action of PHTALOX®-containing oral care formulations. J. Dent. Res. 2020, 99, 3326. [Google Scholar]
- Drake, D.; Villhauer, A.L. An in vitro comparative study determining bactericidal activity of stabilized chlorine dioxide and other oral rinses. J. Clin. Dent. 2011, 22, 1–5. [Google Scholar] [PubMed]
- Grootveld, M.; Silwood, C.; Gill, D.; Lynch, E. Evidence for the microbicidal activity of a chlorine dioxide-containing oral rinse formulation in vivo. J. Clin. Dent. 2001, 12, 67–70. [Google Scholar]
- Lee, S.S.; Suprono, M.S.; Stephens, J.; Withers, S.A.; Li, Y. Efficacy of stabilized chlorine dioxide-based unflavored mouthwash in reducing oral malodor: An 8-week randomized controlled study. Am. J. Dent. 2018, 31, 309–312. [Google Scholar] [PubMed]
- Ramalingam, S.; Cai, B.; Wong, J.; Twomey, M.; Chen, R.; Fu, R.; Boote, T.; McCaughan, H.; Griffiths, S.; Haas, J. Antiviral innate immune response in non-myeloid cells is augmented by chloride ions via an increase in intracellular hypochlorous acid levels. Sci. Rep. 2018, 8, 13630. [Google Scholar] [CrossRef]
- Tateyama-Makino, R.; Abe-Yutori, M.; Iwamoto, T.; Tsutsumi, K.; Tsuji, M.; Morishita, S.; Kurita, K.; Yamamoto, Y.; Nishinaga, E.; Tsukinoki, K. The inhibitory effects of toothpaste and mouthwash ingredients on the interaction between the SARS-CoV-2 spike protein and ACE2, and the protease activity of TMPRSS2 in vitro. PLoS ONE 2021, 16, e0257705. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Moneim, A.S.; Abdelwhab, E.M.; Memish, Z.A. Insights into SARS-CoV-2 evolution, potential antivirals, and vaccines. Virology 2021, 558, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Kabir, M.A.; Ahmed, R.; Chowdhury, R.; Iqbal, S.M.A.; Paulmurugan, R.; Demirci, U.; Asghar, W. Management of COVID-19: Current status and future prospects. Microbes. Infect. 2021, 23, 104832. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Kruger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e8. [Google Scholar] [CrossRef]
- Loe, H.; Schiott, C.R. The effect of mouthrinses and topical application of chlorhexidine on the development of dental plaque and gingivitis in man. J. Periodontal Res. 1970, 5, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Emilson, C.G.; Fornell, J. Effect of toothbrushing with chlorhexidine gel on salivary microflora, oral hygiene, and caries. Scand. J. Dent. Res. 1976, 84, 308–319. [Google Scholar] [CrossRef] [PubMed]
- Maynard, J.H.; Jenkins, S.M.; Moran, J.; Addy, M.; Newcombe, R.G.; Wade, W.G. A 6-month home usage trial of a 1% chlorhexidine toothpaste (II). Effects on the oral microflora. J. Clin. Periodontol. 1993, 20, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Kampf, G. Acquired resistance to chlorhexidine-is it time to establish an ‘antiseptic stewardship’ initiative? J. Hosp. Infect. 2016, 94, 213–227. [Google Scholar] [CrossRef] [PubMed]
- Kampf, G. Biocidal Agents Used for Disinfection Can Enhance Antibiotic Resistance in Gram-Negative Species. Antibiotics 2018, 7, 110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kampf, G. Antibiotic Resistance Can Be Enhanced in Gram-Positive Species by Some Biocidal Agents Used for Disinfection. Antibiotics 2019, 8, 13. [Google Scholar] [CrossRef] [Green Version]
- Russell, A.D. Biocide use and antibiotic resistance: The relevance of laboratory findings to clinical and environmental situations. Lancet Infect. Dis. 2003, 3, 794–803. [Google Scholar] [CrossRef]
- Cieplik, F.; Jakubovics, N.S.; Buchalla, W.; Maisch, T.; Hellwig, E.; Al-Ahmad, A. Resistance Toward Chlorhexidine in Oral Bacteria-Is There Cause for Concern? Front. Microbiol. 2019, 10, 587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radford, J.R.; Beighton, D.; Nugent, Z.; Jackson, R.J. Effect of use of 0.05% cetylpyridinium chloride mouthwash on normal oral flora. J. Dent. 1997, 25, 35–40. [Google Scholar] [CrossRef]
- Walsh, K.A.; Jordan, K.; Clyne, B.; Rohde, D.; Drummond, L.; Byrne, P.; Ahern, S.; Carty, P.G.; O’Brien, K.K.; O’Murchu, E.; et al. SARS-CoV-2 detection, viral load and infectivity over the course of an infection. J. Infect. 2020, 81, 357–371. [Google Scholar] [CrossRef] [PubMed]
- Iorgulescu, G. Saliva between normal and pathological. Important factors in determining systemic and oral health. J. Med. Life 2009, 2, 303–307. [Google Scholar] [PubMed]
- Ceri, H.; Olson, M.E.; Stremick, C.; Read, R.R.; Morck, D.; Buret, A. The Calgary Biofilm Device: New technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J. Clin. Microbiol. 1999, 37, 1771–1776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geneva, I.I.; Cuzzo, B.; Fazili, T.; Javaid, W. Normal Body Temperature: A Systematic Review. Open Forum Infect. Dis. 2019, 6, ofz032. [Google Scholar] [CrossRef] [PubMed]
- Chin, A.W.H.; Chu, J.T.S.; Perera, M.R.A.; Hui, K.P.Y.; Yen, H.L.; Chan, M.C.W.; Peiris, M.; Poon, L.L.M. Stability of SARS-CoV-2 in different environmental conditions. Lancet Microbe 2020, 1, e10. [Google Scholar] [CrossRef]
Study | Control | Contact Time | Active Ingredient | Viral Titer (Median) | % Viral Kill | LRV Compared to Control |
---|---|---|---|---|---|---|
Anderson et al., 2020 [15] | 700 μL phosphate-buffered saline (PBS) | 30 s | PVP-I 1.0% | NR | ≥99.99 | ≥4 |
30 s | PVP-I 1.0%, | ≥99.99 | ≥4 | |||
1:2 dilution | ||||||
Bidra et al., 2020 [16] | Water (negative control) Ethanol 70% (positive control) | 15 s | PVP-I 0.5% | <0.67 | NR | ≥4.33 |
15 s | PVP-I 1.25% | <0.67 | ≥4.33 | |||
15 s | PVP-I 1.5% | <0.67 | ≥4.33 | |||
30 s | PVP-I 0.5% | <0.67 | ≥3.63 | |||
30 s | PVP-I 1.25% | <0.67 | ≥3.63 | |||
30 s | PVP-I 1.5% | <0.67 | ≥3.63 | |||
15 s | H2O2 1.5% | ≤3.67 | 1.33 | |||
15 s | H2O2 3% | ≤4.0 | 1.0 | |||
30 s | H2O2 1.5% | ≤3.63 | 1.0 | |||
30 s | H2O2 3% | ≤2.5 | 1.8 | |||
Control | ||||||
15 s | Ethanol | <0.67 | ≥4.33 | |||
30 s | Ethanol | <0.67 | ≥3.63 | |||
15 s | Water | 5.0 | N/A | |||
30 s | Water | 4.3 | N/A | |||
Bidra et al., 2020 [17] | Water (negative control) Ethanol 70% (positive control) | 15 s | PVP-I 0.5% | <0.67 | NR | 3.0 |
15 s | PVP-I 0.75% | <0.67 | 3.0 | |||
15 s | PVP-I 1.5% | <0.67 | 3.0 | |||
30 s | PVP-I 0.5% | <0.67 | 3.33 | |||
30 s | PVP-I 0.75% | <0.67 | 3.33 | |||
30 s | PVP-I 1.5% | <0.67 | 3.33 | |||
Control | ||||||
15 s | Ethanol | 1.5 | 2.17 | |||
30 s | Ethanol | <0.67 | 3.33 | |||
15 s | Water | 3.67 | N/A | |||
30 s | Water | 4.0 | N/A | |||
Davies et al., 2021 [14] | PBS | 60 s 60 s 60 s 60 s 60 s 60 s 60 s | 0.2% CHX (formulation contains ethanol) 0.2% CHX (alcohol-free formulation) 1.4% dipotassium oxalate (alcohol-free formulation) Eucalyptol, thymol, menthol, sodium fluoride, zinc fluoride 0.01–0.02% stabilised hypochlorous acid 1.5% H2O2 0.58% PVP-I (surfactant-free) | NR | NR | 0.5 0.2 ≥3.5 ≥4.1 ≥5.5 0.2 ≥4.1 |
Hassandarvish et al., 2020 [18] | Distilled water | Bovine serum albumin group 15 s 15 s 30 s 30 s 60 s 60 s Bovine serum albumin + Human RBC group 15 s 15 s 30 s 30 s 60 s 60 s | PVP-I 0.5% PVP-I 1.0% PVP-I 0.5% PVP-I 1.0% PVP-I 0.5% PVP-I 1.0% PVP-I 0.5% PVP-I 1.0% PVP-I 0.5% PVP-I 1.0% PVP-I 0.5% PVP-I 1.0% | NR | NR | >5 >4 >5 >4 >5 >5 >5 >4 >5 >5 >5 >5 |
Kariwa et al., 2021 [19] | 0.5% sodium thiosulfate | 30 s 30 s 30 s 30 s 30 s 60s 60 s 60 s 60 s 60 s | PVP-I 0.47% PVP-I 0.23% PVP-I 0.23% PVP-I 0.35% PVP-I 0.45% PVP-I 0.47% PVP-I 0.23% PVP-I 0.23% PVP-I 0.35% PVP-I 0.45% | NR | >99.94 >99.93 >99.92 >99.94 >99.99 >99.99 >99.98 >99.97 >99.96 >99.99 | >3.2 >3.1 >3.1 >3.2 >3.8 >4.0 >3.6 >3.6 >3.4 >3.8 |
Koch-Heier et al., 2021 [20] | Infection medium control | NR | 0.05% CPC and 1.5% H2O2 0.1% CHX, 0.05% CPC, and 0.005% F (fluoride), without ethanol 0.05% CPC 0.1% CHX 0.05% CPC and 0.1% CHX 1.5% H2O2 | Virucidal Virucidal Virucidal No effect Virucidal No effect | NR | NR |
Komine et al., 2021 [21] | PBS (Negative control) Ethanol 70% (Positive control) | 20 s 30 s 20 s 30 s 30 s 30 s 30 s 20 s 20 s | 0.5% CPC 0.075% CPC 0.04% CPC 0.12% CHX 0.06% CHX + 0.05% CPC 0.12% CHX + 0.05% CPC 0.20% Delmopinol Hydrochloride Negative control Positive control | 3.13 <3.00 <3.00 7.10 <3.00 <3.00 <2.00 7.35 <2.00 | 99.994 >99.995 >99.996 42.5 >99.995 >99.995 >99.9995 NR >99.9996 | 4.2 >4.3 >4.4 0.2 >4.3 >4.3 >5.3 NR >5.4 |
Meister et al., 2020 [22] | Medium control Strain 1 (UKEssen strain) Strain 2 (BetaCoV/Germany/Ulm/01/2020) Strain 3 (BetaCoV/Germany/Ulm/02/2020) | 30 s 30 s 30 s 30 s 30 s 30 s 30 s 30 s | H2O2 CHX (Chlorhexamed) Dequalinium chloride and benzalkonium chloride CHX (Dynexidine) PVP-I Ethanol and essential oils Octenidine dihydrochloride Polyaminopropyl biguanide (polyhexanide) | NR | NR | Strain 1 2 3 0.78 0.61 0.33 1.00 0.78 1.17 ≥3.11 ≥2.78 ≥2.61 0.50 0.56 0.50 ≥3.11 ≥2.78 ≥2.61 ≥3.11 ≥2.78 ≥2.61 1.11 0.78 0.61 0.61 ≥1.78 1.61 |
Moskowitz and Mendenhall 2020 [23] | Water (Negative control) Ethanol (Positive control) | 15 s 15 s 15 s 15 s 30 s 30 s 30 s 30 s 60s 60 s 60 s 60 s | 1.5% H2O2 0.2% PVP-I 0.12% CHX Formula 100-S molecular iodine (100ppm molecular iodine) 1.5% H2O2 0.2% PVP-I 0.12% CHX Formula 100-S molecular iodine 1.5% H2O2 0.2% PVP-I 0.12% CHX Formula 100-S molecular iodine | NR | NR | <1.0 2.0 <1.0 2.6 <1.0 2.0 <1.0 >3.6 complete inactivation <1.0 3.0 1.0 >3.6 complete inactivation |
Pelletier et al., 2021 [24] | Water | 60 s 60 s 60 s 60 s 60 s | 1.5% PVP-I 0.75% PVP-I 0.5% PVP-I Ethanol 70% Virus control | <0.67 <0.67 <0.67 <0.67 5.3 | NR | 4.63 4.63 4.63 4.63 NA |
Santos et al., 2021 [25] | Viral solution and cellular system (Positive Control) Cellular system only (Negative Control | 30 s 60 s 300 s | 0.1% anionic phthalocyanine derivate (APD) | NR | 90 90 90 | NR |
Shet et al., 2022 [26] | Water (negative control) Ethanol 70% (positive control) | 15 s 15 s 15 s 30 s 30 s 30 s 60 s 60 s 60 s 300 s 300.s 300 s | 0.5% PVP-I Positive control Negative control 0.5% PVP-I Positive control Negative control 0.5% PVP-I Positive control Negative control 0.5% PVP-I Positive control Negative control | 2.5 1.3 5.3 <0.67 <0.67 4.67 1.0 <0.67 4.67 <0.67 <0.67 4.67 | NR | 2.8 4.0 NA >4.0 >4.0 NA 3.67 >4.0 NA >4.0 >4.0 NA |
Shewale et al., 2021 [27] | PBS | 30 s 30 s 60 s 60 s | Stabilized chlorine dioxide Ultra sensitive rinse Sensitive rinse Ultra sensitive rinse Sensitive rinse | NR | 98.4 98.4 96.3 98.0 | NR |
Steinhauer et al., 2021 [28] | Validation control (EN14476 protocol) | 300 s 600 s 300 s 600 s 15 s 30 s 60 s 15 s | 0.1% CHX (80% conc) 0.2% CHX (80% conc) 0.1% Octenidine dihydrochloride (OCT) (80% conc) 0.1% Octenidine dihydrochloride (OCT) (20% conc) | NR | NR | 0.76 0.37 0.81 0.4 ≥4.38 ≥4.38 ≥4.38 ≥4.38 |
Tiong et al., 2021 [29] | Cell culture medium (EN14476:2013/ FprA1:2015 protocol) Clean (0.3 g/L BSA) Dirty (0.3 g/L BSA + 3 mL/L human erythrocytes) | 30 s 30 s 30 s 30 s 30s 60 s 60 s 60 s 60 s 60 s | 0.12% CHX 0.075% CPC and 0.05% SF 0.05% Thymol 0.1% Hexetidine and 9% Ethanol 2% NaCl 0.12% CHX 0.075% CPC and 0.05% SF 0.05% Thymol 0.1% Hexetidine and 9% Ethanol 2% NaCl | NR | NR | Clean Dirty 4.0 4.0 5.0 5.0 0.5 0.5 5.0 5.0 0.0 0.0 4.0 4.0 5.0 5.0 0.75 0.5 5.0 5.0 0.0 0.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ting, M.; Suzuki, J.B. The In Vitro Virucidal Effects of Mouthwashes on SARS-CoV-2. Int. J. Transl. Med. 2022, 2, 387-397. https://doi.org/10.3390/ijtm2030030
Ting M, Suzuki JB. The In Vitro Virucidal Effects of Mouthwashes on SARS-CoV-2. International Journal of Translational Medicine. 2022; 2(3):387-397. https://doi.org/10.3390/ijtm2030030
Chicago/Turabian StyleTing, Miriam, and Jon B. Suzuki. 2022. "The In Vitro Virucidal Effects of Mouthwashes on SARS-CoV-2" International Journal of Translational Medicine 2, no. 3: 387-397. https://doi.org/10.3390/ijtm2030030