Exploring the Role of Serology Testing to Strengthen Vaccination Initiatives and Policies for COVID-19 in Asia Pacific Countries and Territories: A Discussion Paper
Abstract
:1. Objective and Methodology
- Government and regulatory processes, including democratically elected governments (Australia, India, Indonesia, Taiwan, and Thailand) and Specialized Autonomous Regions (such as Hong Kong);
- Geographic location, including South Pacific, Western Pacific, Southern Asia, and South East Asia;
- Socioeconomic status, including high-income (Australia, Hong Kong, and Taiwan), upper-middle-income (Thailand), and lower-middle-income (India and Indonesia).
- Evidence on the health and socioeconomic impact of the pandemic in the region and focus countries and territories;
- Evidence on the impact of Variants of Concern (VOCs), especially regarding serology testing;
- Scientific perspectives on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing strategies, including challenges and opportunities;
- Evidence on the use of serology testing to support immunization policies across vaccine-preventable diseases;
- Current position, guidelines, and recommendations on the use of serology testing from key international organizations and focus countries and territories;
- National COVID-19 immunization plans and strategies of focus countries and territories.
2. Introduction and Background
3. The Impact of Variants of Concern Globally and in the APAC
VOC | Country Where First Detected | Earliest Documented Sample | Evidence of Increased Transmissibility | Evidence of Potential Increased Risk of Hospitalization | Evidence of Impact on Immunity 1 | Evidence of Impacts on Diagnostics 2 | |
---|---|---|---|---|---|---|---|
Previously circulating VOCs | Alpha | United Kingdom | September 2020 | YES | YES | YES [Re-Inf] YES [Vac-Eff] | YES 3 |
Beta | South Africa | May 2020 | YES | YES | YES [Re-Inf] YES [Vac-Eff] | NO | |
Gamma | Brazil | November 2020 | YES | YES | YES [Re-Inf] YES [Vac-Eff] | NO | |
Currently circulating VOC | Delta | India | October 2020 | YES | YES | YES [Re-Inf] YES [Vac-Eff] | NO |
Omicron | Multiple countries | November 2021 | YES | n.d. 4 | YES [Re-Inf] YES [Vac-Eff] | YES 5 |
4. SARS-CoV-2 Immunization in the APAC Region
5. Testing Options to Diagnose Infection and Mitigate COVID-19 Impacts
6. Potential Use of Serology Testing and Seroepidemiological Evidence to Support Immunization Policies and COVID-19 Measures
- Monitor progress towards elimination and identify population gaps in immunity;
- Investigate the potential cause of disease resurgence (often associated with changes in diagnostic or reporting patterns, waning immunity, or reduced vaccine effectiveness following changes in vaccine formulations or schedules);
- Determine whether target immunity prevalence has been reached;
- Estimate vaccine coverage in the absence of virus circulation.
What Do We Know So Far Regarding the Antibody Response in the Context of the COVID-19 Pandemic, and How Can This Information Impact Serology Testing and Immunization Policies?
7. The Landscape of Global, Regional, and National Guidelines and Recommendations on the Use of Serology Testing
- Measure the prevalence of antibodies against COVID-19 in the general population to quantify the accumulated immunity;
- Understand the full spectrum of COVID-19 infection across different population groups;
- Estimate the proportion of pre-symptomatic, asymptomatic, and subclinical infections in the population;
- Establish the risk factors for contracting the infection by comparing the exposures of infected and uninfected people;
- Accurately calculate the fatality rate;
- Help to understand the kinetics of antibodies against COVID-19;
- Determine the duration of immunity following natural infection and vaccination.
- Retrospectively determine infection and detect asymptomatic in individuals;
- Provide accurate estimates on epidemiological variables;
- Help predict the extent of infection in the future;
- Detect hot spots;
- Conduct community surveillance activities;
- Identify plasma donors for convalescent plasma therapy;
- Perform outbreak investigation.
Countries and Territories of Focus | Is Serology Testing Included in the COVID-19 Immunization Plan? | What Is the Recommended Use of Serology Testing? |
---|---|---|
Australia | NO [246] |
|
Hong Kong | NO [225] |
|
India | NO [247,248] |
|
Indonesia | NO [249] | |
Taiwan | NO [250] | |
Thailand | NO [251] |
|
8. Challenges and Limitations for the Use of Serology Testing to Support Immunization Policies
8.1. Challenges Related to the Intrinsic Limitations of Serology Testing
- The choice of assay and antibody;
- The type of sample (blood or plasma) and collection methods and its consequence on test sensitivity and specificity;
- Issues with test calibration as result of missed community cases and several demographic factors such as age, sex, and ethnicity;
- Test accuracy, particularly in terms of challenges with false-positive or false-negative results.
8.2. Challenges to the Collection and Interpretation of Seroepidemiology Data to Support Decision-Making
- Establishing a framework that enables comparable antibody measurements across countries, within states/provinces, within countries, in laboratories, and research institutes;
- Agreeing on a neutralization assay to serve as the gold standard reference point for all tests;
- Calculating, where possible, the protective threshold in phase III trials to identify an objective pre-determined point on the correlate of protection, ideally across different platforms;
- Convening stakeholders to reach a consensus through discussion and despite discrepancies between studies;
- Verifying that the correlate of protection applies to new variants using appropriately adapted assays.
8.3. Challenges Associated with the Emergence of the Omicron Variant
9. Recommendations for the Use of SARS-CoV-2 Serology Testing in the Context of Immunization Initiatives and Policies for COVID-19 in the Region
9.1. Recommendations to Develop Evidence and Clarify the Role of Serology Testing
- Research institutes and the academic community are encouraged to continue conducting and disseminating research and studies that evaluate the role of serology testing in assessing the longitudinal dynamics of vaccine-related seropositivity and immunogenicity and the value of previous infection. Serology tests may potentially be used as a surrogate for overall SARS-CoV-2 immunity, whether natural or vaccine-related;
- Governments should promote longitudinal and multicenter studies to overcome knowledge gaps for the effective use of serology testing, including determining correlates of protection. As a result, recommendations should be made to clarify the appropriate use of serology testing in clinical settings, surveillance activities, public health policies, and research, as applied to their context;
- Initiatives of this nature are encouraged to consider using a standardized study design to ensure the comparability of data across countries. Existing international guidelines, platforms, and resources might be used to support this effort;
- The academic community should consider the role of serology in studies investigating the medium- and long-term outcomes of recovered COVID-19 patients;
- Countries and international organizations with the capacity to implement studies to generate knowledge on the role of serology have an opportunity to collaborate with countries that require support generating data that will further help inform policy.
9.2. Recommendations for the Inclusion of Serology Testing to Impact Immunization Policies
- Governments should make decisions informed by experts when considering the role of serology testing to support the monitoring of infection and disease and using the best available evidence for policymaking purposes. Once correlates of protection are established, serology tests could help monitor population immunity over time and investigate cases of infection surges;
- Governments in partnership with research institutes should conduct serosurveys paired with clinical outcomes of vaccinated and recovered individuals, both in specific risk population groups and the general public, to evaluate and monitor the dynamics of seropositivity and immunogenicity and consider the need/timing of prime vaccination and booster doses;
- Serology may help identify asymptomatic spread in vaccinated individuals when a community has an endemic disease. This may obviate the need for booster doses, resulting in reduced wastage of vaccine doses which can then be targeted towards people who need it the most, enabling improved health system efficiency;
- Governments could implement serology testing to indicate population antibody profiles and assess the risk of outbreaks, informing decision-making regarding the need for supplementary immunization activities and modification of immunization schedules;
- Given vaccine shortages and the financial burden of immunization, governments should consider using serology testing to study and guide decisions about the appropriateness of applying a single dose only to individuals who can document previous infection. The use of serology testing or previous infection certificate to apply a single dose to an individual should only be considered when a one-dose strategy is a well-accepted practice by national health authorities;
- Community engagement to raise awareness on the value, role, and appropriate use of serology testing among the general population can be considered as needed, especially regarding the application and interpretation of results.
9.3. Recommendations to Ensure Adequate Means of Implementation
- International organizations and governments are encouraged to understand and consider the value and role of serology testing to ensure that purchases are appropriate for the needs of the particular country;
- Emerging information on the evolving value of serology tests should be shared freely and globally. Such changes may relate to new generation tests, levels of sensitivity and specificity, and their role in predicting immunity;
- International organizations and professional societies should provide guidance and support to national decision-makers on the use of serology data across the distinct stages of the pandemic and the post-immunization era;
- If not already in place, governments should develop digital health registries for immunization and test (including serology) results that can be regularly updated and accessible by health care providers. The registries can be used to direct the provision of resources, and potentially by researchers to monitor trends and identify shifts in the clinical behavior of populations. Countries challenged by limited resources could initially consider implementing registries of immunization coverage and targeted seroepidemiology data;
- Policymakers, payers, medical societies, and health care providers should form a cross-functional partnership to collaborate on the ongoing development of knowledge related to serology testing;
- Medical societies should develop and publish clinical guidelines specific to COVID-19 that incorporate serology testing and other diagnostic tests, vaccination, and acute treatment and acknowledge the impact on comorbidities;
- Collaboration efforts should bring together decision-making bodies and the academic community to help translate findings into policy recommendations.
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WDI—The World by Income and Region. Available online: https://datatopics.worldbank.org/world-development-indicators/the-world-by-income-and-region.html (accessed on 27 April 2022).
- Taiwan, China—Data. Available online: https://data.worldbank.org/country/TW (accessed on 27 April 2022).
- Bonanni, P.; Cantón, R.; Gill, D.; Halfon, P.; Liebert, U.G.; Crespo, K.A.N.; Martín, J.J.P.; Trombetta, C.M. The Role of Serology Testing to Strengthen Vaccination Initiatives and Policies for COVID-19 in Europe. COVID 2021, 1, 20–38. [Google Scholar] [CrossRef]
- dos Santos Ferreira, C.E.; Gómez-Dantés, H.; Junqueira Bellei, N.C.; López, E.; Nogales Crespo, K.A.; O’Ryan, M.; Villegas, J. The Role of Serology Testing in the Context of Immunization Policies for COVID-19 in Latin American Countries. Viruses 2021, 13, 2391. [Google Scholar] [CrossRef]
- Listings of WHO’s Response to COVID-19. Available online: https://www.who.int/news/item/29-06-2020-covidtimeline (accessed on 27 April 2022).
- Timeline: WHO’s COVID-19 Response. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/interactive-timeline (accessed on 27 April 2022).
- Asia Pacific: Coronavirus Outbreak—Information Bulletin—China. Available online: https://reliefweb.int/report/china/asia-pacific-coronavirus-outbreak-information-bulletin (accessed on 27 April 2022).
- Cheng, S.-C.; Chang, Y.-C.; Fan Chiang, Y.-L.; Chien, Y.-C.; Cheng, M.; Yang, C.-H.; Huang, C.-H.; Hsu, Y.-N. First Case of Coronavirus Disease 2019 (COVID-19) Pneumonia in Taiwan. J. Formos. Med. Assoc. 2020, 119, 747–751. [Google Scholar] [CrossRef] [PubMed]
- Deyn, M.L.Z.Q.D.; Ng, Q.X.; Loke, W.; Yeo, W.S. A Tale of Two Cities: A Comparison of Hong Kong and Singapore’s Early Strategies for the Coronavirus Disease 2019 (COVID-19). J. Infect. 2020, 81, e51–e52. [Google Scholar] [CrossRef] [PubMed]
- First Confirmed Case of Novel Coronavirus in Australia. Available online: https://www.health.gov.au/ministers/the-hon-greg-hunt-mp/media/first-confirmed-case-of-novel-coronavirus-in-australia (accessed on 27 April 2022).
- Andrews, M.A.; Areekal, B.; Rajesh, K.R.; Krishnan, J.; Suryakala, R.; Krishnan, B.; Muraly, C.P.; Santhosh, P.V. First Confirmed Case of COVID-19 Infection in India: A Case Report. Indian J. Med. Res. 2020, 151, 490–492. [Google Scholar] [CrossRef]
- Timeline: How the COVID-19 Outbreak Has Evolved in Singapore so Far. Available online: https://www.channelnewsasia.com/singapore/singapore-covid-19-outbreak-evolved-coronavirus-deaths-timeline-764126 (accessed on 27 April 2022).
- WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int (accessed on 8 June 2022).
- Weekly Epidemiological Update on COVID-19—1 June 2022. Available online: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---1-june-2022 (accessed on 8 June 2022).
- From Containment to Recovery: Economic Update for East Asia and the Pacific, October 2020. Available online: https://www.worldbank.org/en/region/eap/publication/east-asia-pacific-economic-update (accessed on 27 April 2022).
- Rogers, T. The Economic Impact of COVID-19 on Asia-Pacific; Oxford Economics: Singapore, 2020; Available online: https://www.oxfordeconomics.com/recent-releases/The-Economic-Impact-of-COVID-19-on-Asia-Pacific (accessed on 22 April 2022).
- OECD; World Health Organization. The Impact of the COVID-19 Outbreak on Asia-Pacific Health Systems. In Health at a Glance: Asia/Pacific 2020; OECD: Paris, France, 2020; ISBN 978-92-64-44567-3. [Google Scholar]
- International Monetary Fund. Fiscal Monitor—April 2020; International Monetary Fund: Washington, DC, USA, 2020; Available online: https://www.imf.org/en/Publications/FM/Issues/2020/04/06/fiscal-monitor-april-2020 (accessed on 22 April 2022).
- Friedrich-Ebert-Stiftung Office for Regional Cooperation in Asia. Disrupted: How COVID-19 Is Affecting Societies across Asia: Testimonies of an Unfolding Crisis; Friedrich-Ebert-Stiftung Office for Regional Cooperation in Asia: Singapore, 2020; Available online: http://library.fes.de/pdf-files/bueros/singapur/16819.pdf (accessed on 22 April 2022).
- Joint Statement on Nutrition in the Context of the COVID-19 Pandemic in Asia and the Pacific. Available online: https://www.unicef.org/eap/joint-statement-nutrition-context-covid-19-pandemic-asia-and-pacific (accessed on 27 April 2022).
- SickKids Center for Global Child Health. Direct and Indirect Effects of the COVID-19 Pandemic and Response in South Asia; UNICEF: Kathmandu, Nepal, 2021; Available online: https://www.unicef.org/rosa/media/13066/file/Main%20Report.pdf (accessed on 22 April 2022).
- Weekly Epidemiological Update on COVID-19—20 April 2022. Available online: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---20-april-2022 (accessed on 27 April 2022).
- Lim, W.-S.; Liang, C.-K.; Assantachai, P.; Auyeung, T.W.; Kang, L.; Lee, W.-J.; Lim, J.-Y.; Sugimoto, K.; Akishita, M.; Chia, S.-L.; et al. COVID-19 and Older People in Asia: Asian Working Group for Sarcopenia Calls to Action. Geriatr. Gerontol. Int. 2020, 20, 547–558. [Google Scholar] [CrossRef]
- Silva Andrade, B.; Siqueira, S.; de Assis Soares, W.R.; de Souza Rangel, F.; Santos, N.O.; dos Santos Freitas, A.; Ribeiro da Silveira, P.; Tiwari, S.; Alzahrani, K.J.; Góes-Neto, A.; et al. Long-COVID and Post-COVID Health Complications: An Up-to-Date Review on Clinical Conditions and Their Possible Molecular Mechanisms. Viruses 2021, 13, 700. [Google Scholar] [CrossRef]
- Tracking SARS-CoV-2 Variants. Available online: https://www.who.int/activities/tracking-SARS-CoV-2-variants (accessed on 8 June 2022).
- World Health Organization. COVID-19 Weekly Epidemiological Update, Edition 61, 13 October 2021; World Health Organization: Geneva, Switzerland, 2021; Available online: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---13-october-2021 (accessed on 22 April 2022).
- World Health Organization. COVID-19 Weekly Epidemiological Update, Edition 75, 18 January 2022; World Health Organization: Geneva, Switzerland, 2022; Available online: https://apps.who.int/iris/handle/10665/351137 (accessed on 22 April 2022).
- World Health Organization. COVID-19 Weekly Epidemiological Update, Edition 79, 15 February 2022; World Health Organization: Geneva, Switzerland, 2022; Available online: https://apps.who.int/iris/handle/10665/352049 (accessed on 22 April 2022).
- Davies, N.G.; Abbott, S.; Barnard, R.C.; Jarvis, C.I.; Kucharski, A.J.; Munday, J.D.; Pearson, C.A.B.; Russell, T.W.; Tully, D.C.; Washburne, A.D.; et al. Estimated Transmissibility and Impact of SARS-CoV-2 Lineage B.1.1.7 in England. Science 2021, 372, eabg3055. [Google Scholar] [CrossRef]
- Buchan, S.A.; Tibebu, S.; Daneman, N.; Whelan, M.; Vanniyasingam, T.; Murti, M.; Brown, K.A. Increased Household Secondary Attacks Rates with Variant of Concern Severe Acute Respiratory Syndrome Coronavirus 2 Index Cases. Clin. Infect. Dis. 2022, 74, 703–706. [Google Scholar] [CrossRef]
- Tegally, H.; Wilkinson, E.; Giovanetti, M.; Iranzadeh, A.; Fonseca, V.; Giandhari, J.; Doolabh, D.; Pillay, S.; San, E.J.; Msomi, N.; et al. Detection of a SARS-CoV-2 Variant of Concern in South Africa. Nature 2021, 592, 438–443. [Google Scholar] [CrossRef]
- Faria, N.R.; Mellan, T.A.; Whittaker, C.; Claro, I.M.; Candido, D.D.S.; Mishra, S.; Crispim, M.A.E.; Sales, F.C.S.; Hawryluk, I.; McCrone, J.T.; et al. Genomics and Epidemiology of the P.1 SARS-CoV-2 Lineage in Manaus, Brazil. Science 2021, 372, 815–821. [Google Scholar] [CrossRef] [PubMed]
- Curran, J.; Dol, J.; Boulos, L.; Somerville, M.; McCulloch, H.; MacDonald, M.; LeBlanc, J.; Barrett, L.; Hatchette, T.; Comeau, J.; et al. Transmission Characteristics of SARS-CoV-2 Variants of Concern Rapid Scoping Review. medRxiv 2021. [Google Scholar] [CrossRef]
- Public Health England. Technical Briefing 16, 18 June 2021; SARS-CoV-2 Variants of Concern and Variants under Investigation in England; Public Health England: London, UK, 2021. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1001359/Variants_of_Concern_VOC_Technical_Briefing_16.pdf (accessed on 21 April 2022).
- Campbell, F.; Archer, B.; Laurenson-Schafer, H.; Jinnai, Y.; Konings, F.; Batra, N.; Pavlin, B.; Vandemaele, K.; van Kerkhove, M.D.; Jombart, T.; et al. Increased Transmissibility and Global Spread of SARS-CoV-2 Variants of Concern as at June 2021. Eurosurveillance 2021, 26, 2100509. [Google Scholar] [CrossRef] [PubMed]
- Cherian, S.; Potdar, V.; Jadhav, S.; Yadav, P.; Gupta, N.; Das, M.; Rakshit, P.; Singh, S.; Abraham, P.; Panda, S.; et al. SARS-CoV-2 Spike Mutations, L452R, T478K, E484Q and P681R, in the Second Wave of COVID-19 in Maharashtra, India. Microorganisms 2021, 9, 1542. [Google Scholar] [CrossRef]
- McAlister, F.A.; Nabipoor, M.; Chu, A.; Lee, D.S.; Saxinger, L.; Bakal, J.A. Collaboration, on Behalf of the C. Lessons from the COVID-19 Third Wave in Canada: The Impact of Variants of Concern and Shifting Demographics. medRxiv 2021. [Google Scholar] [CrossRef]
- Bager, P.; Wohlfahrt, J.; Fonager, J.; Rasmussen, M.; Albertsen, M.; Michaelsen, T.Y.; Møller, C.H.; Ethelberg, S.; Legarth, R.; Button, M.S.F.; et al. Risk of Hospitalisation Associated with Infection with SARS-CoV-2 Lineage B.1.1.7 in Denmark: An Observational Cohort Study. Lancet Infect. Dis. 2021, 21, 1507–1517. [Google Scholar] [CrossRef]
- Public Health England. Technical Briefing 18, 9 July 2021; SARS-CoV-2 Variants of Concern and Variants under Investigation in England; Public Health England: London, UK, 2021. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1001358/Variants_of_Concern_VOC_Technical_Briefing_18.pdf (accessed on 21 April 2022).
- Fisman, D.N.; Tuite, A.R. Evaluation of the Relative Virulence of Novel SARS-CoV-2 Variants: A Retrospective Cohort Study in Ontario, Canada. Cmaj 2021, 193, E1619–E1625. [Google Scholar] [CrossRef]
- Twohig, K.A.; Nyberg, T.; Zaidi, A.; Thelwall, S.; Sinnathamby, M.A.; Aliabadi, S.; Seaman, S.R.; Harris, R.J.; Hope, R.; Lopez-Bernal, J.; et al. Hospital Admission and Emergency Care Attendance Risk for SARS-CoV-2 Delta (B.1.617.2) Compared with Alpha (B.1.1.7) Variants of Concern: A Cohort Study. Lancet Infect. Dis. 2022, 22, 35–42. [Google Scholar] [CrossRef]
- Funk, T.; Pharris, A.; Spiteri, G.; Bundle, N.; Melidou, A.; Carr, M.; Gonzalez, G.; Garcia-Leon, A.; Crispie, F.; O’Connor, L.; et al. Characteristics of SARS-CoV-2 Variants of Concern B.1.1.7, B.1.351 or P.1: Data from Seven EU/EEA Countries, Weeks 38/2020 to 10/2021. Eurosurveillance 2021, 26, 2100348. [Google Scholar] [CrossRef]
- Paredes, M.I.; Lunn, S.M.; Famulare, M.; Frisbie, L.A.; Painter, I.; Burstein, R.; Roychoudhury, P.; Xie, H.; Mohamed Bakhash, S.A.; Perez, R.; et al. Associations between SARS-CoV-2 Variants and Risk of COVID-19 Hospitalization among Confirmed Cases in Washington State: A Retrospective Cohort Study. Clin. Infect. Dis. 2022, ciac279. [Google Scholar] [CrossRef]
- Horby, P.; Huntley, C.; Davies, N.; Edmunds, J.; Ferguson, N.; Medley, G.; Semple, C. NERVTAG Paper on COVID-19 Variant of Concern B.1.1.7; Department of Health and Social Care and Scientific Advisory Group for Emergencies: London, UK, 2021. Available online: https://www.gov.uk/government/publications/nervtag-paper-on-covid-19-variant-of-concern-b117 (accessed on 21 April 2022).
- Pearson, C.A.; Russell, T.W.; Davies, N.G.; Kucharski, A.J.; CMMID COVID-19 Working Group; Edmunds, W.J.; Eggo, R.M. Estimates of Severity and Transmissibility of Novel South Africa SARS-CoV-2 Variant 501Y.V2. Available online: https://cmmid.github.io/topics/covid19/reports/sa-novel-variant/2021_01_11_Transmissibility_and_severity_of_501Y_V2_in_SA.pdf (accessed on 22 April 2022).
- Jassat, W.; Mudara, C.; Ozougwu, L.; Tempia, S.; Blumberg, L.; Davies, M.-A.; Pillay, Y.; Carter, T.; Morewane, R.; Wolmarans, M.; et al. Increased Mortality among Individuals Hospitalised with COVID-19 during the Second Wave in South Africa. medRxiv 2021. [Google Scholar] [CrossRef]
- Davies, N.G.; Jarvis, C.I.; Edmunds, W.J.; Jewell, N.P.; Diaz-Ordaz, K.; Keogh, R.H. Increased Mortality in Community-Tested Cases of SARS-CoV-2 Lineage B.1.1.7. Nature 2021, 593, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Cele, S.; Gazy, I.; Jackson, L.; Hwa, S.-H.; Tegally, H.; Lustig, G.; Giandhari, J.; Pillay, S.; Wilkinson, E.; Naidoo, Y.; et al. Escape of SARS-CoV-2 501Y.V2 from Neutralization by Convalescent Plasma. Nature 2021, 593, 142–146. [Google Scholar] [CrossRef] [PubMed]
- Meyer, E.D.; Sandfort, M.; Bender, J.; Matysiak-Klose, D.; Dörre, A.; Bojara, G.; Beyrer, K.; Hellenbrand, W. Two Doses of the MRNA BNT162b2 Vaccine Reduce Severe Outcomes, Viral Load and Secondary Attack Rate: Evidence from a SARS-CoV-2 Alpha Outbreak in a Nursing Home in Germany, January–March 2021. medRxiv 2021. [Google Scholar] [CrossRef]
- Glatman-Freedman, A.; Bromberg, M.; Dichtiar, R.; Hershkovitz, Y.; Keinan-Boker, L. The BNT162b2 Vaccine Effectiveness against New COVID-19 Cases and Complications of Breakthrough Cases: A Nation-Wide Retrospective Longitudinal Multiple Cohort Analysis Using Individualised Data. eBioMedicine 2021, 72, 103574. [Google Scholar] [CrossRef]
- Emary, K.R.W.; Golubchik, T.; Aley, P.K.; Ariani, C.V.; Angus, B.; Bibi, S.; Blane, B.; Bonsall, D.; Cicconi, P.; Charlton, S.; et al. Efficacy of ChAdOx1 NCoV-19 (AZD1222) Vaccine against SARS-CoV-2 Variant of Concern 202012/01 (B.1.1.7): An Exploratory Analysis of a Randomised Controlled Trial. Lancet 2021, 397, 1351–1362. [Google Scholar] [CrossRef]
- Heath, P.T.; Galiza, E.P.; Baxter, D.N.; Boffito, M.; Browne, D.; Burns, F.; Chadwick, D.R.; Clark, R.; Cosgrove, C.; Galloway, J.; et al. Safety and Efficacy of NVX-CoV2373 COVID-19 Vaccine. N. Engl. J. Med. 2021, 385, 1172–1183. [Google Scholar] [CrossRef]
- Madhi, S.A.; Baillie, V.; Cutland, C.L.; Voysey, M.; Koen, A.L.; Fairlie, L.; Padayachee, S.D.; Dheda, K.; Barnabas, S.L.; Bhorat, Q.E.; et al. Efficacy of the ChAdOx1 NCoV-19 COVID-19 Vaccine against the B.1.351 Variant. N. Engl. J. Med. 2021, 384, 1885–1898. [Google Scholar] [CrossRef]
- Sadoff, J.; Gray, G.; Vandebosch, A.; Cárdenas, V.; Shukarev, G.; Grinsztejn, B.; Goepfert, P.A.; Truyers, C.; Fennema, H.; Spiessens, B.; et al. Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against COVID-19. N. Engl. J. Med. 2021, 384, 2187–2201. [Google Scholar] [CrossRef]
- Shinde, V.; Bhikha, S.; Hoosain, Z.; Archary, M.; Bhorat, Q.; Fairlie, L.; Lalloo, U.; Masilela, M.S.L.; Moodley, D.; Hanley, S.; et al. Efficacy of NVX-CoV2373 COVID-19 Vaccine against the B.1.351 Variant. N. Engl. J. Med. 2021, 384, 1899–1909. [Google Scholar] [CrossRef]
- Thomas, S.J.; Moreira, E.D.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Marc, G.P.; Polack, F.P.; Zerbini, C.; et al. Six-Month Safety and Efficacy of the BNT162b2 MRNA COVID-19 Vaccine. medRxiv 2021. [Google Scholar] [CrossRef]
- Eyre, D.W.; Taylor, D.; Purver, M.; Chapman, D.; Fowler, T.; Pouwels, K.B.; Walker, A.S.; Peto, T.E. The Impact of SARS-CoV-2 Vaccination on Alpha & Delta Variant Transmission. medRxiv 2021. [Google Scholar] [CrossRef]
- Jangra, S.; Ye, C.; Rathnasinghe, R.; Stadlbauer, D.; Alshammary, H.; Amoako, A.A.; Awawda, M.H.; Beach, K.F.; Bermúdez-González, M.C.; Chernet, R.L.; et al. SARS-CoV-2 Spike E484K Mutation Reduces Antibody Neutralisation. Lancet Microbe 2021, 2, e283–e284. [Google Scholar] [CrossRef]
- Collier, D.A.; De Marco, A.; Ferreira, I.A.T.M.; Meng, B.; Datir, R.P.; Walls, A.C.; Kemp, S.A.; Bassi, J.; Pinto, D.; Silacci-Fregni, C.; et al. Sensitivity of SARS-CoV-2 B.1.1.7 to MRNA Vaccine-Elicited Antibodies. Nature 2021, 593, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Dejnirattisai, W.; Zhou, D.; Supasa, P.; Liu, C.; Mentzer, A.J.; Ginn, H.M.; Zhao, Y.; Duyvesteyn, H.M.E.; Tuekprakhon, A.; Nutalai, R.; et al. Antibody Evasion by the P.1 Strain of SARS-CoV-2. Cell 2021, 184, 2939–2954.e9. [Google Scholar] [CrossRef]
- Kang, M.; Xin, H.; Yuan, J.; Ali, S.T.; Liang, Z.; Zhang, J.; Hu, T.; Lau, E.H.Y.; Zhang, Y.; Zhang, M.; et al. Transmission Dynamics and Epidemiological Characteristics of Delta Variant Infections in China. medRxiv 2021. [Google Scholar] [CrossRef]
- Teyssou, E.; Delagrèverie, H.; Visseaux, B.; Lambert-Niclot, S.; Brichler, S.; Ferre, V.; Marot, S.; Jary, A.; Todesco, E.; Schnuriger, A.; et al. The Delta SARS-CoV-2 Variant Has a Higher Viral Load than the Beta and the Historical Variants in Nasopharyngeal Samples from Newly Diagnosed COVID-19 Patients. J. Infect. 2021, 83, e1–e3. [Google Scholar] [CrossRef]
- Sheikh, A.; McMenamin, J.; Taylor, B.; Robertson, C. SARS-CoV-2 Delta VOC in Scotland: Demographics, Risk of Hospital Admission, and Vaccine Effectiveness. Lancet 2021, 397, 2461–2462. [Google Scholar] [CrossRef]
- Hagan, L.M. Outbreak of SARS-CoV-2 B.1.617.2 (Delta) Variant Infections among Incarcerated Persons in a Federal Priso—Texas, July–August 2021. Morb. Mortal. Wkly. Rep. 2021, 70, 1349–1354. [Google Scholar] [CrossRef]
- Glatman-Freedman, A.; Hershkovitz, Y.; Kaufman, Z.; Dichtiar, R.; Keinan-Boker, L.; Bromberg, M. Effectiveness of BNT162b2 Vaccine in Adolescents during Outbreak of SARS-CoV-2 Delta Variant Infection, Israel, 2021. Emerg. Infect. Dis. J. 2021, 27, 2919–2922. [Google Scholar] [CrossRef]
- Ella, R.; Reddy, S.; Blackwelder, W.; Potdar, V.; Yadav, P.; Sarangi, V.; Aileni, V.K.; Kanungo, S.; Rai, S.; Reddy, P.; et al. Efficacy, Safety, and Lot to Lot Immunogenicity of an Inactivated SARS-CoV-2 Vaccine (BBV152): A, Double-Blind, Randomised, Controlled Phase 3 Trial. medRxiv 2021. [Google Scholar] [CrossRef]
- Stowe, J.; Andrews, N.; Gower, C.; Gallagher, E.; Utsi, L.; Simmons, R.; Thelwall, S.; Tessier, E.; Groves, N.; Dabrera, G.; et al. Effectiveness of COVID-19 Vaccines against Hospital Admission with the Delta (B.1.617.2) Variant; UK Health Security Agency: London, UK, 2021; Available online: https://khub.net/web/phe-national/public-library/-/document_library/v2WsRK3ZlEig/view/479607266 (accessed on 21 April 2022).
- Lopez Bernal, J.; Andrews, N.; Gower, C.; Gallagher, E.; Simmons, R.; Thelwall, S.; Stowe, J.; Tessier, E.; Groves, N.; Dabrera, G.; et al. Effectiveness of COVID-19 Vaccines against the B.1.617.2 (Delta) Variant. N. Engl. J. Med. 2021, 385, 585–594. [Google Scholar] [CrossRef]
- UK Health Security Agency. Technical Briefing 39, 25 March 2022; SARS-CoV-2 Variants of Concern and Variants under Investigation in England; UK Health Security Agency: London, UK, 2022. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1063424/Tech-Briefing-39-25March2022_FINAL.pdf (accessed on 21 April 2022).
- World Health Organization. COVID-19 Weekly Epidemiological Update, Edition 86, 5 April 2022; World Health Organization: Geneva, Switzerland, 2022; Available online: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---5-april-2022 (accessed on 21 April 2022).
- Hui, K.P.Y.; Ho, J.C.W.; Cheung, M.; Ng, K.; Ching, R.H.H.; Lai, K.; Kam, T.T.; Gu, H.; Sit, K.-Y.; Hsin, M.K.Y.; et al. SARS-CoV-2 Omicron Variant Replication in Human Bronchus and Lung Ex Vivo. Nature 2022, 603, 715–720. [Google Scholar] [CrossRef] [PubMed]
- Statens Serum Institut. Risk Assessment of Omicron BA.2; Statens Serum Institut: Copenhagen, Denmark, 2022; Available online: https://en.ssi.dk/-/media/arkiv/subsites/covid19/risikovurderinger/2022/risk-assesment-of-omicron-ba2.pdf?la=en (accessed on 21 April 2022).
- UK Health Security Agency. Technical Briefing 35, 28 January 2022; SARS-CoV-2 Variants of Concern and Variants under Investigation in England; UK Health Security Agency: London, UK, 2022. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1050999/TechnicalBriefing-35-28January2022.pdf (accessed on 21 April 2022).
- Lyngse, F.P.; Kirkeby, C.T.; Denwood, M.; Christiansen, L.E.; Mølbak, K.; Møller, C.H.; Skov, R.L.; Krause, T.G.; Rasmussen, M.; Sieber, R.N.; et al. Transmission of SARS-CoV-2 Omicron VOC Subvariants BA.1 and BA.2: Evidence from Danish Households. medRxiv 2022. [Google Scholar] [CrossRef]
- World Health Organization. COVID-19 Weekly Epidemiological Update, Edition 87, 12 April 2022; World Health Organization: Geneva, Switzerland, 2022; Available online: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---12-april-2022 (accessed on 21 April 2022).
- Yu, J.; Collier, A.Y.; Rowe, M.; Mardas, F.; Ventura, J.D.; Wan, H.; Miller, J.; Powers, O.; Chung, B.; Siamatu, M.; et al. Comparable Neutralization of the SARS-CoV-2 Omicron BA.1 and BA.2 Variants. medRxiv 2022. [Google Scholar] [CrossRef]
- Ferguson, N.; Ghani, A.; Hinsley, W.; Volz, E. Report 50—Hospitalisation Risk for Omicron Cases in England; Imperial College London: London, UK, 2021; Available online: https://www.imperial.ac.uk/media/imperial-college/medicine/mrc-gida/2021-12-22-COVID19-Report-50.pdf (accessed on 21 April 2022).
- Lewnard, J.A.; Hong, V.X.; Patel, M.M.; Kahn, R.; Lipsitch, M.; Tartof, S.Y. Clinical Outcomes among Patients Infected with Omicron (B.1.1.529) SARS-CoV-2 Variant in Southern California. medRxiv 2022. [Google Scholar] [CrossRef]
- Ulloa, A.C.; Buchan, S.A.; Daneman, N.; Brown, K.A. Early Estimates of SARS-CoV-2 Omicron Variant Severity Based on a Matched Cohort Study, Ontario, Canada. medRxiv 2022. [Google Scholar] [CrossRef]
- Wolter, N.; Jassat, W.; von Gottberg, A.; Cohen, C. Clinical Severity of Omicron Sub-Lineage BA.2 Compared to BA.1 in South Africa. medRxiv 2022. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Assessment of the Further Spread and Potential Impact of the SARS-CoV-2 Omicron Variant of Concern in the EU/EEA, 19th Update; Rapid Risk Assessment; European Centre for Disease Prevention and Control: Stockholm, Sweden, 2022; Available online: https://www.ecdc.europa.eu/sites/default/files/documents/RRA-19-update-27-jan-2022.pdf (accessed on 21 April 2022).
- UK Health Security Agency. Technical Briefing: Update on Hospitalisation and Vaccine Effectiveness for Omicron VOC-21NOV-01 (B.1.1.529), 31 December 2021; SARS-CoV-2 Variants of Concern and Variants under Investigation in England; UK Health Security Agency: London, UK, 2021. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1045619/Technical-Briefing-31-Dec-2021-Omicron_severity_update.pdf (accessed on 21 April 2022).
- Fonager, J.; Bennedbæk, M.; Bager, P.; Wohlfahrt, J.; Ellegaard, K.M.; Ingham, A.C.; Edslev, S.M.; Stegger, M.; Sieber, R.N.; Lassauniere, R.; et al. Molecular Epidemiology of the SARS-CoV-2 Variant Omicron BA.2 Sub-Lineage in Denmark, 29 November 2021 to 2 January 2022. Eurosurveillance 2022, 27, 2200181. [Google Scholar] [CrossRef]
- Statens Serum Institut. Weekly Trends: COVID-19 and Other Respiratory Infections—Week 5, 2022; Statens Serum Institut: Copenhagen, Denmark, 2022; Available online: https://www.ssi.dk/-/media/cdn/files/covid19/tendensrapport/rapport/ugentlige-tendenser-covid19-andre-luftvejs-uge5-2022-4md8.pdf?la=da (accessed on 21 April 2022).
- Healthcare in the UK|Coronavirus in the UK. Available online: https://coronavirus.data.gov.uk/details/healthcare (accessed on 28 April 2022).
- National Institute for Communicable Diseases. NICD National COVID-19 Hospital Surveillance, 10 February 2022; Department of Health, Republic of South Africa/National Institute for Communicable Diseases: Johannesburg, South Africa, 2022. [Google Scholar]
- Focused COVID-19 Media Monitoring, Nepal (31 January 2022)—Nepal. Available online: https://reliefweb.int/report/nepal/focused-covid-19-media-monitoring-nepal-january-31-2022 (accessed on 28 April 2022).
- Marks, K.J.; Whitaker, M.; Agathis, N.T.; Anglin, O.; Milucky, J.; Patel, K.; Pham, H.; Kirley, P.D.; Kawasaki, B.; Meek, J.; et al. Hospitalization of Infants and Children Aged 0–4 Years with Laboratory-Confirmed COVID-19—COVID-NET, 14 States, March 2020–February 2022. Morb. Mortal. Wkly. Rep. 2022, 71, 429–436. [Google Scholar] [CrossRef]
- Cele, S.; Jackson, L.; Khoury, D.S.; Khan, K.; Moyo-Gwete, T.; Tegally, H.; San, J.E.; Cromer, D.; Scheepers, C.; Amoako, D.G.; et al. Omicron Extensively but Incompletely Escapes Pfizer BNT162b2 Neutralization. Nature 2022, 602, 654–656. [Google Scholar] [CrossRef] [PubMed]
- Romero-Olmedo, A.J.; Schulz, A.R.; Hochstätter, S.; Gupta, D.D.; Hirseland, H.; Staudenraus, D.; Camara, B.; Volland, K.; Hefter, V.; Sapre, S.; et al. Dynamics of Humoral and T-Cell Immunity after Three BNT162b2 Vaccinations in Adults Older than 80 Years. Lancet Infect. Dis. 2022, 22, 588–589. [Google Scholar] [CrossRef]
- Altarawneh, H.N.; Chemaitelly, H.; Hasan, M.R.; Ayoub, H.H.; Qassim, S.; AlMukdad, S.; Coyle, P.; Yassine, H.M.; Al-Khatib, H.A.; Benslimane, F.M.; et al. Protection against the Omicron Variant from Previous SARS-CoV-2 Infection. N. Engl. J. Med. 2022, 386, 1288–1290. [Google Scholar] [CrossRef] [PubMed]
- Rössler, A.; Riepler, L.; Bante, D.; von Laer, D.; Kimpel, J. SARS-CoV-2 Omicron Variant Neutralization in Serum from Vaccinated and Convalescent Persons. N. Engl. J. Med. 2022, 386, 698–700. [Google Scholar] [CrossRef]
- Rössler, A.; Knabl, L.; von Laer, D.; Kimpel, J. Neutralization Profile after Recovery from SARS-CoV-2 Omicron Infection. N. Engl. J. Med. 2022, 386, 1764–1766. [Google Scholar] [CrossRef]
- Netzl, A.; Tureli, S.; LeGresley, E.; Mühlemann, B.; Wilks, S.H.; Smith, D.J. Analysis of SARS-CoV-2 Omicron Neutralization Data up to 2021-12-22. bioRxiv 2022. [Google Scholar] [CrossRef]
- Iketani, S.; Liu, L.; Guo, Y.; Liu, L.; Chan, J.F.-W.; Huang, Y.; Wang, M.; Luo, Y.; Yu, J.; Chu, H.; et al. Antibody Evasion Properties of SARS-CoV-2 Omicron Sublineages. Nature 2022, 604, 553–556. [Google Scholar] [CrossRef]
- Bartsch, Y.C.; Cizmeci, D.; Kang, J.; Gao, H.; Shi, W.; Chandrashekar, A.; Collier, A.Y.; Chen, B.; Barouch, D.H.; Alter, G. BA. 2 Evasion of Vaccine Induced Binding and Functional Non-Neutralizing Antibodies. medRxiv 2022. [Google Scholar] [CrossRef]
- Chemaitelly, H.; Ayoub, H.H.; Coyle, P.; Tang, P.; Yassine, H.M.; Al-Khatib, H.A.; Smatti, M.K.; Hasan, M.R.; Al-Kanaani, Z.; Al-Kuwari, E.; et al. Protection of Omicron Sub-Lineage Infection against Re-infection with Another Omicron Sub-Lineage. medRxiv 2022. [Google Scholar] [CrossRef]
- Stegger, M.; Edslev, S.M.; Sieber, R.N.; Ingham, A.C.; Ng, K.L.; Tang, M.-H.E.; Alexandersen, S.; Fonager, J.; Legarth, R.; Utko, M.; et al. Occurrence and Significance of Omicron BA.1 Infection Followed by BA.2 Re-infection. medRxiv 2022. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Rapid Increase of a SARS-CoV-2 Variant with Multiple Spike Protein Mutations Observed in the United Kingdom; European Centre for Disease Prevention and Control: Stockholm, Sweden, 2020; Available online: https://www.ecdc.europa.eu/en/publications-data/threat-assessment-brief-rapid-increase-sars-cov-2-variant-united-kingdom#no-link (accessed on 21 April 2022).
- SARS-CoV-2 Variant—United Kingdom of Great Britain and Northern Ireland. Available online: https://www.who.int/emergencies/disease-outbreak-news/item/2020-DON304 (accessed on 28 April 2022).
- Center for Devices and Radiological Health. SARS-CoV-2 Viral Mutations: Impact on COVID-19 Tests. Available online: https://www.fda.gov/medical-devices/coronavirus-covid-19-and-medical-devices/sars-cov-2-viral-mutations-impact-covid-19-tests (accessed on 28 April 2022).
- SARS-CoV-2 Lateral Flow Antigen Tests: Evaluation of VOC1 (Kent, UK) and VOC2 (South Africa). Available online: https://www.gov.uk/government/publications/sars-cov-2-lateral-flow-antigen-tests-evaluation-of-voc1-and-voc2/sars-cov-2-lateral-flow-antigen-tests-evaluation-of-voc1-kent-uk-and-voc2-south-africa (accessed on 28 April 2022).
- Harankhedkar, S.; Chatterjee, G.; Rajpal, S.; Khan, A.; Srivastava, T.; Mirgh, S.; Gokarn, A.; Punatar, S.; Shetty, N.; Joshi, A.; et al. N Gene Target Failure (NGTF) for Detection of Omicron: A Way out for the ‘Stealth’ Too? medRxiv 2022. [Google Scholar] [CrossRef]
- Metzger, C.M.J.A.; Lienhard, R.; Seth-Smith, H.M.B.; Roloff, T.; Wegner, F.; Sieber, J.; Bel, M.; Greub, G.; Egli, A. PCR Performance in the SARS-CoV-2 Omicron Variant of Concern? Swiss. Med. Wkly. 2021, 151, w30120. [Google Scholar] [CrossRef] [PubMed]
- Drain, P.K.; Bemer, M.; Morton, J.F.; Dalmat, R.; Abdille, H.; Thomas, K.; Uppal, T.; Hau, D.; Green, H.R.; Gates-Hollingworth, M.A.; et al. Accuracy of Rapid Antigen Testing across SARS-CoV-2 Variants. medRxiv 2022. [Google Scholar] [CrossRef]
- Esposito, M.; Salerno, M.; Scoto, E.; Di Nunno, N.; Sessa, F. The Impact of the COVID-19 Pandemic on the Practice of Forensic Medicine: An Overview. Healthcare 2022, 10, 319. [Google Scholar] [CrossRef]
- Pomara, C.; Sessa, F.; Ciaccio, M.; Dieli, F.; Esposito, M.; Giammanco, G.M.; Garozzo, S.F.; Giarratano, A.; Prati, D.; Rappa, F.; et al. COVID-19 Vaccine and Death: Causality Algorithm According to the WHO Eligibility Diagnosis. Diagnostics 2021, 11, 955. [Google Scholar] [CrossRef] [PubMed]
- Pomara, C.; Sessa, F.; Ciaccio, M.; Dieli, F.; Esposito, M.; Garozzo, S.F.; Giarratano, A.; Prati, D.; Rappa, F.; Salerno, M.; et al. Post-mortem findings in vaccine-induced thrombotic thombocytopenia. Haematologica 2021, 106, 8. [Google Scholar] [CrossRef]
- Musso, N.; Falzone, L.; Stracquadanio, S.; Bongiorno, D.; Salerno, M.; Esposito, M.; Sessa, F.; Libra, M.; Stefani, S.; Pomara, C. Post-Mortem Detection of SARS-CoV-2 RNA in Long-Buried Lung Samples. Diagnostics 2021, 11, 1158. [Google Scholar] [CrossRef]
- Pomara, C.; Salerno, M.; Sessa, F.; Esposito, M.; Barchitta, M.; Ledda, C.; Grassi, P.; Liberto, A.; Mattaliano, A.R.; Rapisarda, V.; et al. Safe Management Strategies in Clinical Forensic Autopsies of Confirmed COVID-19 Cases. Diagnostics 2021, 11, 457. [Google Scholar] [CrossRef]
- Ritchie, H.; Ortiz-Ospina, E.; Beltekian, D.; Mathieu, E.; Hasell, J.; Macdonald, B.; Giattino, C.; Appel, C.; Roser, M. Max Roser Coronavirus (COVID-19) Vaccinations—Our World in Data. Available online: https://ourworldindata.org/covid-vaccinations (accessed on 8 June 2022).
- Latest Updates: COVID-19 Vaccination Charts, Maps and Eligibility by Country. Available online: https://graphics.reuters.com/world-coronavirus-tracker-and-maps/vaccination-rollout-and-access/ (accessed on 8 June 2022).
- Australian Government Department of Health First COVID-19 Vaccinations in Australia. Available online: https://www.health.gov.au/news/first-covid-19-vaccinations-in-australia (accessed on 28 April 2022).
- The Government of the Hong Kong Special Administrative Region. Smooth Arrival of First Batch of COVID-19 Vaccines in Hong Kong (with Photos/Video). Available online: https://www.info.gov.hk/gia/general/202102/19/P2021021900729.htm (accessed on 28 April 2022).
- World Health Organization. COVID-19 Vaccines Weekly Update 28 April 2021; World Health Organization: Geneva, Switzerland, 2021; Available online: https://cdn.who.int/media/docs/default-source/searo/whe/coronavirus19/page-revamp/covid-19-vaccines-weekly-update-28042021.pdf?sfvrsn=be3f81e4_7 (accessed on 21 April 2022).
- Ul Khaliq, R. Taiwan Begins COVID-19 Vaccination Campaign. Available online: https://www.aa.com.tr/en/asia-pacific/taiwan-begins-covid-19-vaccination-campaign/2184240 (accessed on 28 April 2022).
- World Health Organization. WHO SAGE Roadmap for Prioritizing Uses of COVID-19 Vaccines: An Approach to Optimize the Global Impact of COVID-19 Vaccines, Based on Public Health Goals, Global and National Equity, and Vaccine Access and Coverage Scenarios; World Health Organization: Geneva, Switzerland, 2022; Available online: https://www.who.int/publications/i/item/WHO-2019-nCoV-Vaccines-SAGE-Prioritization-2022.1 (accessed on 21 April 2022).
- Schmider, A.; Huang, S.; Fried, C. Resilience in the Asia Pacific: Vaccines and the “Triple Challenge”; Asia-Pacific Hub of the Reform for Resilience Commission: Taipei, China, 2021; Available online: https://static1.squarespace.com/static/6129e34588d10b13881218eb/t/618b670890247c469a17dd6a/1636525837139/Resilience-Report-Oct-2021.pdf (accessed on 21 April 2022).
- Gavi the Vaccine Alliance. COVAX Explained. Available online: https://www.gavi.org/vaccineswork/covax-explained (accessed on 28 April 2022).
- World Health Organization. Access and Allocation: How Will There Be Fair and Equitable Allocation of Limited Supplies? Available online: https://www.who.int/news-room/feature-stories/detail/access-and-allocation-how-will-there-be-fair-and-equitable-allocation-of-limited-supplies (accessed on 28 April 2022).
- World Health Organization. COVAX Joint Statement: Call to Action to Equip COVAX to Deliver 2 Billion Doses in 2021. Available online: https://www.who.int/news/item/27-05-2021-covax-joint-statement-call-to-action-to-equip-covax-to-deliver-2-billion-doses-in-2021 (accessed on 28 April 2022).
- Maude, R. Southeast Asia and COVID-19 Vaccines Explained—Asia Society Policy Institute. Available online: https://southeastasiacovid.asiasociety.org/southeast-asia-and-covid-19-vaccines-explained/ (accessed on 28 April 2022).
- Asian Development Bank ADB’s Support to Enhance COVID-19 Vaccine Access; ADB Policy Paper; Asian Development Bank: Manila, Philippines. 2020. Available online: https://www.adb.org/sites/default/files/institutional-document/662801/adb-support-covid-19-vaccine-access.pdf (accessed on 21 April 2022).
- Reuters. ADB Launches $9 Billion COVID-19 Vaccine Facility for Developing Members; Reuters: London, UK, 2020. [Google Scholar]
- Lei Ravelo, J. ADB Launches $9B COVID-19 Vaccine Facility. Available online: https://www.devex.com/news/sponsored/adb-launches-9b-covid-19-vaccine-facility-98765 (accessed on 28 April 2022).
- The White House. Quad Leaders’ Joint Statement: “The Spirit of the Quad”. Available online: https://www.whitehouse.gov/briefing-room/statements-releases/2021/03/12/quad-leaders-joint-statement-the-spirit-of-the-quad/ (accessed on 28 April 2022).
- Fidler, D.P. Geopolitics Drives Vaccine Access in Asia. Available online: https://www.eastasiaforum.org/2021/04/13/geopolitics-drives-vaccine-access-in-asia/ (accessed on 28 April 2022).
- WHO Health Organization. Enhancing Response to Omicron SARS-CoV-2 Variant; World Health Organization: Geneva, Switzerland, 2022; Available online: https://www.who.int/publications/m/item/enhancing-readiness-for-omicron-(b.1.1.529)-technical-brief-and-priority-actions-for-member-states (accessed on 21 April 2022).
- World Health Organization, Western Pacific. COVID-19 Vaccines. Available online: https://www.who.int/westernpacific/emergencies/covid-19/covid-19-vaccines (accessed on 28 April 2022).
- World Health Organization. COVID-19 Vaccine Introduction Toolkit. Available online: https://www.who.int/tools/covid-19-vaccine-introduction-toolkit (accessed on 28 April 2022).
- World Health Organization. WHO SAGE Roadmap for Prioritizing Uses of COVID-19 Vaccines in the Context of Limited Supply: An Approach to Inform Planning and Subsequent Recommendations Based on Epidemiological Setting and Vaccine Supply Scenarios, First Issued 20 October 2020, Latest Update 16 July 2021; World Health Organization: Geneva, Switzerland, 2021; Available online: https://www.who.int/publications/i/item/who-sage-roadmap-for-prioritizing-uses-of-covid-19-vaccines-in-the-context-of-limited-supply (accessed on 21 April 2022).
- Tang, V. Taiwan Announces New Vaccine Distribution Strategy. Taiwan News. 2021. Available online: https://www.taiwannews.com.tw/en/news/4214853 (accessed on 22 April 2022).
- World Health Organization. Diagnostic Testing for SARS-CoV-2: Interim Guidance, 11 September 2020; World Health Organization: Geneva, Switzerland, 2020; Available online: https://apps.who.int/iris/bitstream/handle/10665/334254/WHO-2019-nCoV-laboratory-2020.6-eng.pdf (accessed on 21 April 2022).
- World Health Organization. COVID-19 Diagnostic Testing in the Context of International Travel; Scientific Brief; World Health Organization: Geneva, Switzerland, 2020; Available online: https://www.who.int/publications/i/item/WHO-2019-nCoV-Sci_Brief-international_travel_testing-2020.1#.X9zOFuP5Pl0.linkedin (accessed on 21 April 2022).
- Clifford, S.; Quilty, B.J.; Russell, T.W.; Liu, Y.; Chan, Y.W.D.; Pearson, C.A.; Eggo, R.M.; Endo, A.; Flasche, S.; Edmunds, W.J. Strategies to Reduce the Risk of SARS-CoV-2 Importation from International Travellers: Modelling Estimations for the United Kingdom, July 2020. Eurosurveillance 2021, 26, 2001440. [Google Scholar] [CrossRef]
- Wilson, N.; Baker, M.G.; Blakely, T.; Eichner, M. Estimating the Impact of Control Measures to Prevent Outbreaks of COVID-19 Associated with Air Travel into a COVID-19-Free Country. Sci. Rep. 2021, 11, 10766. [Google Scholar] [CrossRef]
- World Health Organization. Antigen-Detection in the Diagnosis of SARS-CoV-2 Infection Using Rapid Immunoassays: Interim Guidance, 11 September 2020; World Health Organization: Geneva, Switzerland, 2020; Available online: https://www.icao.int/safety/CAPSCA/COVID19Docs/Antigen-Detection%20SARS-CoV-2.pdf (accessed on 21 April 2022).
- World Health Organization. Antigen-Detection in the Diagnosis of SARS-CoV-2 Infection, Interim Guidance, 6 October 2021; World Health Organization: Geneva, Switzerland, 2021; Available online: https://www.who.int/publications/i/item/antigen-detection-in-the-diagnosis-of-sars-cov-2infection-using-rapid-immunoassays (accessed on 21 April 2022).
- World Health Organization. Use of SARS-CoV-2 Antigen-Detection Rapid Diagnostic Tests for COVID-19 Self-Testing; Interim Guidance, 9 March 2022; World Health Organization: Geneva, Switzerland, 2022; Available online: https://www.who.int/publications/i/item/WHO-2019-nCoV-Ag-RDTs-Self_testing-2022.1 (accessed on 8 June 2022).
- Qu, J.; Wu, C.; Li, X.; Zhang, G.; Jiang, Z.; Li, X.; Zhu, Q.; Liu, L. Profile of Immunoglobulin G and IgM Antibodies Against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis. 2020, 71, 2255–2258. [Google Scholar] [CrossRef] [PubMed]
- Wölfel, R.; Corman, V.M.; Guggemos, W.; Seilmaier, M.; Zange, S.; Müller, M.A.; Niemeyer, D.; Jones, T.C.; Vollmar, P.; Rothe, C.; et al. Virological Assessment of Hospitalized Patients with COVID-2019. Nature 2020, 581, 465–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dan, J.M.; Mateus, J.; Kato, Y.; Hastie, K.M.; Yu, E.D.; Faliti, C.E.; Grifoni, A.; Ramirez, S.I.; Haupt, S.; Frazier, A.; et al. Immunological Memory to SARS-CoV-2 Assessed for up to 8 Months after Infection. Science 2021, 371, eabf4063. [Google Scholar] [CrossRef]
- World Health Organization. Coronavirus Disease (COVID-19): Serology, Antibodies and Immunity, Q&A, 31 December 2020. Available online: https://www.who.int/news-room/questions-and-answers/item/coronavirus-disease-covid-19-serology (accessed on 28 April 2022).
- Muruato, A.E.; Fontes-Garfias, C.R.; Ren, P.; Garcia-Blanco, M.A.; Menachery, V.D.; Xie, X.; Shi, P.-Y. A High-Throughput Neutralizing Antibody Assay for COVID-19 Diagnosis and Vaccine Evaluation. Nat. Commun. 2020, 11, 4059. [Google Scholar] [CrossRef]
- Guo, L.; Ren, L.; Yang, S.; Xiao, M.; Chang, D.; Yang, F.; Dela Cruz, C.S.; Wang, Y.; Wu, C.; Xiao, Y.; et al. Profiling Early Humoral Response to Diagnose Novel Coronavirus Disease (COVID-19). Clin. Infect. Dis. 2020, 71, 778–785. [Google Scholar] [CrossRef] [Green Version]
- Yong, S.E.F.; Anderson, D.E.; Wei, W.E.; Pang, J.; Chia, W.N.; Tan, C.W.; Teoh, Y.L.; Rajendram, P.; Toh, M.P.H.S.; Poh, C.; et al. Connecting Clusters of COVID-19: An Epidemiological and Serological Investigation. Lancet Infect. Dis. 2020, 20, 809–815. [Google Scholar] [CrossRef]
- Iyer, A.S.; Jones, F.K.; Nodoushani, A.; Kelly, M.; Becker, M.; Slater, D.; Mills, R.; Teng, E.; Kamruzzaman, M.; Garcia-Beltran, W.F.; et al. Persistence and Decay of Human Antibody Responses to the Receptor Binding Domain of SARS-CoV-2 Spike Protein in COVID-19 Patients. Sci. Immunol. 2020, 5, eabe0367. [Google Scholar] [CrossRef]
- Long, Q.-X.; Tang, X.-J.; Shi, Q.-L.; Li, Q.; Deng, H.-J.; Yuan, J.; Hu, J.-L.; Xu, W.; Zhang, Y.; Lv, F.-J.; et al. Clinical and Immunological Assessment of Asymptomatic SARS-CoV-2 Infections. Nat. Med. 2020, 26, 1200–1204. [Google Scholar] [CrossRef]
- Winter, A.K.; Hegde, S.T. The Important Role of Serology for COVID-19 Control. Lancet Infect. Dis. 2020, 20, 758–759. [Google Scholar] [CrossRef]
- Center for Health Security. Developing a National Strategy for Serology (Antibody Testing) in the United States; Johns Hopkins University, Bloomberg School of Public Health: Baltimore, MD, USA, 2020; Available online: https://www.centerforhealthsecurity.org/our-work/pubs_archive/pubs-pdfs/2020/200422-national-strategy-serology.pdf (accessed on 21 April 2022).
- Bastos, M.L.; Tavaziva, G.; Abidi, S.K.; Campbell, J.R.; Haraoui, L.-P.; Johnston, J.C.; Lan, Z.; Law, S.; MacLean, E.; Trajman, A.; et al. Diagnostic Accuracy of Serological Tests for COVID-19: Systematic Review and Meta-Analysis. BMJ 2020, 370, m2516. [Google Scholar] [CrossRef]
- Kontou, P.I.; Braliou, G.G.; Dimou, N.L.; Nikolopoulos, G.; Bagos, P.G. Antibody Tests in Detecting SARS-CoV-2 Infection: A Meta-Analysis. Diagnostics 2020, 10, 319. [Google Scholar] [CrossRef]
- Sethuraman, N.; Jeremiah, S.S.; Ryo, A. Interpreting Diagnostic Tests for SARS-CoV-2. JAMA 2020, 323, 2249–2251. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Sun, B.; Fang, Z.; Zhao, J.; Liu, X.; Li, Y.; Sun, X.; Liang, H.; Zhong, B.; Huang, Z.; et al. Distinct Features of SARS-CoV-2-Specific IgA Response in COVID-19 Patients. Eur. Respir. J. 2020, 56, 2001526. [Google Scholar] [CrossRef] [PubMed]
- Ghaffari, A.; Meurant, R.; Ardakani, A. COVID-19 Serological Tests: How Well Do They Actually Perform? Diagnostics 2020, 10, 453. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Liu, L.; Kou, G.; Zheng, Y.; Ding, Y.; Ni, W.; Wang, Q.; Tan, L.; Wu, W.; Tang, S.; et al. Evaluation of Nucleocapsid and Spike Protein-Based Enzyme-Linked Immunosorbent Assays for Detecting Antibodies against SARS-CoV-2. J. Clin. Microbiol. 2020, 58, e00461-20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McAndrews, K.M.; Dowlatshahi, D.P.; Dai, J.; Becker, L.M.; Hensel, J.; Snowden, L.M.; Leveille, J.M.; Brunner, M.R.; Holden, K.W.; Hopkins, N.S.; et al. Heterogeneous Antibodies against SARS-CoV-2 Spike Receptor Binding Domain and Nucleocapsid with Implications for COVID-19 Immunity. JCI Insight 2020, 5, e142386. [Google Scholar] [CrossRef] [PubMed]
- Robbiani, D.F.; Gaebler, C.; Muecksch, F.; Lorenzi, J.C.C.; Wang, Z.; Cho, A.; Agudelo, M.; Barnes, C.O.; Gazumyan, A.; Finkin, S.; et al. Convergent Antibody Responses to SARS-CoV-2 in Convalescent Individuals. Nature 2020, 584, 437–442. [Google Scholar] [CrossRef]
- Carrillo, J.; Izquierdo-Useros, N.; Ávila-Nieto, C.; Pradenas, E.; Clotet, B.; Blanco, J. Humoral Immune Responses and Neutralizing Antibodies against SARS-CoV-2; Implications in Pathogenesis and Protective Immunity. Biochem. Biophys. Res. Commun. 2021, 538, 187–191. [Google Scholar] [CrossRef]
- Tai, W.; He, L.; Zhang, X.; Pu, J.; Voronin, D.; Jiang, S.; Zhou, Y.; Du, L. Characterization of the Receptor-Binding Domain (RBD) of 2019 Novel Coronavirus: Implication for Development of RBD Protein as a Viral Attachment Inhibitor and Vaccine. Cell Mol. Immunol. 2020, 17, 613–620. [Google Scholar] [CrossRef] [Green Version]
- Tay, M.Z.; Poh, C.M.; Rénia, L.; MacAry, P.A.; Ng, L.F.P. The Trinity of COVID-19: Immunity, Inflammation, and Intervention. Nat. Rev. Immunol. 2020, 20, 363–374. [Google Scholar] [CrossRef]
- Mazzini, L.; Martinuzzi, D.; Hyseni, I.; Benincasa, L.; Molesti, E.; Casa, E.; Lapini, G.; Piu, P.; Trombetta, C.M.; Marchi, S.; et al. Comparative Analyses of SARS-CoV-2 Binding (IgG, IgM, IgA) and Neutralizing Antibodies from Human Serum Samples. J. Immunol. Methods 2021, 489, 112937. [Google Scholar] [CrossRef]
- Grifoni, A.; Weiskopf, D.; Ramirez, S.I.; Mateus, J.; Dan, J.M.; Moderbacher, C.R.; Rawlings, S.A.; Sutherland, A.; Premkumar, L.; Jadi, R.S.; et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell 2020, 181, 1489–1501.e15. [Google Scholar] [CrossRef] [PubMed]
- Suthar, M.S.; Zimmerman, M.G.; Kauffman, R.C.; Mantus, G.; Linderman, S.L.; Hudson, W.H.; Vanderheiden, A.; Nyhoff, L.; Davis, C.W.; Adekunle, O.; et al. Rapid Generation of Neutralizing Antibody Responses in COVID-19 Patients. CR Med. 2020, 1, 100040. [Google Scholar] [CrossRef]
- Cutts, F.T.; Hanson, M. Seroepidemiology: An underused tool for designing and monitoring vaccination programmes in low- and middle-income countries. Trop. Med. Int. Health 2016, 21, 1086–1098. [Google Scholar] [CrossRef]
- World Health Organization Regional Office for Europe. Guidance on Conducting Serosurveys in Support of Measles and Rubella Elimination in the WHO European Region; World Health Organization: Copenhagen, Denmark, 2013; Available online: https://www.euro.who.int/__data/assets/pdf_file/0011/236648/Guidance-on-conducting-serosurveys-in-support-of-measles-and-rubella-elimination-in-the-WHO-European-Region.pdf (accessed on 22 April 2022).
- Saaka, M.; Okoko, B.J.; Kohberger, R.C.; Jaffar, S.; Enwere, G.; Biney, E.E.; Oluwalana, C.; Vaughan, A.; Zaman, S.M.A.; Asthon, L.; et al. Immunogenicity and Serotype-Specific Efficacy of a 9-Valent Pneumococcal Conjugate Vaccine (PCV-9) Determined during an Efficacy Trial in The Gambia. Vaccine 2008, 26, 3719–3726. [Google Scholar] [CrossRef] [PubMed]
- Pinto, L.A.; Dillner, J.; Beddows, S.; Unger, E.R. Immunogenicity of HPV Prophylactic Vaccines: Serology Assays and Their Use in HPV Vaccine Evaluation and Development. Vaccine 2018, 36, 4792–4799. [Google Scholar] [CrossRef]
- Barrière, J.; Carles, M.; Audigier-Valette, C.; Re, D.; Adjtoutah, Z.; Seitz-Polski, B.; Gounant, V.; Descamps, D.; Zalcman, G. Third Dose of Anti-SARS-CoV-2 Vaccine for Patients with Cancer: Should Humoral Responses Be Monitored? A Position Article. Eur. J. Cancer 2022, 162, 182–193. [Google Scholar] [CrossRef] [PubMed]
- Vassilaki, N.; Gargalionis, A.N.; Bletsa, A.; Papamichalopoulos, N.; Kontou, E.; Gkika, M.; Patas, K.; Theodoridis, D.; Manolis, I.; Ioannidis, A.; et al. Impact of Age and Sex on Antibody Response Following the Second Dose of COVID-19 BNT162b2 MRNA Vaccine in Greek Healthcare Workers. Microorganisms 2021, 9, 1725. [Google Scholar] [CrossRef]
- Massarweh, A.; Eliakim-Raz, N.; Stemmer, A.; Levy-Barda, A.; Yust-Katz, S.; Zer, A.; Benouaich-Amiel, A.; Ben-Zvi, H.; Moskovits, N.; Brenner, B.; et al. Evaluation of Seropositivity Following BNT162b2 Messenger RNA Vaccination for SARS-CoV-2 in Patients Undergoing Treatment for Cancer. JAMA Oncol. 2021, 7, 1133–1140. [Google Scholar] [CrossRef] [PubMed]
- Grupper, A.; Sharon, N.; Finn, T.; Cohen, R.; Israel, M.; Agbaria, A.; Rechavi, Y.; Schwartz, I.F.; Schwartz, D.; Lellouch, Y.; et al. Humoral Response to the Pfizer BNT162b2 Vaccine in Patients Undergoing Maintenance Hemodialysis. Clin. J. Am. Soc. Nephrol. 2021, 16, 1037–1042. [Google Scholar] [CrossRef]
- Narasimhan, M.; Mahimainathan, L.; Clark, A.E.; Usmani, A.; Cao, J.; Araj, E.; Torres, F.; Sarode, R.; Kaza, V.; Lacelle, C.; et al. Serological Response in Lung Transplant Recipients after Two Doses of SARS-CoV-2 MRNA Vaccines. Vaccines 2021, 9, 708. [Google Scholar] [CrossRef] [PubMed]
- Ben-Dov, I.Z.; Oster, Y.; Tzukert, K.; Alster, T.; Bader, R.; Israeli, R.; Asayag, H.; Aharon, M.; Burstein, I.; Pri-Chen, H.; et al. Impact of Tozinameran (BNT162b2) MRNA Vaccine on Kidney Transplant and Chronic Dialysis Patients: 3–5 Months Follow-Up. J. Nephrol. 2022, 35, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Doherty, J.; Morain, N.O.; Stack, R.; Girod, P.; Tosetto, M.; Inzitiari, R.; Sheridan, J.; Cullen, G.; McDermott, E.; Buckley, M.; et al. Reduced Serological Response to COVID-19 Vaccines in Patients with IBD Is Further Diminished by TNF Inhibitor Therapy; Early Results of the VARIATION Study [VAriability in Response in IBD against SARS-COV-2 ImmunisatiON]. J. Crohn’s Colitis 2022, jjac029. [Google Scholar] [CrossRef] [PubMed]
- Venerito, V.; Stefanizzi, P.; Fornaro, M.; Cacciapaglia, F.; Tafuri, S.; Perniola, S.; Iannone, F.; Lopalco, G. Immunogenicity of BNT162b2 MRNA SARS-CoV-2 Vaccine in Patients with Psoriatic Arthritis on TNF Inhibitors. RMD Open 2022, 8, e001847. [Google Scholar] [CrossRef]
- Braun-Moscovici, Y.; Kaplan, M.; Braun, M.; Markovits, D.; Giryes, S.; Toledano, K.; Tavor, Y.; Dolnikov, K.; Balbir-Gurman, A. Disease Activity and Humoral Response in Patients with Inflammatory Rheumatic Diseases after Two Doses of the Pfizer MRNA Vaccine against SARS-CoV-2. Ann. Rheum. Dis. 2021, 80, 1317–1321. [Google Scholar] [CrossRef] [PubMed]
- Kresin, C.; Schoenberg, F.P.; Mohler, G. Comparison of the Hawkes and SEIR Models for the Spread of COVID-19 2020. Available online: https://pdfs.semanticscholar.org/b31d/99ebf4aa98e1c90e44e093a07637d67b1662.pdf?_ga=2.53589359.653932400.1655881555-1911527233.1653447319 (accessed on 22 April 2022).
- Sood, N.; Simon, P.; Ebner, P.; Eichner, D.; Reynolds, J.; Bendavid, E.; Bhattacharya, J. Seroprevalence of SARS-CoV-2–Specific Antibodies among Adults in Los Angeles County, California, on 10–11 April 2020. JAMA 2020, 323, 2425–2427. [Google Scholar] [CrossRef] [PubMed]
- Bendavid, E.; Mulaney, B.; Sood, N.; Shah, S.; Bromley-Dulfano, R.; Lai, C.; Weissberg, Z.; Saavedra-Walker, R.; Tedrow, J.; Bogan, A.; et al. COVID-19 Antibody Seroprevalence in Santa Clara County, California. Int. J. Epidemiol. 2021, 50, 410–419. [Google Scholar] [CrossRef] [PubMed]
- Day, M. COVID-19: Identifying and Isolating Asymptomatic People Helped Eliminate Virus in Italian Village. BMJ 2020, 368, m1165. [Google Scholar] [CrossRef] [Green Version]
- Bertozzi, A.L.; Franco, E.; Mohler, G.; Short, M.B.; Sledge, D. The Challenges of Modeling and Forecasting the Spread of COVID-19. Proc. Natl. Acad. Sci. USA 2020, 117, 16732–16738. [Google Scholar] [CrossRef]
- Moreno-Fierros, L.; García-Silva, I.; Rosales-Mendoza, S. Development of SARS-CoV-2 Vaccines: Should We Focus on Mucosal Immunity? Expert Opin. Biol. Ther. 2020, 20, 831–836. [Google Scholar] [CrossRef]
- Bleier, B.S.; Ramanathan, M.; Lane, A.P. COVID-19 Vaccines May Not Prevent Nasal SARS-CoV-2 Infection and Asymptomatic Transmission. Otolaryngol. Head Neck. Surg. 2021, 164, 305–307. [Google Scholar] [CrossRef] [PubMed]
- Mallapaty, S. Can COVID Vaccines Stop Transmission? Scientists Race to Find Answers. Nature 2021, 10. [Google Scholar] [CrossRef]
- Levine-Tiefenbrun, M.; Yelin, I.; Katz, R.; Herzel, E.; Golan, Z.; Schreiber, L.; Wolf, T.; Nadler, V.; Ben-Tov, A.; Kuint, J.; et al. Initial Report of Decreased SARS-CoV-2 Viral Load after Inoculation with the BNT162b2 Vaccine. Nat. Med. 2021, 27, 790–792. [Google Scholar] [CrossRef] [PubMed]
- Marks, M.; Millat-Martinez, P.; Ouchi, D.; Roberts, C.; Alemany, A.; Corbacho-Monné, M.; Ubals, M.; Tobias, A.; Tebé, C.; Ballana, E.; et al. Transmission of COVID-19 in 282 Clusters in Catalonia, Spain: A Cohort Study. Lancet Infect. Dis. 2021, 21, 629–636. [Google Scholar] [CrossRef]
- Strafella, C.; Caputo, V.; Guerrera, G.; Termine, A.; Fabrizio, C.; Cascella, R.; Picozza, M.; Caltagirone, C.; Rossini, A.; Balice, M.P.; et al. Case Report: Sars-CoV-2 Infection in a Vaccinated Individual: Evaluation of the Immunological Profile and Virus Transmission Risk. Front. Immunol. 2021, 12, 708820. [Google Scholar] [CrossRef]
- Ebinger, J.E.; Fert-Bober, J.; Printsev, I.; Wu, M.; Sun, N.; Prostko, J.C.; Frias, E.C.; Stewart, J.L.; Van Eyk, J.E.; Braun, J.G.; et al. Antibody Responses to the BNT162b2 MRNA Vaccine in Individuals Previously Infected with SARS-CoV-2. Nat. Med. 2021, 27, 981–984. [Google Scholar] [CrossRef]
- Melgaço, J.G.; Azamor, T.; Ano Bom, A.P.D. Protective Immunity after COVID-19 Has Been Questioned: What Can We Do without SARS-CoV-2-IgG Detection? Cell. Immunol. 2020, 353, 104114. [Google Scholar] [CrossRef] [PubMed]
- Harvey, R.A.; Rassen, J.A.; Kabelac, C.A.; Turenne, W.; Leonard, S.; Klesh, R.; Meyer, W.A.; Kaufman, H.W.; Anderson, S.; Cohen, O.; et al. Real-World Data Suggest Antibody Positivity to SARS-CoV-2 Is Associated with a Decreased Risk of Future Infection. medRxiv 2020. [Google Scholar] [CrossRef]
- Lumley, S.F.; O’Donnell, D.; Stoesser, N.E.; Matthews, P.C.; Howarth, A.; Hatch, S.B.; Marsden, B.D.; Cox, S.; James, T.; Warren, F.; et al. Antibody Status and Incidence of SARS-CoV-2 Infection in Health Care Workers. N. Engl. J. Med. 2021, 384, 533–540. [Google Scholar] [CrossRef]
- Krammer, F.; Srivastava, K.; Alshammary, H.; Amoako, A.A.; Awawda, M.H.; Beach, K.F.; Bermúdez-González, M.C.; Bielak, D.A.; Carreño, J.M.; Chernet, R.L.; et al. Antibody Responses in Seropositive Persons after a Single Dose of SARS-CoV-2 MRNA Vaccine. N. Engl. J. Med. 2021, 384, 1372–1374. [Google Scholar] [CrossRef]
- Saadat, S.; Rikhtegaran Tehrani, Z.; Logue, J.; Newman, M.; Frieman, M.B.; Harris, A.D.; Sajadi, M.M. Binding and Neutralization Antibody Titers after a Single Vaccine Dose in Health Care Workers Previously Infected with SARS-CoV-2. JAMA 2021, 325, 1467–1469. [Google Scholar] [CrossRef] [PubMed]
- Prendecki, M.; Clarke, C.; Brown, J.; Cox, A.; Gleeson, S.; Guckian, M.; Randell, P.; Pria, A.D.; Lightstone, L.; Xu, X.-N.; et al. Effect of Previous SARS-CoV-2 Infection on Humoral and T-Cell Responses to Single-Dose BNT162b2 Vaccine. Lancet 2021, 397, 1178–1181. [Google Scholar] [CrossRef]
- Manisty, C.; Otter, A.D.; Treibel, T.A.; McKnight, Á.; Altmann, D.M.; Brooks, T.; Noursadeghi, M.; Boyton, R.J.; Semper, A.; Moon, J.C. Antibody Response to First BNT162b2 Dose in Previously SARS-CoV-2-Infected Individuals. Lancet 2021, 397, 1057–1058. [Google Scholar] [CrossRef]
- Hall, V.J.; Foulkes, S.; Charlett, A.; Atti, A.; Monk, E.J.M.; Simmons, R.; Wellington, E.; Cole, M.J.; Saei, A.; Oguti, B.; et al. SARS-CoV-2 Infection Rates of Antibody-Positive Compared with Antibody-Negative Health-Care Workers in England: A Large, Multicentre, Prospective Cohort Study (SIREN). Lancet 2021, 397, 1459–1469. [Google Scholar] [CrossRef]
- Hansen, C.H.; Michlmayr, D.; Gubbels, S.M.; Mølbak, K.; Ethelberg, S. Assessment of Protection against Re-infection with SARS-CoV-2 among 4 Million PCR-Tested Individuals in Denmark in 2020: A Population-Level Observational Study. Lancet 2021, 397, 1204–1212. [Google Scholar] [CrossRef]
- Pilz, S.; Chakeri, A.; Ioannidis, J.P.; Richter, L.; Theiler-Schwetz, V.; Trummer, C.; Krause, R.; Allerberger, F. SARS-CoV-2 Re-Infection Risk in Austria. Eur. J. Clin. Investig. 2021, 51, e13520. [Google Scholar] [CrossRef] [PubMed]
- Ayoub, H.H.; Chemaitelly, H.; Makhoul, M.; Kanaani, Z.A.; Kuwari, E.A.; Butt, A.A.; Coyle, P.; Jeremijenko, A.; Kaleeckal, A.H.; Latif, A.N.; et al. Epidemiological Impact of Prioritising SARS-CoV-2 Vaccination by Antibody Status: Mathematical Modelling Analyses. BMJ Innov. 2021, 7, 327–336. [Google Scholar] [CrossRef]
- Addetia, A.; Crawford, K.H.D.; Dingens, A.; Zhu, H.; Roychoudhury, P.; Huang, M.-L.; Jerome, K.R.; Bloom, J.D.; Greninger, A.L. Neutralizing Antibodies Correlate with Protection from SARS-CoV-2 in Humans during a Fishery Vessel Outbreak with a High Attack Rate. J. Clin. Microbiol. 2020, 58, e02107-20. [Google Scholar] [CrossRef]
- Pray, I.W.; Gibbons-Burgener, S.N.; Rosenberg, A.Z.; Cole, D.; Borenstein, S.; Bateman, A.; Pevzner, E.; Westergaard, R.P. COVID-19 Outbreak at an Overnight Summer School Retreat—Wisconsin, July–August 2020. Morb. Mortal. Wkly. Rep. 2020, 69, 1600–1604. [Google Scholar] [CrossRef]
- Jeffery-Smith, A.; Iyanger, N.; Williams, S.V.; Chow, J.Y.; Aiano, F.; Hoschler, K.; Lackenby, A.; Ellis, J.; Platt, S.; Miah, S.; et al. Antibodies to SARS-CoV-2 Protect against Re-Infection during Outbreaks in Care Homes, September and October 2020. Eurosurveillance 2021, 26, 2100092. [Google Scholar] [CrossRef]
- Letizia, A.; Ge, Y.; Goforth, C.; Weir, D.; Lizewski, R.; Lizewski, S.; Soares-Schanoski, A.; Vangeti, S.; Marjanovic, N.; Sealfon, S.; et al. SARS-CoV-2 Seropositivity among US Marine Recruits Attending Basic Training, United States, Spring–Fall 2020. Emerg. Infect. Dis. J. 2021, 27, 1188. [Google Scholar] [CrossRef] [PubMed]
- Kontopoulou, K.; Ainatzoglou, A.; Ifantidou, A.; Nakas, C.T.; Gkounti, G.; Adamopoulos, V.; Papadopoulos, N.; Papazisis, G. Immunogenicity after the First Dose of the BNT162b2 MRNA COVID-19 Vaccine: Real-World Evidence from Greek Healthcare Workers. J. Med. Microbiol. 2021, 70, 001387. [Google Scholar] [CrossRef]
- Gallais, F.; Gantner, P.; Bruel, T.; Velay, A.; Planas, D.; Wendling, M.-J.; Bayer, S.; Solis, M.; Laugel, E.; Reix, N.; et al. Anti-SARS-CoV-2 Antibodies Persist for up to 13 Months and Reduce Risk of Re-infection. medRxiv 2021. [Google Scholar] [CrossRef]
- Bergwerk, M.; Gonen, T.; Lustig, Y.; Amit, S.; Lipsitch, M.; Cohen, C.; Mandelboim, M.; Levin, E.G.; Rubin, C.; Indenbaum, V.; et al. COVID-19 Breakthrough Infections in Vaccinated Health Care Workers. N. Engl. J. Med. 2021, 385, 1474–1484. [Google Scholar] [CrossRef]
- Petersen, L.R.; Sami, S.; Vuong, N.; Pathela, P.; Weiss, D.; Morgenthau, B.M.; Henseler, R.A.; Daskalakis, D.C.; Atas, J.; Patel, A.; et al. Lack of Antibodies to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in a Large Cohort of Previously Infected Persons. Clin. Infect. Dis. 2021, 73, e3066–e3073. [Google Scholar] [CrossRef] [PubMed]
- Letizia, A.G.; Ge, Y.; Vangeti, S.; Goforth, C.; Weir, D.L.; Kuzmina, N.A.; Balinsky, C.A.; Chen, H.W.; Ewing, D.; Soares-Schanoski, A.; et al. SARS-CoV-2 Seropositivity and Subsequent Infection Risk in Healthy Young Adults: A Prospective Cohort Study. Lancet Respir. Med. 2021, 9, 712–720. [Google Scholar] [CrossRef]
- U.S. Centers for Disease Control and Prevention. Interim Clinical Considerations for Use of COVID-19 Vaccines|CDC. Available online: https://www.cdc.gov/vaccines/covid-19/clinical-considerations/covid-19-vaccines-us.html (accessed on 28 April 2022).
- Shah, A.S.V.; Gribben, C.; Bishop, J.; Hanlon, P.; Caldwell, D.; Wood, R.; Reid, M.; McMenamin, J.; Goldberg, D.; Stockton, D.; et al. Effect of Vaccination on Transmission of SARS-CoV-2. N. Engl. J. Med. 2021, 385, 1718–1720. [Google Scholar] [CrossRef]
- Pratò, S.; Paladino, M.E.; Riva, M.A.; Deni, M.; Belingheri, M. SARS-CoV-2 Transmission Risk to Household and Family Contacts by Vaccinated Healthcare Workers. J. Occup. Environ. Med. 2021, 63, e474. [Google Scholar] [CrossRef]
- Petter, E.; Mor, O.; Zuckerman, N.; Oz-Levi, D.; Younger, A.; Aran, D.; Erlich, Y. Initial Real-World Evidence for Lower Viral Load of Individuals Who Have Been Vaccinated by BNT162b2. medRxiv 2021. [Google Scholar] [CrossRef]
- Regev-Yochay, G.; Amit, S.; Bergwerk, M.; Lipsitch, M.; Leshem, E.; Kahn, R.; Lustig, Y.; Cohen, C.; Doolman, R.; Ziv, A.; et al. Decreased Infectivity Following BNT162b2 Vaccination: A Prospective Cohort Study in Israel. Lancet Reg. Health—Eur. 2021, 7, 100150. [Google Scholar] [CrossRef]
- Boyarsky, B.J.; Werbel, W.A.; Avery, R.K.; Tobian, A.A.R.; Massie, A.B.; Segev, D.L.; Garonzik-Wang, J.M. Immunogenicity of a Single Dose of SARS-CoV-2 Messenger RNA Vaccine in Solid Organ Transplant Recipients. JAMA 2021, 325, 1784–1786. [Google Scholar] [CrossRef] [PubMed]
- Pellini, R.; Venuti, A.; Pimpinelli, F.; Abril, E.; Blandino, G.; Campo, F.; Conti, L.; Virgilio, A.D.; Marco, F.D.; Domenico, E.G.D.; et al. Obesity May Hamper SARS-CoV-2 Vaccine Immunogenicity. medRxiv 2021. [Google Scholar] [CrossRef]
- Oran, D.P.; Topol, E.J. The Proportion of SARS-CoV-2 Infections That Are Asymptomatic. Ann. Intern. Med. 2021, 174, 655–662. [Google Scholar] [CrossRef]
- Selhorst, P.; Ierssel, S.V.; Michiels, J.; Mariën, J.; Bartholomeeusen, K.; Dirinck, E.; Vandamme, S.; Jansens, H.; Ariën, K.K. Symptomatic SARS-CoV-2 Re-Infection of a Health Care Worker in a Belgian Nosocomial Outbreak despite Primary Neutralizing Antibody Response. medRxiv 2020. [Google Scholar] [CrossRef]
- To, K.K.-W.; Tsang, O.T.-Y.; Leung, W.-S.; Tam, A.R.; Wu, T.-C.; Lung, D.C.; Yip, C.C.-Y.; Cai, J.-P.; Chan, J.M.-C.; Chik, T.S.-H.; et al. Temporal Profiles of Viral Load in Posterior Oropharyngeal Saliva Samples and Serum Antibody Responses during Infection by SARS-CoV-2: An Observational Cohort Study. Lancet Infect. Dis. 2020, 20, 565–574. [Google Scholar] [CrossRef] [Green Version]
- Bascones-Martinez, A.; Mattila, R.; Gomez-Font, R.; Meurman, J.H. Immunomodulatory Drugs: Oral and Systemic Adverse Effects. Med. Oral Patol. Oral Cir. Bucal. 2014, 19, e24–e31. [Google Scholar] [CrossRef]
- World Health Organization. “Solidarity 2” Global Serologic Study for COVID-19. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/global-research-on-novel-coronavirus-2019-ncov/solidarity-2-global-serologic-study-for-covid-19 (accessed on 28 April 2022).
- World Health Organization. Protocolo para Estudios Seroepidemiológicos Poblacionales Sobre la COVID-19, con Estratificación por Edades; World Health Organization: Geneva, Switzerland, 2020; Available online: https://apps.who.int/iris/handle/10665/331540 (accessed on 21 April 2022).
- United Nations Mexico. La Mayor Parte De La Población Mundial Sigue Siendo Susceptible a la COVID-19, Aunque Ya La Haya Padecido. Available online: https://coronavirus.onu.org.mx/la-mayor-parte-de-la-poblacion-mundial-sigue-siendo-susceptible-a-la-covid-19-aunque-ya-la-haya-padecido (accessed on 28 April 2022).
- World Health Organization. Serology and Early Investigation Protocols. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/serology-in-the-context-of-covid-19 (accessed on 28 April 2022).
- Unity Studies: Early Investigation Protocols. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/early-investigations (accessed on 28 April 2022).
- WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19—7 December 2020. Available online: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---7-december-2020 (accessed on 28 April 2022).
- Arora, R.K.; Joseph, A.; Wyk, J.V.; Rocco, S.; Atmaja, A.; May, E.; Yan, T.; Bobrovitz, N.; Chevrier, J.; Cheng, M.P.; et al. SeroTracker: A Global SARS-CoV-2 Seroprevalence Dashboard. Lancet Infect. Dis. 2021, 21, e75–e76. [Google Scholar] [CrossRef]
- World Health Organization. COVID-19 Weekly Epidemiological Update, 4 May 2021; World Health Organization: Geneva, Switzerland, 2021; Available online: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---4-may-2021 (accessed on 21 April 2022).
- John, J.; Kang, G. Tracking SARS-CoV-2 Infection in India with Serology. Lancet Glob. Health 2021, 9, e219–e220. [Google Scholar] [CrossRef]
- SeroTracker Newsletter. Available online: https://serotracker.substack.com/embed (accessed on 28 April 2022).
- World Health Organization. Advice on the Use of Point-of-Care Immunodiagnostic Tests for COVID-19 Scientific Brief, 8 April 2020. Available online: https://www.who.int/news-room/commentaries/detail/advice-on-the-use-of-point-of-care-immunodiagnostic-tests-for-covid-19 (accessed on 28 April 2022).
- World Health Organization. “Immunity Passports” in the Context of COVID-19 Scientific Brief, 24 April 2020. Available online: https://www.who.int/news-room/commentaries/detail/immunity-passports-in-the-context-of-covid-19 (accessed on 28 April 2022).
- World Health Organization. Coronavirus Disease (COVID-19) Q&A, 13 May 2021. Available online: https://www.who.int/news-room/questions-and-answers/item/coronavirus-disease-covid-19 (accessed on 28 April 2022).
- World Health Organization, Western Pacific Region. COVID-19 Testing and Contact Tracing. Available online: https://www.who.int/westernpacific/emergencies/covid-19/information/covid-19-testing (accessed on 28 April 2022).
- Asia Pacific Society of Infection Control—APSIC—COVID-19 (SARS-CoV-2). Available online: https://apsic-apac.org/guidelines-and-resources/covid-19/ (accessed on 28 April 2022).
- World Health Organization. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19); World Health Organization: Geneva, Switzerland, 2022; Available online: https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf (accessed on 21 April 2022).
- Australian Public Health Laboratory Network. Public Health Laboratory Network Guidance for Serological Testing in COVID-19; Public Health Laboratory Network: Canberra, Australia, 2020. Available online: https://www.health.gov.au/sites/default/files/documents/2020/09/phln-guidance-for-serological-testing-in-covid-19-phln-guidance-on-serological-testing-in-covid-19.pdf (accessed on 21 April 2022).
- Office of the Commissioner. FDA Statement—Coronavirus (COVID-19) Update: Serological Tests, 7 April 2020. Available online: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-serological-tests (accessed on 28 April 2022).
- Gavi the Vaccine Alliance. You’ve Got Your Antibody Test Result—But What Does It Mean? Available online: https://www.gavi.org/vaccineswork/youve-got-your-antibody-test-result-what-does-it-mean (accessed on 28 April 2022).
- Antibody Testing Is Not Currently Recommended to Assess Immunity after COVID-19 Vaccination: FDA Safety Communication. Available online: https://www.fda.gov/medical-devices/safety-communications/antibody-testing-not-currently-recommended-assess-immunity-after-covid-19-vaccination-fda-safety (accessed on 28 April 2022).
- CDC. Antibody Testing Guidelines: Interim Guidelines for COVID-19 Antibody Testing in Clinical and Public Health Settings. Available online: https://www.cdc.gov/coronavirus/2019-ncov/lab/resources/antibody-tests-guidelines.html (accessed on 28 April 2022).
- Wanlapakorn, N.; Yorsaeng, R.; Phowatthanasathian, H.; Suntronwong, N.; Kanokudom, S.; Sudhinaraset, N.; Poovorawan, Y. Immunogenicity of Heterologous Prime/Boost Inactivated and MRNA COVID-19 Vaccine. medRxiv 2021. [Google Scholar] [CrossRef]
- Gavi the Vaccine Alliance. COVID-19: Why We Can’t Use Antibody Tests to Show That Vaccines Are Working. Available online: https://www.gavi.org/vaccineswork/covid-19-why-we-cant-use-antibody-tests-show-vaccines-are-working (accessed on 28 April 2022).
- Food and Drug Administration. Antibody (Serology) Testing for COVID-19: Information for Patients and Consumers. Available online: https://www.fda.gov/medical-devices/coronavirus-covid-19-and-medical-devices/antibody-serology-testing-covid-19-information-patients-and-consumers (accessed on 28 April 2022).
- Protzer, U.; Wratil, P.; Stern, M.; Priller, A.; Willmann, A.; Almanzar, G.; Vogel, E.; Feuerherd, M.; Cheng, C.-C. Superior Immunity That Allows Neutralization of All SARS-CoV-2 Variants of Concern Develops in COVID-19 Convalescents and Naïve Individuals after Three Vaccinations. Research Square 2022. [Google Scholar] [CrossRef]
- Australian Government Department of Health. Australia’s COVID-19 Vaccine and Treatment Strategy. Available online: https://www.health.gov.au/resources/publications/australias-covid-19-vaccine-and-treatment-strategy (accessed on 28 April 2022).
- Ministry of Health & Family Welfare of India. COVID-19 Vaccines: Operational Guidelines (Updated as on 28 December 2020); Ministry of Health & Family Welfare: Dehli, India, 2020. Available online: https://www.mohfw.gov.in/pdf/COVID19VaccineOG111Chapter16.pdf (accessed on 21 April 2022).
- Ministry of Health & Family Welfare of India. Revised Guidelines for Implementation of National COVID Vaccination Program; Ministry of Health & Family Welfare: Dehli, India, 2021. Available online: https://www.mohfw.gov.in/pdf/RevisedVaccinationGuidelines.pdf (accessed on 21 April 2022).
- Ministry of Health of Indonesia. Technical Guideline for COVID-19 Vaccination; Ministry of Health of Indonesia: Jakarta, Indonesia, 2021; Available online: https://covid19.go.id/storage/app/media/Regulasi/2021/Januari/Final%20SK%20Dirjen%20Juknis%20Vaksinasi%20COVID-19%2002022021.pdf (accessed on 21 April 2022).
- Taiwan Centers for Disease Control. COVID-19 Vaccines. Available online: https://www.cdc.gov.tw/Category/List/P2pYv_BSNAzqDSK8Qhllew (accessed on 29 April 2022).
- Thailand Department of Disease Control. Thailand’s COVID-19 Vaccine. Available online: https://ddc.moph.go.th/vaccine-covid19/ (accessed on 21 April 2022).
- Australian Government Department of Health Therapeutic Goods Administration. COVID-19 Serology Point-of-Care Tests. Available online: https://www.tga.gov.au/covid-19-serology-point-care-tests (accessed on 29 April 2022).
- Calafiore, S. GPs Face $20k Fines for Using Serology Tests to Diagnose Coronavirus. Aust. Dr. News 2020. Available online: https://www.rcpa.edu.au/Library/COVID-19-Updates/COVID-19-Useful-Resources/Docs/GPs-face-$20k-fines-for-using-serology-tests-to-di.aspx (accessed on 22 April 2022).
- Indian Council of Medical Research. Guidance on Rapid Antibody Test Kits for COVID-19; Department of Health Research, Ministry of Health and Family Welfare: Dehli, India, 2021. Available online: https://www.icmr.gov.in/pdf/covid/kits/Antibody_based_tests_12022021.pdf (accessed on 21 April 2022).
- Indian Council of Medical Research. Newer Additional Strategies for COVID-19 Testing; Department of Health Research, Ministry of Health and Family Welfare: Dehli, India, 2020. Available online: https://www.icmr.gov.in/pdf/covid/strategy/New_additional_Advisory_23062020_3.pdf (accessed on 21 April 2022).
- Taiwan Ministry of Health and Welfare. Press Release on 5 June 2021. Available online: https://www.mohw.gov.tw/cp-4631-54340-1.html (accessed on 29 April 2022).
- Ministry of Health of Indonesia. COVID-19 Management Guideline Revision 4; Ministry of Health of Indonesia: Jakarta, Indonesia, 2020; Available online: https://infeksiemerging.kemkes.go.id/download/REV-04_Pedoman_P2_COVID-19__27_Maret2020_TTD1.pdf (accessed on 21 April 2022).
- Ministry of Health of Indonesia. COVID-19 Management Guideline Revision 5; Ministry of Health of Indonesia: Jakarta, Indonesia, 2020; Available online: https://infeksiemerging.kemkes.go.id/download/REV-05_Pedoman_P2_COVID-19_13_Juli_2020_1.pdf (accessed on 21 April 2022).
- Thai Health Authorities Warn against Buying Antibody Test Kits after COVID-19. Available online: https://thainews.prd.go.th/en/news/detail/TCATG210627111959606 (accessed on 29 April 2022).
- Wahyuni, N.C. Experts: No Antibody Test Necessary after COVID-19 Vaccination. Available online: https://www.beritasatu.com/kesehatan/751705/pakar-tidak-perlu-tes-antibodi-setelah-divaksin-covid19 (accessed on 29 April 2022).
- Cheng, S. COVID-19: Hong Kong to Ease Quarantine Rules for Vaccinated Residents and Travellers. Available online: https://hongkongfp.com/2021/05/07/covid-19-hong-kong-to-ease-quarantine-rules-for-vaccinated-residents-and-travellers/ (accessed on 29 April 2022).
- The Government of the Hong Kong Special Administrative Region. Latest Quarantine and Testing Arrangements for Overseas Arrivals and Forthcoming Implementation of Self-Paid Serology Antibody Testing Service at Airport. Available online: https://www.info.gov.hk/gia/general/202108/07/P2021080700596.htm (accessed on 29 April 2022).
- India Today. Indiscriminate, Incomplete Vaccination Can Promote Mutant Strains, Health Experts Tell PM Modi. Available online: https://www.indiatoday.in/india/story/health-experts-pm-modi-vaccination-mutant-strains-1813437-2021-06-11 (accessed on 29 April 2022).
- Bangkok Post. How Will You Know? Available online: https://www.bangkokpost.com/life/social-and-lifestyle/1900080/how-will-you-know- (accessed on 29 April 2022).
- Chula COVID-19 Strip Test—Quick and Easy COVID-19 Screening. Available online: https://www.chula.ac.th/en/news/28822/ (accessed on 29 April 2022).
- Chula Presents COVID-19 Rapid Strip Test to PM for Use in Thai Society. Available online: https://www.chula.ac.th/en/news/29023/ (accessed on 29 April 2022).
- Nopsopon, T.; Pongpirul, K.; Chotirosniramit, K.; Hiransuthikul, N. COVID-19 seroprevalence among hospital staff and preprocedural patients in Thai community hospitals: A cross-sectional study. BMJ Open 2021, 11, e046676. [Google Scholar] [CrossRef] [PubMed]
- Research and Development Center, Ministry of Health of Indonesia. Clinical Trial Plasma Convalescent Therapy; Ministry of Health of Indonesia: Jakarta, Indonesia, 2020; Available online: https://e-riset.litbang.kemkes.go.id/download.php?file=1.%20Laporan-2020-Pusat%202-Uji%20Klinis%20Pemberian.pdf (accessed on 21 April 2022).
- Taiwan Centers for Disease Control. FAQs—Entry and Quarantine Measures for COVID-19 Prevention FAQs Concerning COVID-19 RT-PCR Test Reports Issues within 3 Days of Boarding. Available online: https://www.cdc.gov.tw/Uploads/dfbbc2b5-34d0-458a-b1e4-6477e551c232.pdf (accessed on 29 April 2022).
- Burgess, S.; Ponsford, M.J.; Gill, D. Are We Underestimating Seroprevalence of SARS-CoV-2? BMJ 2020, 370, m3364. [Google Scholar] [CrossRef]
- U.S. Centers for Disease Control and Prevention. Large-Scale Geographic Seroprevalence Surveys. Available online: https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/geographic-seroprevalence-surveys.html (accessed on 29 April 2022).
- de Walque, D.; Friedman, J.; Gatti, R.; Mattoo, A. How Two Tests Can Help Contain COVID-19 and Revive the Economy; Research & Policy Briefs from the World Bank Malasia Hub; World Bank Group: Kuala Lumpur, Malaysia, 2020; Available online: https://openknowledge.worldbank.org/bitstream/handle/10986/33583/How-Two-Tests-Can-Help-Contain-COVID-19-and-Revive-the-Economy.pdf?sequence=1&isAllowed=y (accessed on 21 April 2022).
- Hicks, J.; Klumpp-Thomas, C.; Kalish, H.; Shunmugavel, A.; Mehalko, J.; Denson, J.-P.; Snead, K.R.; Drew, M.; Corbett, K.S.; Graham, B.S.; et al. Serologic Cross-Reactivity of SARS-CoV-2 with Endemic and Seasonal Betacoronaviruses. J. Clin. Immunol. 2021, 41, 906–913. [Google Scholar] [CrossRef] [PubMed]
- Klumpp-Thomas, C.; Kalish, H.; Hicks, J.; Mehalko, J.; Drew, M.; Memoli, M.J.; Hall, M.D.; Esposito, D.; Sadtler, K. Effect of D614G Spike Variant on Immunoglobulin G, M, or A Spike Seroassay Performance. J. Infect. Dis. 2021, 223, 802–804. [Google Scholar] [CrossRef]
- Klumpp-Thomas, C.; Kalish, H.; Drew, M.; Hunsberger, S.; Snead, K.; Fay, M.P.; Mehalko, J.; Shunmugavel, A.; Wall, V.; Frank, P.; et al. Standardization of ELISA Protocols for Serosurveys of the SARS-CoV-2 Pandemic Using Clinical and at-Home Blood Sampling. Nat. Commun. 2021, 12, 113. [Google Scholar] [CrossRef] [PubMed]
- Piec, I.; English, E.; Thomas, M.A.; Dervisevic, S.; Fraser, W.D.; John, W.G. Performance of SARS-CoV-2 Serology Tests: Are They Good Enough? PLoS ONE 2021, 16, e0245914. [Google Scholar] [CrossRef]
- Kalish, H.; Klumpp-Thomas, C.; Hunsberger, S.; Baus, H.A.; Fay, M.P.; Siripong, N.; Wang, J.; Hicks, J.; Mehalko, J.; Travers, J.; et al. Undiagnosed SARS-CoV-2 Seropositivity during the First 6 Months of the COVID-19 Pandemic in the United States. Sci. Transl. Med. 2021, 13, eabh3826. [Google Scholar] [CrossRef]
- Plotkin, S.A.; Gilbert, P.B. Nomenclature for Immune Correlates of Protection after Vaccination. Clin. Infect. Dis. 2012, 54, 1615–1617. [Google Scholar] [CrossRef]
- Qin, L.; Gilbert, P.B.; Corey, L.; McElrath, M.J.; Self, S.G. A Framework for Assessing Immunological Correlates of Protection in Vaccine Trials. J. Infect. Dis. 2007, 196, 1304–1312. [Google Scholar] [CrossRef] [Green Version]
- Feng, S.; Phillips, D.J.; White, T.; Sayal, H.; Aley, P.K.; Bibi, S.; Dold, C.; Fuskova, M.; Gilbert, S.C.; Hirsch, I.; et al. Correlates of Protection against Symptomatic and Asymptomatic SARS-CoV-2 Infection. Nat. Med. 2021, 27, 2032–2040. [Google Scholar] [CrossRef]
- Earle, K.A.; Ambrosino, D.M.; Fiore-Gartland, A.; Goldblatt, D.; Gilbert, P.B.; Siber, G.R.; Dull, P.; Plotkin, S.A. Evidence for Antibody as a Protective Correlate for COVID-19 Vaccines. Vaccine 2021, 39, 4423–4428. [Google Scholar] [CrossRef] [PubMed]
- Perkmann, T.; Mucher, P.; Perkmann-Nagele, N.; Radakovics, A.; Repl, M.; Koller, T.; Schmetterer, K.G.; Bigenzahn, J.W.; Leitner, F.; Jordakieva, G.; et al. The Comparability of Anti-Spike SARS-CoV-2 Antibody Tests Is Time-Dependent: A Prospective Observational Study. Microbiol. Spectr. 2022, 10, e01402-21. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, P.J.; Ruan, Q.; Grieshaber, J.L.; Swift, K.M.; Taylor, R.E.; Prostko, J.C.; Tetin, S.Y. Affinity of Anti-Spike Antibodies in SARS-CoV-2 Patient Plasma and Its Effect on COVID-19 Antibody Assays. eBioMedicine 2022, 75, 103796. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, H.W.; Chen, Z.; Meyer, W.A.; Wohlgemuth, J.G. Insights from Patterns of SARS-CoV-2 Immunoglobulin G Serology Test Results from a National Clinical Laboratory, United States, March–July 2020. Popul. Health Manag. 2021, 24, S-35–S-42. [Google Scholar] [CrossRef]
- Choe, P.G.; Kang, C.K.; Suh, H.J.; Jung, J.; Kang, E.; Lee, S.Y.; Song, K.-H.; Kim, H.B.; Kim, N.J.; Park, W.B.; et al. Antibody Responses to SARS-CoV-2 at 8 Weeks Postinfection in Asymptomatic Patients. Emerg. Infect. Dis. J. 2020, 26, 2484–2487. [Google Scholar] [CrossRef]
- Murhekar, M.V.; Clapham, H. COVID-19 Serosurveys for Public Health Decision-Making. Lancet Glob. Health 2021, 9, e559–e560. [Google Scholar] [CrossRef]
- Li, Z.; Guan, X.; Mao, N.; Luo, H.; Qin, Y.; He, N.; Zhu, Z.; Yu, J.; Li, Y.; Liu, J.; et al. Antibody Seroprevalence in the Epicenter Wuhan, Hubei, and Six Selected Provinces after Containment of the First Epidemic Wave of COVID-19 in China. Lancet Reg. Health—West. Pac. 2021, 8, 100094. [Google Scholar] [CrossRef]
- Lauring, A.S.; Tenforde, M.W.; Chappell, J.D.; Gaglani, M.; Ginde, A.A.; McNeal, T.; Ghamande, S.; Douin, D.J.; Talbot, H.K.; Casey, J.D.; et al. Clinical Severity and MRNA Vaccine Effectiveness for Omicron, Delta, and Alpha SARS-CoV-2 Variants in the United States: A Prospective Observational Study. medRxiv 2022. [Google Scholar] [CrossRef]
- Elliott, P.; Eales, O.; Bodinier, B.; Tang, D.; Wang, H.; Jonnerby, J.; Haw, D.; Elliott, J.; Whitaker, M.; Walters, C.E.; et al. Post-Peak Dynamics of a National Omicron SARS-CoV-2 Epidemic during January 2022. medRxiv 2022. [Google Scholar] [CrossRef]
- Regev-Yochay, G.; Gonen, T.; Gilboa, M.; Mandelboim, M.; Indenbaum, V.; Amit, S.; Meltzer, L.; Asraf, K.; Cohen, C.; Fluss, R.; et al. 4th Dose COVID MRNA Vaccines’ Immunogenicity & Efficacy against Omicron VOC. medRxiv 2022. [Google Scholar] [CrossRef]
- Mallon, P.W.G.; Tinago, W.; Leon, A.G.; McCann, K.; Kenny, G.; McGettrick, P.; Green, S.; Inzitari, R.; Cottere, A.G.; Feeney, E.R.; et al. Dynamic Change and Clinical Relevance of Postinfectious SARS-CoV-2 Antibody Responses. Open Forum Infect. Dis. 2021, 8, ofab122. [Google Scholar] [CrossRef] [PubMed]
- Servellita, V.; Syed, A.M.; Brazer, N.; Saldhi, P.; Garcia-Knight, M.; Sreekumar, B.; Khalid, M.M.; Ciling, A.; Chen, P.-Y.; Kumar, G.R.; et al. Neutralizing Immunity in Vaccine Breakthrough Infections from the SARS-CoV-2 Omicron and Delta Variants. Cell 2022, 185, 1539–1548. [Google Scholar] [CrossRef] [PubMed]
Focus Countries and Territories | Introduction of Vaccination | Percentage of People with a Complete Initial Protocol [111] | Booster Doses (per 100 People) [111] | Priority-Use Groups According to National COVID-19 Immunization Plans [112] 1 | |||
---|---|---|---|---|---|---|---|
Highest Priority-Use 2 | High Priority-Use 3 | Medium Priority-Use 4 | Lowest Priority-Use 5 | ||||
Australia | February 2021 [113] | 84% | 53.35 | Phase 1 | Phase 1 and 2 | Phase 2 | Phase 3 |
Hong Kong | February 2021 [114] | 84% | 54.63 6 | n/a | n/a | n/a | n/a |
India | January 2021 [115] | 64% | 2.56 | Phase 1 & 2 | Phase 2 | Phase 3 | Phase 3 |
Indonesia | January 2021 [114] | 61% | 13.55 6 | n/a | n/a | n/a | n/a |
Taiwan | March 2021 [116] | 80% | 66.07 | n/a | n/a | n/a | n/a |
Thailand | February 2021 [114] | 75% | 40.45 | Phase 1 | Phase 2 | Phase 2 & 3 | Phase 3 |
Evidence According to Studies | Is There a Need for Further Studies? | Potential Derived Areas of Use and Policies | |
---|---|---|---|
Previous infection triggers an antibody response similar to immune priming [189,190,191,192,193,194,195,196]. | YES |
|
|
Previous infection might lead to a reduced risk of reinfection in the following six to seven months [192,197,198,199]. | YES |
|
|
Prioritization by antibody status might reduce incidence at a faster rate and can lead to more rapid elimination of infection and return to normalcy [200]. | YES |
|
|
Individuals who have SARS-CoV-2 antibodies are less likely to experience reinfection [191,197,198,199,201,202,203,204,205,206,207,208]. Lower (or absent) SARS-CoV-2 IgG titers and lower levels of neutralizing antibodies may correlate to a higher risk of reinfection [209]. | YES |
|
|
Vaccinated individuals are less contagious than unvaccinated individuals [172,177,191,204,205,206,207,210,211,212,213,214,215,216]. | YES |
|
|
Antibody tests can help identify asymptomatic cases [217]. | YES |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chotpitayasunondh, T.; Fisher, D.A.; Hsueh, P.-R.; Lee, P.-I.; Nogales Crespo, K.; Ruxrungtham, K. Exploring the Role of Serology Testing to Strengthen Vaccination Initiatives and Policies for COVID-19 in Asia Pacific Countries and Territories: A Discussion Paper. Int. J. Transl. Med. 2022, 2, 275-308. https://doi.org/10.3390/ijtm2030024
Chotpitayasunondh T, Fisher DA, Hsueh P-R, Lee P-I, Nogales Crespo K, Ruxrungtham K. Exploring the Role of Serology Testing to Strengthen Vaccination Initiatives and Policies for COVID-19 in Asia Pacific Countries and Territories: A Discussion Paper. International Journal of Translational Medicine. 2022; 2(3):275-308. https://doi.org/10.3390/ijtm2030024
Chicago/Turabian StyleChotpitayasunondh, Tawee, Dale Andrew Fisher, Po-Ren Hsueh, Ping-Ing Lee, Katya Nogales Crespo, and Kiat Ruxrungtham. 2022. "Exploring the Role of Serology Testing to Strengthen Vaccination Initiatives and Policies for COVID-19 in Asia Pacific Countries and Territories: A Discussion Paper" International Journal of Translational Medicine 2, no. 3: 275-308. https://doi.org/10.3390/ijtm2030024
APA StyleChotpitayasunondh, T., Fisher, D. A., Hsueh, P.-R., Lee, P.-I., Nogales Crespo, K., & Ruxrungtham, K. (2022). Exploring the Role of Serology Testing to Strengthen Vaccination Initiatives and Policies for COVID-19 in Asia Pacific Countries and Territories: A Discussion Paper. International Journal of Translational Medicine, 2(3), 275-308. https://doi.org/10.3390/ijtm2030024