Structural Reuse of Decommissioned Ski Lift Steel Trusses for Load-Bearing Applications
Abstract
:1. Introduction
1.1. Context
1.1.1. Implications of the Build Industry on Global Warming
1.1.2. Circular Construction and the Process of Reuse
1.1.3. Reuse of Structural Elements
1.2. Objective
2. Methods and Material
2.1. Methodology
2.2. Sourcing
- All operations have ceased;
- Ownership rights are clear;
- The structures are visually free of structural damage;
- The structures are available and have not been sold to another party;
- The geometry is suitable for future usage;
- The type of connection details are available;
- Their ease of disassembly.
- Hospental drive and tensioning station (valley station);
- Lückli reversing station (mountain station);
- Nine steel truss columns between the top and bottom stations (SLW2-SLW10).
- SLS_1;
- SLS_2: 175.15 m;
- SLS_3: 216.95 m;
- SLS_4: 381.15 m;
- SLS_5: 486.45 m;
- SLS_6: 675.25 m;
- SLS_7: 791.53 m;
- SLS_8: 985.20 m;
- SLS_9: 1111.50 m;
- SLS_10.
2.2.1. Sourcing via Helicopter
2.2.2. Sourcing via Crane
2.3. Truss Details and Quality Inspection
2.4. Design
2.5. Integration in a Load-Bearing System
2.6. Assessment
2.6.1. Load Testing
2.6.2. Fire Safety
2.7. Life Cycle Assessment and Comparison
- A hollow, monolithic reinforced concrete column—790 mm × 790 mm × 12.25 m, with a wall thickness of 140 mm
- A hollow, wooden cross laminated timber (clt) column—750 mm × 750 mm × 12.25 m, with a wall thickness of 120 mm
3. Results
4. Discussion and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Chapter 3: Impacts of 1.5 °C Global Warming on Natural and Human Systems. In Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; IPCC: Geneva, Switzerland, 2018; pp. 175–311. Available online: https://www.ipcc.ch/sr15/ (accessed on 2 August 2024).
- Kohler, T.; Giger, M.; Hurni, H.; Ott, C.; Wiesmann, U.; Wymann von Dach, S.; Maselli, D. Mountains and Climate Change: A Global Concern. Mt. Res. Dev. 2010, 30, 53–55. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021; 2391p. [Google Scholar] [CrossRef]
- Auer, I.; Böhm, R.; Jurkovic, A.; Lipa, W.; Orlik, A.; Potzmann, R.; Schöner, W.; Ungersböck, M.; Matulla, C.; Briffa, K.; et al. HISTALP—Historical Instrumental Climatological Surface Time Series of the Greater Alpine Region. Int. J. Climatol. 2007, 27, 17–46. [Google Scholar] [CrossRef]
- NASA. Global Temperature Anomalies from 1880 to 2020. NASA Goddard Institute for Space Studies (GISS) 2020. Available online: https://data.giss.nasa.gov/gistemp/ (accessed on 2 August 2024).
- Beniston, M.; Farinotti, D.; Stoffel, M.; Andreassen, L.M.; Coppola, E.; Eckert, N.; Fantini, A.; Giacona, F.; Hauck, C.; Huss, M.; et al. The European Mountain Cryosphere: A Review of Its Current State, Trends, and Future Challenges. Cryosphere 2018, 12, 759–794. [Google Scholar] [CrossRef]
- Marty, C.; Meister, R. Long-term Snow and Weather Observations at Weissfluhjoch and Its Relation to Other High-Altitude Observatories in the Alps. Theor. Appl. Climatol. 2012, 110, 573–583. [Google Scholar] [CrossRef]
- Beniston, M. Impacts of Climatic Change on Water and Associated Economic Activities in the Swiss Alps. J. Hydrol. 2010, 412–413, 291–296. [Google Scholar] [CrossRef]
- Marty, C.; Blanchet, J. Long-term Changes in Annual and Seasonal Snowfall in Switzerland Based on Extreme Value Statistics. Clim. Chang. 2012, 111, 705–721. [Google Scholar] [CrossRef]
- Hantel, M.; Hirtl-Wielke, L.M. Sensitivity of Alpine Snow Cover to European Temperature. Int. J. Climatol. 2007, 27, 1265–1275. [Google Scholar] [CrossRef]
- Galichet, J.; Tombez, V. In der Schweiz Rosten 65 Skilifte vor Sich Hin. Swissinfo 2023, 08 November. Available online: https://www.swissinfo.ch/ger/wirtschaft/in-der-schweiz-rosten-65-skilifte-vor-sich-hin/48958340 (accessed on 27 June 2024).
- Beck, C. Ruinen am Berg: Stillgelegte Skilifte Werden Jahrelang Nicht Abgebaut. SRF 2024, 03 January. Available online: https://www.srf.ch/news/schweiz/ruinen-am-berg-stillgelegte-skilifte-werden-jahrelang-nicht-abgebaut (accessed on 27 June 2024).
- International Energy Agency (IEA). Global Status Report for Buildings and Construction 2019. IEA 2019. Available online: https://www.iea.org/reports/global-status-report-for-buildings-and-construction-2019 (accessed on 1 August 2024).
- Graser, J.; Staufer, A.; Meier, C. Chapter Title. In Architektur Klima Atlas: Klimabewusst entwerfen in Forschung, Lehre und Praxis, 1st ed.; Park Books: Zürich, Switzerland, 2024; pp. 1–456. ISBN 978-3-03860-303-0. [Google Scholar]
- United Nations Environment Programme (UNEP). Towards a Zero-Emission, Efficient, and Resilient Buildings and Construction Sector. UNEP 2017. Available online: https://www.unep.org/resources/publication/2022-global-status-report-buildings-and-construction (accessed on 29 July 2024).
- Giesekam, J.; Barrett, J.R.; Taylor, P.; Owen, A. The Greenhouse Gas Emissions and Mitigation Options for Materials Used in UK Construction. Energy Build. 2016, 78, 202–214. [Google Scholar] [CrossRef]
- Kim, J.; Sovacool, B.K.; Bazilian, M.; Griffiths, S.; Lee, J.; Yang, M.; Lee, J. Decarbonizing the Iron and Steel Industry: A Systematic Review of Sociotechnical Systems, Technological Innovations, and Policy Options. Energy Res. Soc. Sci. 2022, 89, 102565. [Google Scholar] [CrossRef]
- World Steel Association. World Steel in Figures 2023. World Steel Association, 2023. Available online: https://worldsteel.org/wp-content/uploads/World-Steel-in-Figures-2023.pdf (accessed on 17 September 2024).
- Kirchherr, J.; Reike, D.; Hekkert, M. Conceptualizing the Circular Economy: An Analysis of 114 Definitions. Resour. Conserv. Recycl. 2017, 127, 221–232. [Google Scholar] [CrossRef]
- Gallego-Schmid, A.; Chen, H.-M.; Sharmina, M.; Mendoza, J.M.F. Links between Circular Economy and Climate Change Mitigation in the Built Environment. J. Clean. Prod. 2020, 260, 121115. [Google Scholar] [CrossRef]
- Chung, D.; Phuong Le, N. Linear or Circular Economy: A Review of Theories, Practices, and Policy Recommendations for Vietnam. Vietnam J. Agric. Sci. 2023, 6, 1832–1845. [Google Scholar] [CrossRef]
- Langenberg, S.; Brandlhuber, A.; Caruso, A.; Thomas, H.; Haerlingen, R.; Boniver, T.; Lehner, F. (Eds.) Upgrade: Making Things Better; Hatje Cantz: Berlin, Germany, 2023; ISBN 978-3-7757-5334-0. [Google Scholar]
- Brütting, J.; Vandervaeren, C.; Senatore, G.; De Temmerman, N.; Fivet, C. Environmental Impact Minimization of Reticular Structures Made of Reused and New Elements through Life Cycle Assessment and Mixed-Integer Linear Programming. Energy Build. 2020, 215, 109827. [Google Scholar] [CrossRef]
- Dunant, C.F.; Drewniok, M.P.; Sansom, M.; Corbey, S.; Allwood, J.M.; Cullen, J.M. Real and Perceived Barriers to Steel Reuse Across the UK Construction Value Chain. Resour. Conserv. Recycl. 2017, 126, 118–131. [Google Scholar] [CrossRef]
- Akinadé, O.; Oyedele, L.; Oyedele, A.; Davila Delgado, M.; Bilal, M.; Akanbi, L.; Ajayi, A.; Owolabi, H. Design for Deconstruction Using a Circular Economy Approach: Barriers and Strategies for Improvement. Prod. Plan. Control 2019, 31, 829–840. [Google Scholar] [CrossRef]
- Davison, J.; Densley Tingley, D. Design for Deconstruction and Material Reuse. Energy 2011, 164, 195–204. [Google Scholar] [CrossRef]
- Kalyun, M.; Wodajo, T. Application of a Design Method for Manufacture and Assembly: Flexible Assembly Methods and Their Evaluation for the Construction of Bridges; Chalmers University of Technology: Gothenburg, Sweden, 2012; p. 29. [Google Scholar]
- Pfäffli, K. Graue Energie und Treibhausgasemissionen von wiederverwendeten Bauteilen: Methodik und Berechnung. Fachstelle Nachhaltiges Bauen Stadt Zürich, Januar 2022. Available online: https://www.stadt-zuerich.ch/hbd/de/index/hochbau/bauen-fuer-2000-watt/grundlagen-studienergebnisse/2022-01-nb-Graue-Energie-Bauteile.html (accessed on 27 June 2024).
- Addis, B. Building with Reclaimed Components and Materials: A Design Handbook for Reuse and Recycling; Earthscan: London, UK, 2006. [Google Scholar] [CrossRef]
- Meier, H.-R. Spolien: Phänomene der Wiederverwendung in der Architektur; Jovis Verlag: Berlin, Germany, 2020. [Google Scholar]
- Deichmann, F.W. Die Spolien in der spätantiken Architektur; Verlag der Bayerischen Akademie der Wissenschaften: Munich, Germany, 1975; ISBN 3-7696-1473-9. [Google Scholar]
- Langenberg, S. Von konventionell bis rationell. Zur Bautechnik der Neuen Heimat. In Die Neue Heimat (1950–1982); Strobl, H., Lepik, A., Eds.; Birkhäuser: Basel, Switzerland, 2019; pp. 56–74. [Google Scholar] [CrossRef]
- Densley Tingley, D.; Cooper, S.; Cullen, J. Understanding and Overcoming the Barriers to Structural Steel Reuse, a UK Perspective. J. Clean. Prod. 2017, 148, 642–652. [Google Scholar] [CrossRef]
- Norouzi, M.; Chàfer, M.; Cabeza, L.F.; Jiménez, L.; Boer, D. Circular Economy in the Building and Construction Sector: A Scientific Evolution Analysis. J. Build. Eng. 2021, 44, 102704. [Google Scholar] [CrossRef]
- Brown, D.; Pimentel, R.; Sansom, M. Structural Steel Reuse: Assessment, Testing and Design Principles; Steel Construction Institute: London, UK, 2019; p. 427. ISBN 9781859422434. [Google Scholar]
- Coelho, A.; Pimentel, R.; Ungureanu, V.; Hradil, P.; Kesti, J. European Recommendations for Reuse of Steel Products in Single-Storey Buildings; ECCS—European Convention for Constructional Steelwork: Brussels, Belgium, 2020. [Google Scholar]
- Fujita, M.; Masuda, T. Application of Various NDT Methods for the Evaluation of Building Steel Structures for Reuse. Materials 2014, 7, 7130–7144. [Google Scholar] [CrossRef]
- Technische Kommission SZS. Steel Aid: Re-Use: Wiederverwendung von Stahlbauteilen; Stahlbau Zentrum Schweiz: Zürich, Switzerland, 2022; Available online: https://szs.ch/wp-content/uploads/DE_steelaid_Re-Use.pdf (accessed on 20 September 2024).
- Brütting, J.; Desruelle, J.; Senatore, G.; Fivet, C. Design of Truss Structures through Reuse. Structures 2019, 18, 128–137. [Google Scholar] [CrossRef]
- Brütting, J. Optimum Design of Low Environmental Impact Structures through Component Reuse. Ph.D. Thesis, Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland, 2020. [Google Scholar] [CrossRef]
- Brütting, J.; Senatore, G.; Fivet, C. Design and Fabrication of a Reusable Kit of Parts for Diverse Structures. Autom. Constr. 2021, 125, 103614. [Google Scholar] [CrossRef]
- Stricker, E.; Angst, M.; Brandi, G.; Buser, B.; Sonderegger, A. Case Study K.118—The Reuse of Building Components in Winterthur, Switzerland. J. Phys. Conf. Ser. 2023, 2600, 192008. [Google Scholar] [CrossRef]
- Gorgolewski, M. Resource Salvation: The Architecture of Reuse; Wiley Blackwell: Hoboken, NJ, USA, 2018; ISBN 978-1-118-92877-6. [Google Scholar]
- Single Speed Design. Big Dig House. ArchDaily. 2008. Available online: https://www.archdaily.com/24396/big-dig-house-single-speed-design (accessed on 27 June 2024).
- Kanyilmaz, A.; Birhane, M.; Fishwick, R.; del Castillo, C. Reuse of Steel in the Construction Industry: Challenges and Opportunities. Int. J. Steel Struct. 2023, 23, 1399–1416. [Google Scholar] [CrossRef]
- Liew, J.Y.R.; Xiong, M.; Lai, B. Introduction. In Design of Steel-Concrete Composite Structures Using High-Strength Materials; Liew, J.Y.R., Xiong, M., Lai, B., Eds.; Woodhead Publishing Series in Civil and Structural Engineering; Woodhead Publishing: Sawston, UK, 2021; pp. 1–12. ISBN 9780128233962. [Google Scholar] [CrossRef]
- Mathew, S.; Narayanan, N.I. Concrete Encased Steel Composite Columns: A Review. In Proceedings of the International Conference on Systems, Energy & Environment (ICSEE) 2021, Kannur, Kerala, India, 22–23 January 2021. [Google Scholar] [CrossRef]
- Vigneri, V.; Lu, F.; Chamberlain, I.; Taras, A. Material Tests and Numerical Investigations on Composite Steel and Cement-Free Concrete Systems in Fire. In Proceedings of the IFireSS 2023, Rio de Janeiro, Brazil, 21–23 June 2023. [Google Scholar]
- Ellen MacArthur Foundation. Towards the Circular Economy. Ellen MacArthur Found. 2013, 1, 23. [Google Scholar]
- Brütting, J.; Senatore, G.; Fivet, C. Form Follows Availability: Designing Structures through Reuse. J. Int. Assoc. Shell Spat. Struct. 2019, 60, 255–263. [Google Scholar] [CrossRef]
- European Environment Agency. Life Cycle Assessment (LCA). EEA Gloss. 2023. Available online: https://www.eea.europa.eu/help/glossary/eea-glossary/life-cycle-assessment (accessed on 27 June 2024).
- Yeung, J.; Walbridge, S.; Haas, C.; Saari, R. Understanding the Total Life Cycle Cost Implications of Reusing Structural Steel. Environ. Syst. Decis. 2017, 37, 101–120. [Google Scholar] [CrossRef]
- Küpfer, C.; Bertola, N.; Brütting, J.; Fivet, C. Decision Framework to Balance Environmental, Technical, Logistical, and Economic Criteria When Designing Structures with Reused Components. Front. Sustain. 2021, 2, 689877. [Google Scholar] [CrossRef]
- Joensuu, T.; Leino, R.; Heinonen, J.; Saari, A. Developing Buildings’ Life Cycle Assessment in Circular Economy—Comparing Methods for Assessing Carbon Footprint of Reusable Components. Sustain. Cities Soc. 2022, 77, 103499. [Google Scholar] [CrossRef]
- Swiss Association for Standardization (SNV). Sustainability of construction works—Environmental product declarations—Core rules for the product category of construction products (SN EN 15804:2012+A2:2019). 2012. Available online: https://www.snv.ch/en/standards (accessed on 20 September 2024).
- Ekvall, T.; Tillman, A.M. Open-Loop Recycling: Criteria for Allocation Procedures. Int. J. Life Cycle Assess. 1997, 2, 155–162. [Google Scholar] [CrossRef]
- Schrijvers, D.L.; Loubet, P.; Sonnemann, G. Developing a Systematic Framework for Consistent Allocation in LCA. Int. J. Life Cycle Assess. 2016, 21, 976–993. [Google Scholar] [CrossRef]
- De Wolf, C.; Hoxha, E.; Fivet, C. Comparison of Environmental Assessment Methods When Reusing Building Components: A Case Study. Sustain. Cities Soc. 2020, 61, 102322. [Google Scholar] [CrossRef]
- KBOB. Ökobilanzdaten im Baubereich 2009/1:2022 v5.0 [Life Cycle Assessment Data in the Construction Sector 2009/1:2022]. Bern 2022. Available online: https://www.kbob.admin.ch/kbob/de/home/die-kbob/plattform-oekobilanzdaten-im-baubereich.html (accessed on 8 August 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiesel, A.; Brandi, G.; Schlatter, J.; Gerber, A.; Langenberg, S. Structural Reuse of Decommissioned Ski Lift Steel Trusses for Load-Bearing Applications. Architecture 2024, 4, 835-853. https://doi.org/10.3390/architecture4040044
Kiesel A, Brandi G, Schlatter J, Gerber A, Langenberg S. Structural Reuse of Decommissioned Ski Lift Steel Trusses for Load-Bearing Applications. Architecture. 2024; 4(4):835-853. https://doi.org/10.3390/architecture4040044
Chicago/Turabian StyleKiesel, Adrian, Guido Brandi, Jael Schlatter, Andri Gerber, and Silke Langenberg. 2024. "Structural Reuse of Decommissioned Ski Lift Steel Trusses for Load-Bearing Applications" Architecture 4, no. 4: 835-853. https://doi.org/10.3390/architecture4040044