Building a Greener Future: How Earth Blocks Are Reshaping Sustainability and Circular Economy in Construction
Abstract
:1. Introduction
1.1. Earth Blocks in Sustainable Construction
1.2. Sustainability Benefits
1.3. Earth Blocks and the Circular Economy (CE)
2. Materials and Methods
Methodology of Bibliometric Analysis
3. Results
3.1. Publication Trends over Time
3.2. Geographical Distribution of Research
3.3. Most Influential Publications and Authors
3.4. Co-Authorship and Collaboration Networks
3.5. Keyword Co-Occurrence and Emerging Themes
3.6. Emerging Themes Identified Through the Keyword Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CE | circular economy |
CI | construction industry |
CSEBs | compressed stabilized earth blocks/bricks |
References
- Asif, M. Buildings for Energy and Environmental Sustainability; CRC Press: Boca Raton, FL, USA, 2024. [Google Scholar] [CrossRef]
- Pennacchia, E.; Gugliermetti, L.; Di Matteo, U.; Cumo, F. New millennium construction sites: An integrated methodology for the sustainability assessment. Vitruvio 2023, 8, 102–115. [Google Scholar] [CrossRef]
- Hajian, M.; Kashani, S.J. Evolution of the concept of sustainability. From Brundtland Report to sustainable development goals. Sustain. Resour. Manag. Mod. Approaches Contexts 2021, 2021, 1–24. [Google Scholar] [CrossRef]
- Ayarkwa, J.; Opoku, D.G.J.; Antwi-Afari, P.; Li, R.Y.M. Sustainable building processes’ challenges and strategies: The relative important index approach. Clean. Eng. Technol. 2022, 7, 100455. [Google Scholar] [CrossRef]
- Sangmesh, B.; Patil, N.; Jaiswal, K.K.; Gowrishankar, T.P.; Selvakumar, K.K.; Jyothi, M.S.; Jyothilakshmi, R.; Kumar, S. Development of sustainable alternative materials for the construction of green buildings using agricultural residues: A review. Constr. Build. Mater. 2023, 368, 130457. [Google Scholar] [CrossRef]
- Abera, Y.A. Sustainable building materials: A comprehensive study on eco-friendly alternatives for construction. Compos. Adv. Mater. 2024, 33, 1–17. [Google Scholar] [CrossRef]
- Valenzuela, M.; Ciudad, G.; Cárdenas, J.P.; Medina, C.; Salas, A.; Oñate, A.; Pincheira, G.; Attia, S.; Tuninetti, V. Towards the development of performance-efficient compressed earth blocks from industrial and agro-industrial by-products. Renew. Sustain. Energy Rev. 2024, 194, 114323. [Google Scholar] [CrossRef]
- Bredenoord, J.; Kulshreshtha, Y. Compressed Stabilized Earthen Blocks and Their Use in Low-Cost Social Housing. Sustainability 2023, 15, 5295. [Google Scholar] [CrossRef]
- Raj, A.; Sharma, T.; Singh, S.; Sharma, U.; Sharma, P.; Singh, R.; Sharma, S.; Kaur, J.; Kaur, H.; Salah, B.; et al. Building a Sustainable Future from Theory to Practice: A Comprehensive PRISMA-Guided Assessment of Compressed Stabilized Earth Blocks (CSEB) for Construction Applications. Sustainability 2023, 15, 9374. [Google Scholar] [CrossRef]
- Fernandes, J.; Peixoto, M.; Mateus, R.; Gervásio, H. Life cycle analysis of environmental impacts of earthen materials in the Portuguese context: Rammed earth and compressed earth blocks. J. Clean. Prod. 2019, 241, 118286. [Google Scholar] [CrossRef]
- Turco, C.; Abedi, M.; Teixeira, E.; Mateus, R. Thermophysical Properties of Compressed Earth Blocks Incorporating Natural Materials. Energies 2024, 17, 2070. [Google Scholar] [CrossRef]
- Malkanthi, S.N.; Balthazaar, N.; Perera, A.A.D.A.J. Lime stabilization for compressed stabilized earth blocks with reduced clay and silt. Case Stud. Constr. Mater. 2020, 12, e00326. [Google Scholar] [CrossRef]
- Chaibeddra, S.; Kharchi, F. Performance of Compressed Stabilized Earth Blocks in sulphated medium. J. Build. Eng. 2019, 25, 100814. [Google Scholar] [CrossRef]
- Sapna, A.P.A.; Anbalagan, C. Sustainable Eco-Friendly Building Material—A Review Towards Compressed Stabilized Earth Blocks and Fire Burnt Clay Bricks. IOP Conf. Ser. Earth Environ. Sci. 2023, 1210, 012023. [Google Scholar] [CrossRef]
- Asman, N.S.A.; Bolong, N.; Mirasa, A.K.; Asrah, H.; Saad, I. Interlocking compressed earth bricks as low carbon footprint building material. IOP Conf. Ser. Earth Environ. Sci. 2020, 476, 012086. [Google Scholar] [CrossRef]
- Bailly, G.C.; El Mendili, Y.; Konin, A.; Khoury, E. Advancing Earth-Based Construction: A Comprehensive Review of Stabilization and Reinforcement Techniques for Adobe and Compressed Earth Blocks. Eng 2024, 5, 750–783. [Google Scholar] [CrossRef]
- Islam, M.S.; Islam, M.A.; Shahriar, A.R. Construction of Earthen Houses Using CSEB: Bangladesh Perspective. Rainwater Harvesting View Project Development of Earthquake Resistant Adobe Structures Using Fiber Reinforced Plaster and Fiber String View Project. 2016. Available online: https://www.researchgate.net/publication/311925465 (accessed on 18 September 2024).
- Easton, D.; Easton, T. Modern rammed earth construction techniques, Modern Earth Buildings: Materials, Engineering. Constr. Appl. 2012, 2012, 364–384. [Google Scholar] [CrossRef]
- Burroughs, S. Recommendations for the selection, stabilization, and compaction of soil for rammed earth wall construction. J. Green Build. 2010, 5, 101–114. [Google Scholar] [CrossRef]
- Adegun, O.B.; Adedeji, Y.M.D. Review of economic and environmental benefits of earthen materials for housing in Africa. Front. Archit. Res. 2017, 6, 519–528. [Google Scholar] [CrossRef]
- Ukwatta, A.; Mohajerani, A.; Setunge, S.; Eshtiaghi, N. A study of gas emissions during the firing process from bricks incorporating biosolids. Waste Manag. 2018, 74, 413–426. [Google Scholar] [CrossRef]
- Bashir, Z.; Amjad, M.; Raza, S.F.; Ahmad, S.; Abdollahian, M.; Farooq, M. Investigating the Impact of Shifting the Brick Kiln Industry from Conventional to Zigzag Technology for a Sustainable Environment. Sustainability 2023, 15, 8291. [Google Scholar] [CrossRef]
- Unni, A.; Anjali, G. Evaluation of Conventional Red Bricks with Compressed Stabilized Earth Blocks as Alternate Sustainable Building Materials in Indian Context. In Proceedings of the International Conference on Innovative Technologies for Clean and Sustainable Development (ICITCSD—2021); Springer International Publishing: Berlin/Heidelberg, Germany, 2022; pp. 253–266. [Google Scholar] [CrossRef]
- Verma, A.; Panchal, H.; Mishra, H.; Parihar, A.; Pagare, M.; Tripathi, A. Comparative Analysis of CSEB, Burnt Clay Brick & Mycelium Bricks. Int. Res. J. Mod. Eng. Technol. Sci. 2023, 5, 1721–1735. [Google Scholar]
- Latha, A.T.; Murugesan, B.; Thomas, B.S. Compressed earth block reinforced with sisal fiber and stabilized with cement: Manual compaction procedure and influence of addition on mechanical properties. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Ho, O.; Iyer-Raniga, U.; Sadykova, C.; Balasooriya, M.; Sylva, K.; Dissanayaka, M.; Sukwanchai, K.; Pal, I.; Bhatia, A.; Jain, D.; et al. A conceptual model for integrating circular economy in the built environment: An analysis of literature and local-based case studies. J. Clean. Prod. 2024, 449, 141516. [Google Scholar] [CrossRef]
- Latha, A.T.; Murugesan, B.; Thomas, B.S. Compressed Stabilized Earth Block Incorporating Municipal Solid Waste Incinerator Bottom Ash as a Partial Replacement for Fine Aggregates. Buildings 2023, 13, 1114. [Google Scholar] [CrossRef]
- Mohamed, T.; Hajar, A.; Hassan, E.; M’bark, F. Thermal, mechanical and physical behavior of compressed earth blocks loads by natural wastes. Int. J. Civ. Eng. Technol. 2018, 9, 1353–1368. [Google Scholar]
- Balaji, N.C.; Mani, M.; Reddy, B.V.V. Thermal conductivity studies on cement-stabilised soil blocks. Proc. Inst. Civ. Eng. Constr. Mater. 2017, 170, 40–54. [Google Scholar] [CrossRef]
- Sinha, S.; Sudarsan, J.S. Net-Zero Development in Educational Campuses—A Case Study of Nalanda University Campus at Rajgir. Lect. Notes Civ. Eng. 2024, 451, 261–274. [Google Scholar] [CrossRef]
- Turco, C.; Junior, A.C.P.; Teixeira, E.R.; Mateus, R. Optimisation of Compressed Earth Blocks (CEBs) using natural origin materials: A systematic literature review. Constr. Build. Mater. 2021, 309, 125140. [Google Scholar] [CrossRef]
- Abinaya, T.L.; Balasubramanian, M. A Circular Economy in Waste Management Carrying Out Experimental Evaluation Of Compressed Stabilized Earth Block Using Municipal Solid Waste Incinerator Fly Ash. J. Eng. Res. 2022, 9. [Google Scholar] [CrossRef]
- Mohamad, N.; Muthusamy, K.; Embong, R.; Kusbiantoro, A.; Hashim, M.H. Environmental impact of cement production and Solutions: A review. Mater. Today Proc. 2022, 48, 741–746. [Google Scholar] [CrossRef]
- Mishra, S. Utilization of Earth Technologies for Socio-Economy Upliftment. SSRG Int. J. Civ. Eng. 2015, 2, 1–6. Available online: www.internationaljournalssrg.org (accessed on 18 September 2024). [CrossRef]
- Eoe, N. Cost-Benefit Analysis of Using Stabilized-Earth Block to Conventional Block Use in Housing Construction. Iconic Res. Eng. J. 2022, 5, 341–348. [Google Scholar]
- Camilleri, M.A. Closing the loop for resource efficiency, sustainable consumption and production: A critical review of the circular economy. Int. J. Sustain. Dev. 2018, 21, 1–17. [Google Scholar] [CrossRef]
- Pelicaen, E.; Passarelli, R.N.; Knapen, E. Reclaiming earth blocks using various techniques. IOP Conf. Ser. Earth Environ. Sci. 2024, 1363, 012100. [Google Scholar] [CrossRef]
- Hafez, H.; El-Mahdy, D.; Marsh, A.T.M. Barriers and enablers for scaled-up adoption of compressed earth blocks in Egypt. Build. Res. Inf. 2023, 51, 783–797. [Google Scholar] [CrossRef]
- Junior, A.C.P.; Teixeira, E.; Mateus, R. Improving the mechanical, thermal and durability properties of compressed earth blocks by incorporating industrial waste and by-products: A systematic literature review. Constr. Build. Mater. 2024, 438, 137063. [Google Scholar] [CrossRef]
- Yamadjako, M.J.; Abuodha, S.; Gathimba, N. Physicomechanical and Durability Properties of Compressed Earth Blocks Stabilized with Grewia Bicolour Bark Powder and Cement. SSRG Int. J. Civ. Eng. 2024, 11, 56–66. [Google Scholar] [CrossRef]
- Asha, S.A.P.; Anbalagan, C. Constructions in India for Sustainable Built Environment Based on Compressed Stabilized Earth Blocks (CSEB) Case Studies. Proc. Eng. Sci. 2024, 6, 1021–1030. [Google Scholar] [CrossRef]
- Wakil, M.; El Mghari, H.; Kaitouni, S.I.; El Amraoui, R. Thermal energy performance of compressed earth building in two different cities in Moroccan semi-arid climate. Energy Built Environ. 2024, 5, 800–816. [Google Scholar] [CrossRef]
- Ebanda, F.B.; Mewoli, A.E.; Njom, A.E.; Kibong, M.T.; Noah, P.M.A.; Ndiwé, B.; Ndengue, M.J.; Otiti, S.O.B.; Meva’a, J.R.L.; Ateba, A. Towards sustainable construction in Cameroon: Impact of tropical plant fibers on the performance of compressed earth bricks. Innov. Infrastruct. Solut. 2024, 9, 476. [Google Scholar] [CrossRef]
- Latha, A.T.; Murugesan, B. Compressed stabilised earth block synergistically valorising municipal solid waste incinerator bottom ash and sisal fiber: Strength, durability and life cycle analysis. Constr. Build. Mater. 2024, 441, 137514. [Google Scholar] [CrossRef]
- Kaboré, A.; Maref, W.; Ouellet-Plamondon, C.M. Hygrothermal Performance of the Hemp Concrete Building Envelope. Energies 2024, 17, 1740. [Google Scholar] [CrossRef]
- Amede, E.A.; Aklilu, G.G.; Kidane, H.W.; Dalbiso, A.D. Examining the viability and benefits of cement-stabilized rammed earth as an affordable and durable walling material in Addis Ababa, Ethiopia. Cogent Eng. 2024, 11, 2318249. [Google Scholar] [CrossRef]
- Ma, J.; Abdelaal, A.; Zhang, H.; Zhou, A.; Fu, Y.; Xie, Y.M. Ultra-compressed earth block stabilized by bio-binder for sustainable building construction. Case Stud. Constr. Mater. 2024, 21, e03523. [Google Scholar] [CrossRef]
- Gurupatham, S.V.; Jayasinghe, C.; Perera, P.; Lepakshi, R. Building material selection framework for tropical climatic conditions: Eco-design-based approach. Green Technol. Sustain. 2024, 2, 100103. [Google Scholar] [CrossRef]
- Villadiego-Osorio, A.A.; Espinosa, D.; Sanchez, J.; Chadid-Garcia, L.; Lalinde, L.F.; Camargo-Trillos, D. Reinforcement of Compressed Stabilized Earth Blocks with Biochar Resulting from Use of Agro-Industrial Waste. J. Green Build. 2024, 19, 29–46. [Google Scholar] [CrossRef]
- Paul, S.; Islam, M.S.; Chakma, N. Effectiveness of areca fiber and cement on the engineering characteristics of compressed stabilized earth blocks. Constr. Build. Mater. 2024, 427, 136290. [Google Scholar] [CrossRef]
- Sadouri, R.; Kebir, H.; Benyoucef, M. The Effect of Incorporating Juncus Fibers on the Properties of Compressed Earth Blocks Stabilized with Portland Cement. Appl. Sci. 2024, 14, 815. [Google Scholar] [CrossRef]
- Real, S.; Bogas, J.A.; Cruz, R.; Gomes, M.G. Eco-recycled cement’s effect on the microstructure and hygroscopic behaviour of compressed stabilised earth blocks. J. Build. Eng. 2024, 95, 110227. [Google Scholar] [CrossRef]
- Rengifo-López, E.L.; Kumar, N.; Matta, F.; Barbato, M. Homogeneity and Isotropy of Compressed and Stabilized Earth Block Material: Mechanical Characterization and Statistical Analysis. J. Mater. Civ. Eng. 2024, 36, 04024303. [Google Scholar] [CrossRef]
- Messara, K.; Djadouf, S.; Chelouah, N. Properties and durability of compressed and stabilized earth blocks using excavated soil rich in limestone. Mater. Tech. 2024, 112, 107. [Google Scholar] [CrossRef]
- López-Rebollo, J.; Cárdenas-Haro, X.; Parra-Vargas, J.P.; Narváez-Berrezueta, K.; Pino, J. Improvement of Mechanical Properties of Compressed Earth Blocks with Stabilising Additives for Self-Build of Sustainable Housing. Buildings 2024, 14, 664. [Google Scholar] [CrossRef]
- Rochanavibhata, U.; Kruesen, K.; Poorahong, H.; Jongpradist, P.; Jamsawang, P. Suitability of using cemented gravel and clay blocks reinforced with steel fiber as compressed stabilized earth blocks. Constr. Build. Mater. 2024, 444, 137808. [Google Scholar] [CrossRef]
- Paul, S.; Islam, M.S.; Elahi, T.E. Potential of waste rice husk ash and cement in making compressed stabilized earth blocks: Strength, durability and life cycle assessment. J. Build. Eng. 2023, 73, 106727. [Google Scholar] [CrossRef]
- Paul, S.; Islam, M.S.; Hossain, M.I. Suitability of Vetiver straw fibers in improving the engineering characteristics of compressed earth blocks. Constr. Build. Mater. 2023, 409, 134224. [Google Scholar] [CrossRef]
- Elavarasan, S.; Priya, A.K.; Elango, K.S.; Shahithya, S. A review on addition of egg shell powder to CSEB blocks. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Tegegne, D.; Abera, M.; Alemayehu, E. Selection of Sustainable Building Material Using Multicriteria Decision-Making Model: A Case of Masonry Work in Lideta Subcity, Addis Ababa. Adv. Civ. Eng. 2023, 2023, 9729169. [Google Scholar] [CrossRef]
- Sathiparan, N.; Anburuvel, A.; Selvam, V.V.; Vithurshan, P.A. Potential use of groundnut shell ash in sustainable stabilized earth blocks. Constr. Build. Mater. 2023, 393, 132058. [Google Scholar] [CrossRef]
- Mouih, K.; Hakkou, R.; Taha, Y.; Benzaazoua, M. Performances of compressed stabilized bricks using phosphate waste rock for sustainable construction. Constr. Build. Mater. 2023, 388, 131577. [Google Scholar] [CrossRef]
- Labiad, Y.; Meddah, A.; Beddar, M. Performance of sisal fiber-reinforced cement-stabilized compressed-earth blocks incorporating recycled brick waste. Innov. Infrastruct. Solut. 2023, 8, 107. [Google Scholar] [CrossRef]
- Akhzeroun, A.; Semcha, A.; Bezazi, A.; Boumediri, H.; Reis, P.N.B.; Scarpa, F. Development and characterization of a new sustainable composite reinforced with date palm stems for rehabilitation and reconstruction of earthen built heritage. Compos. Struct. 2023, 316, 117015. [Google Scholar] [CrossRef]
- Chraibi, H.; El Abbassi, F.-E.; Sakami, S.; Bouferra, R.; Kchikach, A. Thermal improvement of compressed earth blocks by using liquid and solid olive oil wastes in the region of Marrakesh, Morocco. EuroMediterr J. Environ. Integr. 2023, 8, 935–948. [Google Scholar] [CrossRef]
- Assoumou, S.S.B.B.O.; Zhu, L.; Deng, C.F. A Conceptual Framework for Achieving Sustainable Building Through Compressed Earth Block: A Case of Ouagadougou, Burkina Faso. Circ. Econ. Sustain. 2023, 3, 1029–1043. [Google Scholar] [CrossRef]
- Olumodeji, A.O.; Ayodele, F.O.; Oluborode, K.D. Evaluation of compressive strength and abrasive properties of rice husk ash—Cement compressed stabilized earth bricks. Niger. J. Technol. 2023, 42, 191–198. [Google Scholar] [CrossRef]
- Aninda, S.S.; Islam, M.S. Effectiveness of waste concrete powder in fabricating compressed stabilized earth blocks: Strength, durability and thermal assessment. J. Build. Eng. 2023, 80, 107989. [Google Scholar] [CrossRef]
- Lakys, R.E.; Saad, A.; Ahmed, T.; Yassin, M.H. Investigating the drivers and acceptance of sustainable materials in Kuwait: A case study of CEB. Case Stud. Constr. Mater. 2022, 17, e01330. [Google Scholar] [CrossRef]
- Brahim, M.; Ndiaye, K.; Aggoun, S.; Maherzi, W. Valorization of Dredged Sediments in Manufacturing Compressed Earth Blocks Stabilized by Alkali-Activated Fly Ash Binder. Buildings 2022, 12, 419. [Google Scholar] [CrossRef]
- Dorado, P.; Cabrera, S.; Rolón, G. Contemporary difficulties and challenges for the implementation and development of compressed earth block building technology in Argentina. J. Build. Eng. 2022, 46, 103748. [Google Scholar] [CrossRef]
- Briga-Sá, A.; Silva, R.A.; Gaibor, N.; Neiva, V.; Leitão, D.; Miranda, T. Mechanical Characterization of Masonry Built with iCEBs of Granite Residual Soils with Cement–Lime Stabilization. Buildings 2022, 12, 1419. [Google Scholar] [CrossRef]
- Fahmy, M.; Elwy, I.; Mahmoud, S. Back from parcel planning to future heritage of urban courtyard: The 5th generation of Egyptian cities as a sustainable design manifesto for neo-arid neighbourhoods. Sustain. Cities Soc. 2022, 87, 104155. [Google Scholar] [CrossRef]
- Cunha, S.; Campos, A.; Aguiar, J.; Martins, F. Compacted Earth Blocks Additivated with Phase Change Material | Blocos de Terra Compactada aditivados com Material de Mudança de Fase. Rev. Mater. 2022, 27, e13221. [Google Scholar] [CrossRef]
- Fahmy, M.; Elwy, I.; Elshelfa, M.; Abdelkhalik, H.; Abdelalim, M.; Mahmoud, S. Energy efficiency and de-carbonization improvements using court-yarded clustered housing with Compressed Earth Blocks’ envelope. Energy Rep. 2022, 8, 365–371. [Google Scholar] [CrossRef]
- Saad, A.S.; Ahmed, T.A.; Yassin, M.H.; Radwan, A.I.; Ezzedine, A.I. Out-of-Plane Structural Performance of Compressed Earth Block Walls Subject to Quasistatic Loading. Adv. Civ. Eng. Mater. 2022, 11, 33–46. [Google Scholar] [CrossRef]
- Al-Jabri, K.; Hago, A.W.; Al-Saadi, S.; Amoatey, P.; Al-Harthy, I. Structural and thermal performance of sustainable interlocking compressed earth blocks masonry units made with produced water from oilfields. Case Stud. Constr. Mater. 2022, 17, e01186. [Google Scholar] [CrossRef]
- Gomes, A.C.F.; Cordeiro, C.C.M.; Callejas, I.J.A.; Rocha, S.D.F. Thermal characterization of soil-cement bricks using mining tailings. REM—Int. Eng. J. 2022, 75, 19–26. [Google Scholar] [CrossRef]
- Cunha, S.; Campos, A.; Aguiar, J.; Martins, F. A Study of Phase Change Material (PCM) on the Physical and Mechanical Properties of Compressed Earth Bricks (CEBs). Malays. Constr. Res. J. 2022, 38, 1–19. [Google Scholar]
- Jaramillo, H.Y.; Castrillón, S.A.S.; Camperos, J.A.G. Mechanical Properties of an Earth Block Compressed with Cementitious Material. Civ. Eng. Archit. 2022, 10, 2858–2865. [Google Scholar] [CrossRef]
- Rivera, J.; Coelho, J.; Silva, R.; Miranda, T.; Castro, F.; Cristelo, N. Compressed earth blocks stabilized with glass waste and fly ash activated with a recycled alkaline cleaning solution. J. Clean. Prod. 2021, 284, 124783. [Google Scholar] [CrossRef]
- Joseph, P. Brick: Sustainability through policy. Urban Res. Pract. 2021, 14, 201–211. [Google Scholar] [CrossRef]
- Elahi, T.E.; Shahriar, A.R.; Islam, M.S. Engineering characteristics of compressed earth blocks stabilized with cement and fly ash. Constr. Build. Mater. 2021, 277, 122367. [Google Scholar] [CrossRef]
- Poorveekan, K.; Ath, K.M.S.; Anburuvel, A.; Sathiparan, N. Investigation of the engineering properties of cementless stabilized earth blocks with alkali-activated eggshell and rice husk ash as a binder. Constr. Build. Mater. 2021, 277, 122371. [Google Scholar] [CrossRef]
- Anchondo-Perez, J.I.; Suarez-Dominguez, E.J.; Perez-Sanchez, J.F.; Varela-Tovar, M.A. Analysis of the mechanical properties of concrete mix added with water lily ash (Eichornnia crassipes). Civ. Eng. Archit. 2021, 9, 1389–1394. [Google Scholar] [CrossRef]
- Bhaskar, S.V.; Prasad, K.N. Strength development in compressed earth blocks-hyperbolic modeling. Mason. Int. 2021, 34, 3–12. [Google Scholar]
- Romero, A.B.C.; Francisca, F.M.; Giomi, I. Hygrothermal properties of soil–cement construction materials. Constr. Build. Mater. 2021, 313, 125518. [Google Scholar] [CrossRef]
- Egenti, C.; Khatib, J. Affordable and sustainable housing in Rwanda. Sustainability 2021, 13, 4188. [Google Scholar] [CrossRef]
- Hanafi, W.H.H. Compressed stabilized earth block: Environmentally sustainable alternative for villages housing. J. Eng. Appl. Sci. 2021, 68, 14. [Google Scholar] [CrossRef]
- Zakham, N.; Ammari, A.; El Rhaffari, Y.; Cherraj, M.; Bouabid, H.; Gueraoui, K.; Samaouali, A. The effect of cement content on the thermo-mechanical performance of compressed earth block. Int. Rev. Civ. Eng. 2020, 11, 283–293. [Google Scholar] [CrossRef]
- Islam, M.S.; Elahi, T.E.; Shahriar, A.R.; Mumtaz, N. Effectiveness of fly ash and cement for compressed stabilized earth block construction. Constr. Build. Mater. 2020, 255, 119392. [Google Scholar] [CrossRef]
- Djadouf, S.; Chelouah, N.; Tahakourt, A. The influence of the addition of ground olive stone on the thermo-mechanical behavior of compressed earth blocks. Mater. Tech. 2020, 108, 203. [Google Scholar] [CrossRef]
- Barbero-Barrera, M.M.; Jové-Sandoval, F.; Iglesias, S.G. Assessment of the effect of natural hydraulic lime on the stabilisation of compressed earth blocks. Constr. Build. Mater. 2020, 260, 119877. [Google Scholar] [CrossRef]
- Di Gregorio, L.; Guimarães, G.; Tenório, M.; Lima, D.; Haddad, A.; Danziger, F.; Jannuzzi, G.; Santos, S.; Lima, S. The potential of CEB reinforced masonry technology for (re)construction in the context of disasters. Materials 2020, 13, 3861. [Google Scholar] [CrossRef] [PubMed]
- Menon, J.; Ravikumar, M.S. Evaluation of laterite soil stabilized using polymer sack fibers. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 682–685. [Google Scholar]
- Miloudi, Y.; Fezzioui, N.; Labbaci, B.; Benidir, A.; Roulet, C.A.; Oumeziane, Y.A. Hygrothermal characterization of compressed and cement stabilized earth blocks. Int. Rev. Civ. Eng. 2019, 10, 177–187. [Google Scholar] [CrossRef]
- Bradley, R.A.; Gohnert, M. Compressed Stabilized Earth Block Shell Housing: Performance Considerations. Pract. Period. Struct. Des. Constr. 2018, 23, 04018009. [Google Scholar] [CrossRef]
- Ruiz, G.; Zhang, X.; Edris, W.F.; Cañas, I.; Garijo, L. A comprehensive study of mechanical properties of compressed earth blocks. Constr. Build. Mater. 2018, 176, 566–572. [Google Scholar] [CrossRef]
- Touré, P.M.; Sambou, V.; Faye, M.; Thiam, A.; Adj, M.; Azilinon, D. Mechanical and hygrothermal properties of compressed stabilized earth bricks (CSEB). J. Build. Eng. 2017, 13, 266–271. [Google Scholar] [CrossRef]
- Zelaya, J.R.; Ochoa, J.C.; Arias, Y.P. The use of colombian palm oil fuel ash in alkali activated cement compressed stabilized earth blocks. Int. J. Sustain. Policy Pract. 2017, 13, 21–30. [Google Scholar] [CrossRef]
- Tayyibi, A.; Cherraj, M.; Bouabid, H.; Zerouaoui, J.; D’ouazzane, S.C. Security requirements for earth construction: Comparative study of international codes. J. Mater. Environ. Sci. 2016, 7, 2352–2361. [Google Scholar]
- Kumar, R.S.; Janardhana, M.; Kumar, N.D. Analytical modelling and numerical simulation of compressed Stabilised earth blocks using rice husk ash. Mason. Int. 2016, 29, 85–92. [Google Scholar]
- Silva, R.A.; Soares, E.; Oliveira, D.V.; Miranda, T.; Cristelo, N.M.; Leitão, D. Mechanical characterisation of dry-stack masonry made of CEBs stabilised with alkaline activation. Constr. Build. Mater. 2015, 75, 349–358. [Google Scholar] [CrossRef]
- Galán-Marín, C.; Rivera-Gómez, C.; García-Martínez, A. Embodied energy of conventional load-bearing walls versus natural stabilized earth blocks. Energy Build. 2015, 97, 146–154. [Google Scholar] [CrossRef]
- Mostafa, M.; Uddin, N. Effect of banana fibers on the compressive and flexural strength of compressed earth blocks. Buildings 2015, 5, 282–296. [Google Scholar] [CrossRef]
- Matta, F.; Cuéllar-Azcárate, M.C.; Garbin, E. Earthen masonry dwelling structures for extreme wind loads. Eng. Struct. 2015, 83, 163–175. [Google Scholar] [CrossRef]
- Egenti, C.; Khatib, J.M.; Oloke, D. Conceptualisation and pilot study of shelled compressed earth block for sustainable housing in Nigeria. Int. J. Sustain. Built Environ. 2014, 3, 72–86. [Google Scholar] [CrossRef]
- Nagaraj, H.B.; Sravan, M.V.; Arun, T.G.; Jagadish, K.S. Role of lime with cement in long-term strength of Compressed Stabilized Earth Blocks. Int. J. Sustain. Built Environ. 2014, 3, 54–61. [Google Scholar] [CrossRef]
- Salim, R.W.; Ndambuki, J.M.; Adedokun, D.A. Improving the bearing strength of sandy loam soil compressed earth block bricks using Sugercane Bagasse Ash. Sustainability 2014, 6, 3686–3696. [Google Scholar] [CrossRef]
- Keshav, L.; Srisanthi, V.G.; Rajkumar, N. Eco friendly and earthquake resistant building constructed using earth block-an experimental study, Ecology. Environ. Conserv. 2012, 18, 915–923. [Google Scholar]
- Sanya, T. Sustainable architecture evaluation method in an African context: Transgressing discipline boundaries with a systems approach. Sustain. Sci. 2012, 7, 55–65. [Google Scholar] [CrossRef]
- Bui, Q.-B.; Morel, J.-C.; Hans, S.; Meunier, N. Compression behaviour of non-industrial materials in civil engineering by three scale experiments: The case of rammed earth. Mater. Struct. Mater. Constr. 2009, 42, 1101–1116. [Google Scholar] [CrossRef]
- Kumar, N.; Barbato, M. Effects of sugarcane bagasse fibers on the properties of compressed and stabilized earth blocks. Constr. Build. Mater. 2022, 315, 125552. [Google Scholar] [CrossRef]
- Gómez-Casero, M.A.; Moral-Moral, F.J.; Pérez-Villarejo, L.; Sánchez-Soto, P.J.; Eliche-Quesada, D. Synthesis of clay geopolymers using olive pomace fly ash as an alternative activator. Influ. Addit. Commer. Alkaline Act. Used J. Mater. Res. Technol. 2021, 12, 1762–1776. [Google Scholar] [CrossRef]
- Bogas, J.A.; Silva, M.; Gomes, M.G. Unstabilized and stabilized compressed earth blocks with partial incorporation of recycled aggregates. Int. J. Archit. Herit. 2019, 13, 569–584. [Google Scholar] [CrossRef]
- Ouellet-Plamondon, C.M.; Habert, G. Self-Compacted Clay based Concrete (SCCC): Proof-of-concept. J. Clean Prod. 2016, 117, 160–168. [Google Scholar] [CrossRef]
- Nagaraj, H.B.; Rajesh, A.; Sravan, M.V. Influence of soil gradation, proportion and combination of admixtures on the properties and durability of CSEBs. Constr. Build. Mater. 2016, 110, 135–144. [Google Scholar] [CrossRef]
Title | Environmental Sustainability | Social Sustainability | Economic Sustainability |
---|---|---|---|
[8] | √ | √ | |
[9] | √ | √ | |
[11] | √ | ||
[25] | √ | ||
[40] | √ | ||
[41] | √ | √ | |
[42] | √ | ||
[43] | √ | ||
[44] | √ | √ | |
[45] | √ | ||
[46] | √ | ||
[47] | √ | ||
[48] | √ | √ | √ |
[49] | √ | ||
[50] | √ | √ | √ |
[51] | √ | ||
[52] | √ | ||
[53] | √ | √ | |
[54] | √ | ||
[55] | √ | √ | |
[56] | √ | √ | |
[57] | √ | √ | |
[58] | √ | √ | √ |
[59] | √ | ||
[60] | √ | √ | √ |
[61] | √ | √ | |
[62] | √ | √ | |
[63] | √ | ||
[64] | √ | √ | |
[65] | √ | ||
[66] | √ | √ | √ |
[67] | √ | √ | |
[68] | √ | ||
[69] | √ | √ | √ |
[70] | √ | ||
[71] | √ | √ | |
[72] | √ | ||
[73] | √ | √ | √ |
[74] | √ | ||
[75] | √ | ||
[76] | √ | ||
[77] | √ | ||
[78] | √ | ||
[79] | √ | √ | |
[80] | √ | ||
[81] | √ | ||
[82] | √ | ||
[83] | √ | ||
[84] | √ | √ | |
[85] | √ | ||
[86] | √ | √ | |
[87] | √ | ||
[88] | √ | √ | |
[89] | √ | √ | |
[90] | √ | ||
[91] | √ | √ | |
[92] | √ | ||
[93] | √ | ||
[94] | √ | √ | √ |
[95] | √ | ||
[96] | √ | ||
[97] | √ | √ | |
[98] | √ | ||
[99] | √ | ||
[100] | √ | ||
[101] | √ | √ | √ |
[102] | √ | √ | |
[103] | √ | ||
[104] | √ | ||
[105] | √ | √ | √ |
[106] | √ | √ | |
[107] | √ | ||
[108] | √ | √ | |
[109] | √ | √ | |
[110] | √ | ||
[111] | √ | √ | |
[112] | √ |
Title | Stabilizer | Fiber |
---|---|---|
[11] | Wheat straw (WS), cork granules (CGs), ground olive stone (GOS) | |
[25] | Cement | Sisal fibers (SFs) treated with NaOH |
[40] | Grewia bicolor bark powder (GBBP), ordinary Portland cement (OPC) | |
[43] | Cement | Natural fibers (sisal, Rhecktophyllum Camerunense (RC), oil palm mesocarp fibers (OPMFs)) |
[44] | Municipal solid waste incineration bottom ash (MSWIBA) | Sisal fibers (SFs) |
[46] | Alkali activation of fly ash | |
[47] | Bio-binders (animal glue, xanthan gum) | |
[48] | Cement | |
[49] | Rice husk biochar | |
[50] | Cement | Areca fiber |
[51] | Cement | Juncus fibers (JFs) |
[52] | Recycled cement (RCP), cement, construction and demolition waste (CDW) | |
[54] | Cement | |
[56] | Cement | Steel fibre |
[57] | Rice husk ash (RHA), cement | |
[58] | Chrysopogon Zizanioides (Vetiver) | |
[59] | Cement, egg shell powder (ESP) | |
[61] | Groundnut shell ash (GSA) | |
[62] | Cement, red marls, phosphate waste rock (PWR) | |
[63] | Cement | Sisal fibers, brick waste (BW) |
[64] | Date palm stems (DPSs) | |
[65] | Olive mill wastewater (OMWW), Dry olive pomace (DOP) | |
[67] | Rice husk ash (RHA), cement | |
[68] | Waste concrete powder (WCP), cement | |
[70] | Fly ash (FA) with sodium hydroxide (NaOH) | |
[72] | Hydraulic lime, cement | |
[113] | Cement | Sugarcane bagasse fibers (Scbfs) |
[74] | Cement | Phase change materials (PCMs) |
[79] | Cement | |
[81] | Alkaline solution | Coal fly ash, glass waste |
[83] | Cement, fly ash (FA) | |
[84] | Rice husk ash, eggshell powder, caustic soda | |
[114] | Olive pomace fly ash (OPFA), calcined clays (CCs) | |
[85] | Water lily ash (Eichornnia Crassipes), cement | |
[86] | Cement | |
[87] | Cement | |
[88] | Cement | |
[90] | Cement | |
[91] | Flay ash, cement | |
[92] | Ground olive stone (GOS) | |
[93] | Natural hydraulic lime | |
[94] | Cement | |
[95] | Waste polymer sack fibers | |
[96] | Cement | |
[115] | Lime and cement, RFA | |
[100] | Palm oil fuel ash (POFA) | |
[102] | Rice husk ash, lime | |
[116] | Polycarboxylate ether superplastizer, calcium Sulfoaluminate cement (CSA) | |
[117] | Lime, cement | |
[104] | Natural fibers, alginates | |
[105] | Banana fibers | |
[107] | Cement | |
[108] | Lime, cement | |
[109] | Sugarcane bagasse ash |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinha, S.; Sudarsan, J.S. Building a Greener Future: How Earth Blocks Are Reshaping Sustainability and Circular Economy in Construction. Architecture 2025, 5, 25. https://doi.org/10.3390/architecture5020025
Sinha S, Sudarsan JS. Building a Greener Future: How Earth Blocks Are Reshaping Sustainability and Circular Economy in Construction. Architecture. 2025; 5(2):25. https://doi.org/10.3390/architecture5020025
Chicago/Turabian StyleSinha, Swati, and Jayaraman Sethuraman Sudarsan. 2025. "Building a Greener Future: How Earth Blocks Are Reshaping Sustainability and Circular Economy in Construction" Architecture 5, no. 2: 25. https://doi.org/10.3390/architecture5020025
APA StyleSinha, S., & Sudarsan, J. S. (2025). Building a Greener Future: How Earth Blocks Are Reshaping Sustainability and Circular Economy in Construction. Architecture, 5(2), 25. https://doi.org/10.3390/architecture5020025