Geometric State Sum Models from Quasicrystals
Abstract
:1. Introduction
2. Geometric Realism
- Ising models
- Lattice gauge theory (LGT):
- Spin foam
3. Kinematics: The 3D Quasicrystal, Empire and Hits
4. Dynamics: Geometric State Sum Model and the PEL
4.1. A New Kind of Game of Life in Quasicrystals
4.2. GSS Observables and Emergence
5. Discussions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
SSH | Self-simulation hypothesis |
PEL | Principle of Efficient Language |
3DPT | 3-Dimensional Penrose Tiling quasicrystal |
PEL | Geometrical State Sum (GSS) |
GR | General Relativity |
LQG | Loop Quantum Gravity |
3D | 3-dimensional |
LGT | Lattice Gauge Theory |
VT | Vertex Type |
PS | Possibility Space |
PRW | Possibility Random Walk |
GoL | Game of Life |
References
- Irwin, K.; Amaral, M.; Chester, D. The Self-Simulation Hypothesis Interpretation of Quantum Mechanics. Entropy 2020, 22, 247. [Google Scholar] [CrossRef] [Green Version]
- Dirac, P.A.M. Classical theory of radiating electrons. Proc. Roy. Soc. Lond. A 1938, 167, 148–169. [Google Scholar]
- Finkelstein, D. Space-time code. Phys. Rev. 1969, 184, 1261–1279. [Google Scholar] [CrossRef]
- Wheeler, J.A. Beyond the Black Hole. In Some Strangeness in the Proportion: A Centennial Symposium to Celebrate the Achievements of Albert Einstein; Woolf, H., Ed.; Addison-Wesley: Reading, MA, USA, 1980. [Google Scholar]
- Wheeler, J.A. Hermann Weyl and the Unity of Knowledge. Am. Sci. 1986, 74, 366–375. [Google Scholar]
- Wheeler, J.A. Information, physics, quantum: The search for links. In Complexity, Entropy, and the Physics of Information; Addison-Wesley: Boston, MA, USA, 1990. [Google Scholar]
- Langan, C.M. The Cognitive-Theoretic Model of the Universe: A New Kind of Reality Theory. Prog. Complex. Inf. Des. 2002, 1, 2–3. [Google Scholar]
- Aschheim, R. Hacking Reality Code. FQXI Essay Contest 2011, Category: Is Reality Digital or Analog? Essay Contest (2010–2011), Number 929. Available online: https://fqxi.org/community/forum/category/31417 (accessed on 8 October 2021).
- Irwin, K. A New Approach to the Hard Problem of Consciousness: A Quasicrystalline Language of Primitive Units of Consciousness in Quantized Spacetime. J. Conscious Explor. Res. 2014, 5, 483–497. [Google Scholar] [CrossRef]
- Irwin, K. The Code-Theoretic Axiom: The Third Ontology. Rep. Adv. Phys. Sci. 2019, 3, 1950002. [Google Scholar] [CrossRef]
- Irwin, K.; Amaral, M.M.; Aschleim, R.; Fang, F. Quantum walk on spin network and the golden ratio as the fundamental constant of nature. In Proceedings of the Fourth International Conference on the Nature and Ontology of Spacetime, Varna, Bulgaria, 30 May–2 June 2016; pp. 117–160. [Google Scholar]
- Hammock, D.; Fang, F.; Irwin, K. Quasicrystal Tilings in Three Dimensions and Their Empires. Crystals 2018, 8, 370. [Google Scholar] [CrossRef] [Green Version]
- Katz, A. Theory of Matching Rules for the 3-Dimensional Penrose Tilings. Commun. Math. Phys. 1988, 118, 263–288. [Google Scholar] [CrossRef]
- Takakura, H.; Gomez, C.; Yamamoto, A.; De Boissieu, M.; Tsai, A.P. Atomic structure of the binary icosahedral Yb-Cd quasicrystal. Nat. Mater 2007, 6, 58–63. [Google Scholar] [CrossRef]
- Penrose, R. The role of aesthetics in pure and applied mathematical research. Bull. Inst. Math. Appl. 1974, 10, 266–271. [Google Scholar]
- Barrett, J.W. State sum models for quantum gravity. arXiv 2000, arXiv:gr-qc/0010050. [Google Scholar]
- Amaral, M.; Aschheim, R.; Irwin, K. Quantum Gravity at the Fifth Root of Unity. arXiv 2019, arXiv:1903.10851. [Google Scholar]
- Wanas, M.I. The accelerating expansion of the universe and torsion energy. Int. J.Mod. Phys. A 2007, 31, 5709–5716. [Google Scholar] [CrossRef] [Green Version]
- Irwin, K. Toward the Unification of Physics and Number Theory. Rep. Adv. Phys. Sci. 2019, 3, 1950003. [Google Scholar] [CrossRef] [Green Version]
- Baake, M.; Grimm, U. Aperiodic Order; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Senechal, M.J. Quasicrystals and Geometry; Cambrige University Press: Cambrige, UK, 1995. [Google Scholar]
- Levine, D.; Steinhardt, P.J.; Quasicrystals, I. Definition and structure. Phys. Rev. B 1986, 34, 596. [Google Scholar] [CrossRef]
- Gardner, M. Extraordinary nonperiodic tiling that enriches the theory of tiles. Sci. Am. 1977, 236, 110. [Google Scholar] [CrossRef]
- De Bruijn, N.G. Algebraic theory of Penrose’s non-periodic tilings. Nederl Akad Wetensch Proc. 1981, 84, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Grimm, U. Aperiodicity and Disorder-Do They Play a Role? In Computational Statistical Physics: From Billiards to Monte Carlo; Hoffmann, K.H., Schreiber, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 191–210. [Google Scholar]
- Elser, V.; Sloane, N.J.A. A highly symmetric four-dimensional quasicrystal. J. Phys. A 1987, 20, 6161–6168. [Google Scholar] [CrossRef]
- Chen, L.; Moody, R.V.; Patera, J. Non-crystallographic root systems. In Quasicrystals and Discrete Geometry; Fields Institute Monographs; American Mathematical Society: Providence, RI, USA, 1998; Volume 10. [Google Scholar]
- Fang, F.; Irwin, K. An Icosahedral Quasicrystal and E8 derived quasicrystals. arXiv 2016, arXiv:1511.07786. [Google Scholar]
- Conway, J.H. Triangle tessellations of the plane. Amer. Math. Mon. 1965, 72, 915. [Google Scholar]
- Grunbaum, B.; Shephard, G.C. Tilings and Patterns; W. H. Freeman and Company: New York, NY, USA, 1987. [Google Scholar]
- Effinger-Dean, L. The Empire Problem in Penrose Tilings. Bachelor’s Thesis, Williams College, Williamstown, MA, USA, 2006. [Google Scholar]
- Fang, F.; Hammock, D.; Irwin, K. Methods for Calculating Empires in Quasicrystals. Crystals 2017, 7, 304. [Google Scholar] [CrossRef] [Green Version]
- Rovelli, C.; Vidotto, F. Covariant Loop Quantum Gravity, 1st ed.; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Ortiz, L.; Amaral, M.; Irwin, K. Aspects of aperiodicity and randomness in theoretical physics. arXiv 2020, arXiv:2003.07282. [Google Scholar]
- Bahr, B.; Dittrich, B.; Ryan, J.P. Spin foam models with finite groups. J. Grav. 2013, 2013, 549824. [Google Scholar] [CrossRef] [Green Version]
- Fang, F.; Paduroiu, S.; Hammock, D.; Irwin, K. Empires: The Nonlocal Properties of Quasicrystals. In Electron Crystallography, Devinder Singh and Simona Condurache-Bota; IntechOpen: London, UK, 2019. [Google Scholar]
- Alexander, S.; Cunningham, W.J.; Lanier, J.; Smolin, L.; Stanojevic, S.; Toomey, M.W.; Wecker, D. The Autodidactic Universe. arXiv 2021, arXiv:2104.03902. [Google Scholar]
- Gardner, M. Mathematical games—The fantastic combinations of John Conway’s new solitaire game of ‘life’. Sci. Am. 1970, 223, 120–123. [Google Scholar] [CrossRef]
- Klein, J. Breve: A 3d environment for the simulation of decentralized systems and artificial life. In Proceedings of the 8th International Conference on Artificial Life, Dortmund, Germany, 14–17 September 2003. [Google Scholar]
- Bak, P.; Chen, K.; Creutz, M. Self-organized criticality in the Game of Life. Nature 1989, 342, 780. [Google Scholar] [CrossRef]
- Bays, C. Candidates for the game of life in three dimensions. Complex Syst. 1987, 1, 373–400. [Google Scholar]
- Couclelis, H. Cellular worlds: A framework for modeling micro—macro dynamics. Environ. Plan. A 1985, 17, 585–596. [Google Scholar] [CrossRef]
- Bailey, D.A.; Lindsey, K.A. Game of Life on Penrose Tilings. arXiv 2017, arXiv:1708.09301. [Google Scholar]
- Owens, N.; Stepney, S. Investigations of Game of Life Cellular Automata Rules on Penrose Tilings: Lifetime, Ash, and Oscillator Statistics. J. Cell. Autom. 2010, 5, 207–225. [Google Scholar]
- Fang, F.; Paduroiu, S.; Hammock, D.; Irwin, K. Non-Local Game of Life in 2D Quasicrystals. Crystals 2018, 8, 416. [Google Scholar] [CrossRef] [Green Version]
- Bekenstein, J.D. Black holes and entropy. Phys. Rev. D 1973, 7, 2333–2346. [Google Scholar] [CrossRef]
- Verlinde, E. On the origin of gravity and the laws of Newton. J. High Energ. Phys. 2011, 2011, 29. [Google Scholar] [CrossRef] [Green Version]
- García-Islas, J.M. Entropic Motion in Loop Quantum Gravity. Can. J. Phys. 2016, 94, 569–573. [Google Scholar] [CrossRef] [Green Version]
- Amaral, M.M.; Aschheim, R.; Irwin, K. Quantum walk on a spin network. arXiv 2016, arXiv:1602.07653. [Google Scholar]
- Goertzel, B. Toward a Formal Model of Cognitive Synergy. arXiv 2018, arXiv:1703.04361. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amaral, M.; Fang, F.; Hammock, D.; Irwin, K. Geometric State Sum Models from Quasicrystals. Foundations 2021, 1, 155-168. https://doi.org/10.3390/foundations1020011
Amaral M, Fang F, Hammock D, Irwin K. Geometric State Sum Models from Quasicrystals. Foundations. 2021; 1(2):155-168. https://doi.org/10.3390/foundations1020011
Chicago/Turabian StyleAmaral, Marcelo, Fang Fang, Dugan Hammock, and Klee Irwin. 2021. "Geometric State Sum Models from Quasicrystals" Foundations 1, no. 2: 155-168. https://doi.org/10.3390/foundations1020011
APA StyleAmaral, M., Fang, F., Hammock, D., & Irwin, K. (2021). Geometric State Sum Models from Quasicrystals. Foundations, 1(2), 155-168. https://doi.org/10.3390/foundations1020011