Existence and Stability Results for Fractional Hybrid q-Difference Equations with q-Integro-Initial Condition
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
4. Stability Result
5. Examples
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mainardi, F. Fractional Calculus: Some Basic Problems in Continuum and Statistical Mechanics, Fractals and Fractional Calculus in Continuum Mechanics; Springer: Wien, Austria, 1997; pp. 291–348. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Science, B.V., Ed.; North-Holland Mathematics Studies 204; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Ahmad, B.; Alsaedi, A.; Ntouyas, S.K.; Tariboon, J. Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Ahmad, B.; Henderson, J.; Luca, R. Boundary Value Problems for Fractional Differential Equations and Systems; World Scientific Publishing Co. Pte. Ltd.: Hackensack, NJ, USA, 2021. [Google Scholar]
- Graef, J.R.; Kong, L. Positive solutions for a class of higher order boundary value problems with fractional q-derivatives. Appl. Math. Comput. 2012, 218, 9682–9689. [Google Scholar] [CrossRef]
- Ahmad, B.; Etemad, S.; Ettefagh, M.; Rezapour, S. On the existence of solutions for fractional q-difference inclusions with q-anti-periodic boundary conditions. Bull. Math. Soc. Sci. Math. Roum. 2016, 59, 119–134. [Google Scholar]
- Patanarapeelert, N.; Sriphanomwan, U.; Sitthiwirattham, T. On a class of sequential fractional q-integrodifference boundary value problems involving different numbers of q in derivatives and integrals. Adv. Differ. Equ. 2016, 2016, 148. [Google Scholar] [CrossRef] [Green Version]
- Niyom, S.; Ntouyas, S.K.; Laoprasittichok, S.; Tariboon, J. Boundary value problems with four orders of Riemann-Liouville fractional derivatives. Adv. Differ. Equ. 2016, 2016, 165. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, B.; Ntouyas, S.K.; Tariboon, J. Quantum Calculus. New Concepts, Impulsive IVPs and BVPs, Inequalities. Trends in Abstract and Applied Analysis; World Scientific Publishing Co. Pte. Ltd.: Hackensack, NJ, USA, 2016. [Google Scholar]
- Zhai, C.B.; Ren, J. Positive and negative solutions of a boundary value problem for a fractional q-difference equation. Adv. Differ. Equ. 2017, 2017, 82. [Google Scholar] [CrossRef] [Green Version]
- Ma, K.; Li, X.; Sun, S. Boundary value problems of fractional q-difference equations on the half-line. Bound. Value Probl. 2019, 46, 16. [Google Scholar] [CrossRef]
- Qin, Z.; Sun, S.; Han, Z. Multiple positive solutions for nonlinear fractional q-difference equation with p-Laplacian operator. Turk. J. Math. 2022, 46, 638–661. [Google Scholar]
- Allouch, N.; Graef, J.R.; Hamani, S. Boundary Value Problem for Fractional q-Difference Equations with Integral Conditions in Banach Spaces. Fractal Fract. 2022, 6, 237. [Google Scholar] [CrossRef]
- Alsaedi, A.; Al-Hutami, H.; Ahmad, B.; Agarwal, R.P. Existence results for a coupled system of nonlinear fractional q-integro-difference equations with q-integral coupled boundary conditions. Fractals 2022, 30, 2240042. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Al-Hutami, H.; Ahmad, B. A Langevin-type q-variant system of nonlinear fractional integro-difference equations with nonlocal boundary conditions. Fractal Fract. 2022, 6, 45. [Google Scholar] [CrossRef]
- Ma, K.; Gao, L. The solution theory for the fractional hybrid q-difference equations. J. Appl. Math. Comput. 2021, 30, 1–2. [Google Scholar] [CrossRef]
- Ghosh, M.; Pugliese, A. Seasonal population dynamics of ticks, and its influence on infection transmission: A semi-discrete approach. Bull. Math. Biol. 2004, 66, 1659–1684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarwal, R. Certain fractional q-integrals and q-derivatives. Proc. Camb. Philos. Soc. 1969, 66, 365–370. [Google Scholar] [CrossRef]
- Rajkovic, P.M.; Marinkovic, S.D.; Stankovic, M.S. On q-analogues of Caputo derivative and Mittag-Leffler function. Fract. Calc. Appl. Anal. 2007, 10, 359–373. [Google Scholar]
- Annaby, M.H.; Mansour, Z.S. q-Fractional Calculus and Equations; Lecture Notes in Mathematics 2056; Springer: Berlin, Germany, 2012. [Google Scholar]
- Krasnoselskii, M.A. Two remarks on the method of successive approximations. Usp. Mat. Nauk. 1955, 10, 123–127. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agarwal, R.P.; Al-Hutami, H.; Ahmad, B.; Alharbi, B. Existence and Stability Results for Fractional Hybrid q-Difference Equations with q-Integro-Initial Condition. Foundations 2022, 2, 704-713. https://doi.org/10.3390/foundations2030048
Agarwal RP, Al-Hutami H, Ahmad B, Alharbi B. Existence and Stability Results for Fractional Hybrid q-Difference Equations with q-Integro-Initial Condition. Foundations. 2022; 2(3):704-713. https://doi.org/10.3390/foundations2030048
Chicago/Turabian StyleAgarwal, Ravi P., Hana Al-Hutami, Bashir Ahmad, and Boshra Alharbi. 2022. "Existence and Stability Results for Fractional Hybrid q-Difference Equations with q-Integro-Initial Condition" Foundations 2, no. 3: 704-713. https://doi.org/10.3390/foundations2030048
APA StyleAgarwal, R. P., Al-Hutami, H., Ahmad, B., & Alharbi, B. (2022). Existence and Stability Results for Fractional Hybrid q-Difference Equations with q-Integro-Initial Condition. Foundations, 2(3), 704-713. https://doi.org/10.3390/foundations2030048