Isotopic Shift in Hg-Isotopes within Brückner versus Relativistic Energy Density Functional
Abstract
:1. Introduction
2. Relativistic Mean Field Approach
2.1. Spherical Equivalent Density Using Wood–Saxon Fitting
2.2. Brückner’s Prescription and Symmetry Energy
2.3. The Coherent Density Fluctuations Model
3. Results and Discussions
3.1. Shift in Binding Energy and Charge Radius
3.2. Symmetry Energy and Its Shift
3.3. Single Particle Energy and Its Occupancy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
E-RMF | Effective Relativistic Mean Field |
NM | Nuclear Matter |
CDFM | Coherent Density Fluctuation Model |
GS | Ground State |
IS | Isomeric State |
BE | Binding Energy |
EDF | Energy density functional |
References
- Patra, S.K.; Yoshida, S.; Takigawa, N.; Praharaj, C. Shape and superdeformed structure in Hg isotopes in relativistic mean field model. Phys. Rev. C 1994, 50, 1924–1931. [Google Scholar] [CrossRef]
- Al-Dahan, N.; Podolyak, Z.; Regan, P.; Gorska, M.; Grawe, H.; Maier, K.; Gerl, J.; Pietri, S.; Wollersheim, H.; Alkhomashi, N.; et al. Nuclear structure “southeast” of 208Pb: Isomeric states in 208Hg and 209Tl. Phys. Rev. C 2009, 80, 061302. [Google Scholar] [CrossRef] [Green Version]
- Siciliano, M.; Zanon, I.; Goasduff, A.; John, P.R.; Rodriguez, T.R.; Peru, S.; Deloncle, I.; Libert, J.; Zielińska, M.; Ashad, D. Shape coexistence in neutron-deficient 188Hg investigated via lifetime measurements. Phys. Rev. C 2020, 102, 014318. [Google Scholar] [CrossRef]
- Zanon, I.; Siciliano, M.; Goasduff, A.; Philipp, R.J. Study of neutron-deficient mercury isotopes Preliminary results on 189Hg. EPJ Web Conf. 2019, 223, 01072. [Google Scholar] [CrossRef] [Green Version]
- Mack, J.E.; Arrore, H. Isotopic shift in Atomic Spectra. Annu. Rev. Nucl. Sci. 1956, 6, 117–128. [Google Scholar] [CrossRef]
- Neumann, R.; Träger, F.; Kowalski, J.; Putlitz, G. Isotope shift of calcium isotopes with A=40, 42, 43, 44, 46 and 48 by laser spectroscopy. Z. Phys. A 1976, 279, 249–253. [Google Scholar] [CrossRef]
- Allehabi, S.O.; Dzuba, V.A.; Flambaum, V.V.; Afanasjev, A.V.; Agbemava, S.E. Using isotope shift for testing nuclear theory: The case of nobelium isotopes. Phys. Rev. C 2020, 102, 024326. [Google Scholar] [CrossRef]
- Uher Richard, A.; Sorensen Raymond, A. Structure effects in the charge radius of spherical nuclei. Nucl. Phys. 1966, 86, 1–46. [Google Scholar] [CrossRef]
- Goodacre, T.D.; Afanasjev, A.V.; Barzakh, A.E.; Marsh, B.A.; Sels, S.; Ring, P.; Nakada, H.; Andreyev, A.N.; Van Duppen, P.; Althubiti, N.A.; et al. Laser Spectroscopy of Neutron-Rich 207,208Hg Isotopes: Illuminating the Kink and Odd-Even Staggering in Charge Radii across the N=126 Shell Closure. Phys. Rev. Lett. 2021, 126, 032502. [Google Scholar] [CrossRef]
- Zhou, X.H. Physics Opportunities at the New Facility HIAF. Nucl. Phys. Rev. 2018, 35, 339–349. [Google Scholar]
- Yasuda, J.; Sasano, M.; Zegers, R.G.T.; Baba, H.; Bazin, D.; Chao, W.; Dozono, M.; Fukuda, N.; Inabe, N.; Isobe, T.; et al. Extraction of the Landau-Migdal Parameter from the Gamow-Teller Giant Resonance in 132Sn. Phys. Rev. Lett. 2018, 121, 132501. [Google Scholar] [CrossRef]
- Andrae, D. Finite nuclear charge density distributions in electronic structure calculations for atoms and molecules. Phys. Rep. 2000, 336, 413–525. [Google Scholar] [CrossRef]
- Nakada, H. Further evidence for three-nucleon spin-orbit interaction in isotope shifts of nuclei with magic proton numbers. Phys. Rev. C 2015, 92, 044307. [Google Scholar] [CrossRef] [Green Version]
- Sharma, M.M.; Lalazissis, G.A.; Ring, P. Anomaly in the charge radii of Pb isotopes. Phys. Lett. B 1993, 317, 9–13. [Google Scholar] [CrossRef] [Green Version]
- Bhuyan, M.; Maheshwari, B.; Kassim, H.A.; Yusof, N.; Patra, S.K.; Carlson, B.V.; Stevenson, P.D. The kinks in charge radii across N = 82 and 126 revisited. J. Phys. G Nucl. Part. Phys. 2021, 48, 075105. [Google Scholar] [CrossRef]
- Pattnaik, J.A.; Bhuyan, M.; Panda, R.N.; Patra, S.K. Isotopic shift in magic nuclei within relativistic mean-field formalism. Phys. Scr. 2021, 96, 125319. [Google Scholar] [CrossRef]
- Papoulia, A.; Carlsson, B.G.; Ekman, J. Effect of realistic nuclear charge distributions on isotope shifts and progress towards the extraction of higher-order nuclear radial moments. Phys. Rev. A 2016, 94, 042502. [Google Scholar] [CrossRef] [Green Version]
- Campbell, P.; Moore, I.; Pearson, M. Laser spectroscopy for nuclear structure physics. Prog. Part. Nucl. Phys. 2016, 86, 127–180. [Google Scholar] [CrossRef]
- Kaur, M.; Quddus, A.; Kumar, A.; Bhuyan, M.; Patra, S.K. Effect of temperature on the volume and surface contributions in the symmetry energy of rare earth nuclei. Nucl. Phys. A 2020, 1000, 121871. [Google Scholar] [CrossRef]
- Mayer, M.G.; Jensen, J.H.D. Elementary Theory of Nuclear Shell Structure; John Wiley and Sons: New York, NY, USA, 1955. [Google Scholar]
- Nikšić, T.; Vretenar, D.; Ring, P. Relativistic nuclear energy density functionals: Adjusting parameters to binding energies. Phys. Rev. C 2008, 78, 034318. [Google Scholar] [CrossRef]
- Nikšić, T.; Vretenar, D.; Finelli, P.; Ring, P. Relativistic Hartree-Bogoliubov model with density-dependent meson-nucleon couplings. Phys. Rev. C 2002, 66, 024306. [Google Scholar] [CrossRef]
- Kumar, B.; Patra, S.K.; Agrawal, B.K. New relativistic effective interaction for finite nuclei, infinite nuclear matter, and neutron stars. Phys. Rev. C 2018, 97, 045806. [Google Scholar] [CrossRef] [Green Version]
- Lalazissis, G.A.; König, J.; Ring, P. New parametrization for the Lagrangian density of relativistic mean field theory. Phys. Rev. C 1997, 55, 540. [Google Scholar] [CrossRef] [Green Version]
- Patra, S.K.; Bhat, F.H.; Panda, R.N.; Arumugam, P.; Gupta, R.K. Isomeric state in 53Co: A mean field analysis. Phys. Rev. C 2009, 79, 044303. [Google Scholar] [CrossRef]
- Proëtel, D.; Diamond, R.M.; Stephens, F.S. High-spin excitation modes in even Hg nuclei. Nucl. Phys. A 1974, 231, 301–315. [Google Scholar] [CrossRef] [Green Version]
- Sudár, S.; Qaim, S.M. Cross sections for the formation of 195Hgm,g, 197Hgm,g, and 196Aum,g in α and 3He-particle induced reactions on Pt: Effect of level density pa-rameters on the calculated isomeric crosssection ratio. Phys. Rev. C 2006, 73, 034613. [Google Scholar] [CrossRef]
- Kumar, B.; Singh, S.; Agrawal, B.; Patra, S.K. New parameterization of the effective field theory motivated relativistic mean field model. Nucl. Phys. A 2017, 966, 197–207. [Google Scholar] [CrossRef] [Green Version]
- Furnstahl, R.; Serot, B.D.; Tang, H.-B. Analysis of chiral mean-field models for nuclei. Nucl. Phys. A 1996, 598, 539–582. [Google Scholar] [CrossRef] [Green Version]
- Furnstahl, R.; Serot, B.D.; Tang, H.-B. A chiral effective lagrangian for nuclei Author links open overlay panel. Nucl. Phys. A 1997, 615, 441–482. [Google Scholar] [CrossRef] [Green Version]
- Pattnaik, J.A.; Panda, R.N.; Bhuyan, M.; Patra, S.K. Constraining the relativistic mean-field models from PREX-2 data: Effective forces revisited. Chin. Phys. C 2022, 46, 094103. [Google Scholar] [CrossRef]
- Malik, T.; Alam, N.; Fortin, M.; Providëncia, C.; Agrawal, B.K.; Jha, T.K.; Kumar, B.; Patra, S.K. GW170817: Constraining the nuclear matter equation of state from the neutron star tidal deformability. Phys. Rev. C 2018, 98, 035804. [Google Scholar] [CrossRef]
- Boguta, J.; Bodmer, A.R. Relativistic calculation of nuclear matter and the nuclear surface. Nucl. Phys. A 1977, 292, 413–428. [Google Scholar] [CrossRef]
- Naik, K.C.; Kaur, M.; Kumar, A.; Patra, S.K. Density dependence of symmetry energy in deformed 162Sm nucleus. Int. J. Mod. Phys. E 2019, 28, 1950100. [Google Scholar] [CrossRef]
- Brückner, K.A.; Buchler, J.R.; Jorna, S.; Lombard, R.J. Statistical Theory of Nuclei. Phys. Rev. 1968, 171, 1188. [Google Scholar] [CrossRef]
- Brückner, K.A.; Buchler, J.R.; Clark, R.C.; Lombard, R.J. Statistical Theory of Nuclei. II. Medium and Heavy Nuclei. Phys. Rev. 1969, 181, 1543. [Google Scholar] [CrossRef]
- Chen, W.-C.; Piekarewicz, J. Building relativistic mean field models for finite nuclei and neutron stars. Phys. Rev. C 2014, 90, 044305. [Google Scholar] [CrossRef] [Green Version]
- Antonov, A.N.; Nikolaev, V.A.; Petkov, I.Z. Nucleon momentum and density distributions of nuclei. Z. Phys. A At. Nucl. 1980, 297, 257–260. [Google Scholar] [CrossRef]
- Antonov, A.N.; Nikolaev, V.A.; Petkov, I.Z. Spectral functions and hole nuclear states. Z. Phys. A At. Nucl. 1982, 304, 239–243. [Google Scholar] [CrossRef]
- Antonov, A.N.; Nikolaev, V.A.; Petkov, I.Z. Extreme breathing excitations of atomic nuclei. Nuovo C. A 1985, 86, 23–31. [Google Scholar] [CrossRef]
- Antonov, A.N.; Kadrev, D.N.; Hodgson, P.E. Effect of nucleon correlations on natural orbitals. Phys. Rev. C 1994, 50, 164. [Google Scholar] [CrossRef] [Green Version]
- Gaidarov, M.K.; Antonov, A.N.; Sarriguren, P.; Moya de Guerra, E. Surface properties of neutron-rich exotic nuclei: A source for studying the nuclear symmetry energy. Phys. Rev. C 2011, 84, 034316. [Google Scholar] [CrossRef]
- Bhuyan, M.; Carlson, B.V.; Patra, S.K.; Zhou, S.-G. Surface properties of neutron-rich exotic nuclei within relativistic mean field formalisms. Phys. Rev. C 2018, 97, 024322. [Google Scholar] [CrossRef] [Green Version]
- Gaidarov, M.K.; Antonov, A.N.; Sarriguren, P.; Moya de Guerra, E. Symmetry energy of deformed neutron-rich nuclei. Phys. Rev. C 2012, 85, 064319. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, C.; Lenske, H.; Wolter, H.H. Density dependent hadron field theory. Phys. Rev. C 1995, 52, 3043. [Google Scholar] [CrossRef] [Green Version]
- Antonov, A.N.; Kadrev, D.N.; Gaidarov, M.K.; Sarriguren, P.; Moya de Guerra, E. Temperature dependence of the symmetry energy and neutron skins in Ni, Sn, and Pb isotopic chains. Phys. Rev. C 2017, 95, 024314. [Google Scholar] [CrossRef]
- Pattnaik, J.A.; Panda, R.N.; Bhuyan, M.; Patra, S.K. Surface properties for Ne, Na, Mg, Al, and Si isotopes in the coherent density fluctuation model using the relativistic mean-field densities. Can. J. Phys. 2022, 100, 102. [Google Scholar] [CrossRef]
- Antonov, A.N.; Kadrev, D.N.; Gaidarov, M.K.; Sarriguren, P.; Moya de Guerra, E. Temperature dependence of the volume and surface contributions to the nuclear symmetry energy within the coherent density fluctuation model. Phys. Rev. C 2018, 98, 054315. [Google Scholar] [CrossRef] [Green Version]
- Gaidarov, M.K.; Moya de Guerra, E.; Antonov, A.N.; Danchev, I.C.; Sarriguren, P.; Kadrev, D.N. Nuclear symmetry energy components and their ratio: A new approach within the coherent density fluctuation model. Phys. Rev. C 2021, 104, 044312. [Google Scholar] [CrossRef]
- Sahoo, T.; Patra, S.K. Search for the stable isotopes for Z = 119 and 121 superheavy elements using relativistic mean field model. Phys. Scr. 2020, 95, 085302. [Google Scholar] [CrossRef]
- Wang, M.; Audi, G.; Kondev, F.G.; Huang, W.J.; Naimi, S.; Xing, X. The AME2016 atomic mass evaluation-(II). Tables, graphs and references. Chin. Phys. C 2017, 41, 030003. [Google Scholar] [CrossRef]
- Angeli, I.; Marinova, K.P. Table of experimental nuclear ground state charge radii: An update. Atom. Data Nucl. Data Tables 2013, 99, 69–95. [Google Scholar] [CrossRef]
- Quddus, A.; Bhuyan, M.; Patra, S.K. Effective surface properties of light, heavy, and superheavy nuclei. J. Phys. G Nucl. Part. Phys. 2020, 47, 045105. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Das, H.C.; Kaur, M.; Bhuyan, M.; Patra, S.K. Application of the coherent density fluctuation model to study the nuclear matter properties of finite nuclei within the relativistic mean-field formalism. Phys. Rev. C 2021, 103, 024305. [Google Scholar] [CrossRef]
- Coester, F.; Cohen, S.; Day, B.; Vincent, C.M. Variation in Nuclear-Matter Binding Energies with Phase-Shift-Equivalent Two-Body Potentials. Phys. Rev. C 1970, 1, 769. [Google Scholar] [CrossRef]
- Brockmann, R.; Machleidt, R. Relativistic nuclear structure. I. Nuclear matter. Phys. Rev. C 1990, 42, 1965. [Google Scholar] [CrossRef]
- Pattnaik, J.A.; Majekodunmi, J.T.; Kumar, A.; Bhuyan, M.; Patra, S.K. Appearance of a peak in the symmetry energy at N=126 for the Pb isotopic chain within the relativistic energy density functional approach. Phys. Rev. C 2022, 105, 014318. [Google Scholar] [CrossRef]
- Goodacre, T.D.; Afanasjev, A.V.; Barzakh, A.E.; Nies, L.; Marsh, B.A.; Sels, S.; Perera, U.C.; Ring, P.; Wienholtz, F.; Andreyev, A.N.; et al. Charge radii, moments, and masses of mercury isotopes across the N= 126 shell closure. Phys. Rev. C 2021, 104, 054322. [Google Scholar] [CrossRef]
- Nilsson, S.G. Binding states of individual nucleons in strongly deformed nuclei. Dan. Mat. Fys. Medd. 1955, 29, 1–69. [Google Scholar]
- Goddard, P.M.; Stevenson, P.D.; Rios, A. Charge Radius Isotope Shift Across the N = 126 Shell Gap. Phys. Rev. Lett. 2013, 110, 032503. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pattnaik, J.A.; Majekodunmi, J.T.; Bhuyan, M.; Patra, S.K. Isotopic Shift in Hg-Isotopes within Brückner versus Relativistic Energy Density Functional. Foundations 2022, 2, 898-911. https://doi.org/10.3390/foundations2040061
Pattnaik JA, Majekodunmi JT, Bhuyan M, Patra SK. Isotopic Shift in Hg-Isotopes within Brückner versus Relativistic Energy Density Functional. Foundations. 2022; 2(4):898-911. https://doi.org/10.3390/foundations2040061
Chicago/Turabian StylePattnaik, Jeet Amrit, Joshua T. Majekodunmi, Mrutunjaya Bhuyan, and Suresh Kumar Patra. 2022. "Isotopic Shift in Hg-Isotopes within Brückner versus Relativistic Energy Density Functional" Foundations 2, no. 4: 898-911. https://doi.org/10.3390/foundations2040061
APA StylePattnaik, J. A., Majekodunmi, J. T., Bhuyan, M., & Patra, S. K. (2022). Isotopic Shift in Hg-Isotopes within Brückner versus Relativistic Energy Density Functional. Foundations, 2(4), 898-911. https://doi.org/10.3390/foundations2040061