Next Article in Journal
Entropy Generation and Control: Criteria to Calculate Flow Optimization in Biological Systems
Previous Article in Journal
Gerty Cori, a Life Dedicated to Chemical and Medical Research
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Fixed Point Results for Generalized

1
Office of Research, Innovation and Commercialization, University of Management and Technology, Lahore 54770, Pakistan
2
Abdus Salam School of Mathematical Sciences, Government College University, Lahore 54600, Pakistan
3
Department of Mathematics, University of Management and Technology, Lahore 54770, Pakistan
4
Department of Mathematics, Faculty of Sciences and Arts, King Abdulaziz University, Rabigh 21589, Saudi Arabia
5
Department of Computing and Mathematical Sciences, Cameron University, Lawton, OK 73505, USA
*
Author to whom correspondence should be addressed.
Foundations 2023, 3(3), 393-405; https://doi.org/10.3390/foundations3030028
Submission received: 23 June 2023 / Revised: 20 July 2023 / Accepted: 24 July 2023 / Published: 26 July 2023
(This article belongs to the Section Mathematical Sciences)

Abstract

:
Any two points are close together in a  𝜃 -contraction by a factor of  𝜃 . The function  Δ  is implied to be a contraction under this condition, but with a tighter bound on the contraction factor. In this paper, we introduce the notions of orthogonal  𝜃 -contraction and orthogonal  α 𝜃 -contraction and prove several fixed point results by utilizing these contraction mappings in the context of orthogonal metric spaces. Further, we provide several non-trivial examples to show the validity of our results.

1. Introduction

In various mathematical and applied contexts, the fixed point (FP) theory offers an effective tool to demonstrate the existence and uniqueness of solutions to different problems in Stability analysis, Optimization, economics, game theory, social sciences, Topology, geometry, Numerical analysis, and functional analysis. These are only a few examples illustrating the significance of FP theory. Its widespread use makes it an essential and adaptable tool for mathematical analysis and its applications in the sciences and engineering. It proves the existence of FPs under specific assumptions, which frequently leads to finding solutions to numerous mathematical problems.
In 1922, Banach [1] introduced the Banach FP theorem, and it was proved by Caccioppoli [2] in 1931. The Banach and Caccioppoli FP theorem guarantees that the function must have an FP under some conditions. Branciari [3] proved the Banach–Caccioppoli FP theorem using a class of generalized metric space. In 2014, Jleli and Samet [4] formulated the new idea of  θ -contraction and proved several FP theorems for similar mappings in complete metric spaces (MSs). Samet et al. [5] established FP theorems for α-𝜘-contractive mappings. Ahmad et al. [6] demonstrated FP consequence for generalized  𝜃 -contractions. Arshed et al. [7] established some FP consequences by utilizing a universal contraction with triangular α-orbital admissible mappings in the context of Branciari metric spaces.
Goradji et al. [8] provided the notion of an orthogonal set (OS) and generalized the Banach FP theorem. Diminnie [9] presented a new orthogonality relation for normed linear spaces. Further, several FP results for orthogonal (generalized) metric spaces have been proved by Javed et al. [10]. Uddin et al. [11,12] presented several FP results in the framework of orthogonal metric spaces (OMSs). Aydi et al. [13,14] modified 𝐹-contractions via 𝛼-admissible mappings and generalized admissible- Meir–Keeler contractions in the context of generalized metric spaces. Karapınar and Samet [15] generalized α-ψ contractive-type mappings and related FP theorems using other applications (see [16,17,18,19] for related results). Ahmad et al. [20,21] proved several FP results for generalized 𝜃-contractions and  α ,   Δ  expansive locally contractive mappings. Ciric [22] and Jleli et al. [23] presented the generalization of Banach’s contraction principle by utilizing different ideas. Naeem et al. [24] and Aljahdaly et al. [25] worked on different fractional operators. For an applications point of view, see the works provided by Manafian [26] and Manafian and Allahverdiyeva [27].
Inspired by [4], in this article, we present the notion of an orthogonal alpha–theta-contraction ( α 𝜃 -contraction) and provided several generalized FP theorems in the context of orthogonal complete metric spaces (OCMS).

2. Preliminaries

In this part, we provide several definitions from the existing literature that are helpful to understand the main section.
Definition 1 ([17]).
Let  Ξ  be a non-empty set and ⊥ defined be a binary relation on  Ξ × Ξ . If  ϰ 1 Ξ  exists, the following condition is true
ѡ Ξ   ϰ 1 ѡ o r   ѡ Ξ   ѡ ϰ 1 .  
Then, an element  ϰ 1  is called an orthogonal element, and  Ξ , D  is an orthogonal set (briefly OS), and an OS may have more than one orthogonal element.
Definition 2 ([13]).
Let   λ ,    be an OS. A sequence  { ϰ n }  is said to be an orthogonal sequence (O-Sequence) if
f o r   a l l   n N ,   ϰ n   ϰ n + 1   o r     f o r   a l l   n N ,   ϰ n + 1   ϰ n .  
Likewise, a Cauchy sequence  { ϰ n }  is called a Cauchy O-sequence (COS) if
for   all   n N ,   ϰ n   ϰ n + 1   or   for   all   n N ,   ϰ n + 1   ϰ n .
Definition 3 ([19]).
Let   Ξ  be an OS and  Ξ , D  be an MS; then,  Ξ , D ,  is called an OMS.
Definition 4 ([14]).
Let  𝜃 : 0 ,   1 ,    be a function verifying the following axioms:
(1)
𝜃 1   𝜃  is non-decreasing (ND);
( 𝜃 2 )  for each sequence   ϰ n + ;
lim n 𝜃 ϰ n = 1   l i m n ϰ n = 0 ,
( 𝜃 3 )     k 0 , 1  and  l 0 , .  Then,
lim t 𝜃 t 1 t k = l .
(2)
The mapping  Δ : Ξ Ξ  is named the  𝜃 -contraction if the function  𝜃  exists, satisfying  𝜃 1  to  𝜃 3  and    k 0 , 1 , such that
D Δ ϰ ,   Δ ѡ 0 𝜃 D Δ ϰ ,   Δ ѡ [ 𝜃 d ϰ , ѡ k   ϰ , ѡ   Ξ ,
(3)
𝜃  is continuous on   0 , .
Ω   denotes the set of all  𝜃  fulfilled in the above 1–3 conditions.
Definition 5 ([7]).
If    Δ : Ξ Ξ  is a mapping and function  α : Ξ × Ξ 0 , , we say that  Δ  is an  α -admissible if  ϰ , ѡ Ξ   α ϰ , ѡ 1   α Δ ϰ , Δ ѡ 1 .
Definition 6 ([19]).
Let   Ξ ,    be an OS. The mapping  Δ : Ξ Ξ  is said to be an orthogonal preserving (briefly OP) if  Δ ϰ Δ ѡ  when   ϰ ѡ .
Definition 7 ([19]).
Let  Ξ ,   ,   D  be an OMS. Then,  Δ : Ξ Ξ  is called an orthogonal continuous (OC) at  ϰ Ξ  if, for each O-sequence  { ϰ n }  in  Ξ  with  { ϰ n } ϰ ,  we have  Δ ϰ n Δ ϰ . Also,  Δ  is said to be an  -continuous on  Ξ  if  Δ  is  - continuous at each   ϰ Ξ .

3. Fixed Point Results for  𝜃 -Contraction

In this section, we introduce the notion of the  𝜃 -contraction in OCMS and prove several FP results.
Definition 8.
Let  Ξ ,   D  be an OCMS and  Δ : Ξ Ξ  be a mapping. Then,  Δ  is called an  𝜃 -contraction if    k 0 , 1 ,  such that
  ϰ , ѡ Ξ     w i t h     ϰ ѡ   𝜃 ( D Δ ϰ   , Δ ѡ 𝜃 D ( ϰ ,   ѡ k .  
Theorem 1.
Let  Ξ ,   D ,    be an OCMS and  Δ : Ξ Ξ    be the orthogonal complete (OC), OP, and   𝜃 -contraction, such that
1 2 D ϰ   ,   Δ ϰ < D ϰ , ѡ 𝜃 ( D Δ ϰ   , Δ ѡ 𝜃 D ( ϰ ,   ѡ k  
  ϰ , ѡ Ξ   w i t h   ϰ ѡ   a n d   k 0 ,   1 .
Then,  Δ  has a unique fixed point (UFP)  e Ξ .
Proof. 
Let  ϰ 0 Ξ , such that  ѡ Ξ   ϰ 0 ѡ   o r     ѡ Ξ   ѡ ϰ 0  for  n N . Define a sequence  { ϰ n } ;  it follows that  ϰ 0 Δ ϰ 0  or  Δ   ϰ 0 .    Assume that  ϰ 1 = Δ ϰ 0  and  ϰ 2 = Δ ϰ 1 = Δ 2 ϰ o ϰ n + 1 = Δ n ϰ o ;  if  Δ ϰ n = Δ ϰ n + 1  for some  n   N ,  then  Δ ϰ n  is an FP of  Δ  and we are done. Let  ϰ n ϰ n + 1  for all  n   N . Since  Δ  is OP, then  ϰ n ϰ n + 1   o r   ϰ n + 1 ϰ n . Hence  { ϰ n }  is O-sequence. Then, we have
0 < D ϰ n , Δ ϰ n     n N .
So, we obtain
1 2 D ϰ n 1 , Δ ϰ n 1 < D ϰ n 1 , Δ ϰ n = D ϰ n , ϰ n + 1 ,     n N .
This assumption follows
1 < D ϰ n   , ϰ n + 1 = 𝜃 ( D Δ ϰ n 1 , Δ ϰ n 𝜃 D ϰ n 1   , ϰ n k = 𝜃 D Δ ϰ n 2 , Δ ϰ n 1 k
𝜃 D ϰ n 2   , ϰ n 1 k 2 𝜃 D ϰ 0   , ϰ 1 k n     n   N .  
Letting  n ,  we obtain
𝜃 D ϰ n   , ϰ n + 1 1 .
Using the definition of  ( 𝜃 2 ) ,  we have
l i m n D ϰ n   , ϰ n + 1 = 0 .
Now, we examine that  { ϰ n }  is a Cauchy sequence. Suppose that  { ϰ n }  is not a Cauchy sequence. Then,    ε > 0  and the sequences  p n  and  q n  of  N  are such that for    p n > q n > n ,  we have
( ϰ p n ,   ϰ q n ) ε   and   ( ϰ p n 1 ,   ϰ q n ) < ε ,  
for  n N . Using triangle inequality, we obtain
ε D ϰ p ( n ) ,   ϰ ( q ) n D ϰ p ( n ) ,   ϰ p ( n ) 1 + D ϰ p ( n ) 1 ,   ϰ q n < D ϰ p ( n ) 1 , Δ ϰ p ( n ) 1 + ε   .  
Taking the limit as  n    in Equation (5) and using Equation (3), we obtain
l i m n   D ϰ p ( n ) ,   ϰ q ( n ) = ε .  
From (1) and (4) and  n 0 N , we have
1 2 D ϰ p n , Δ ϰ p n < ε 2 < D ϰ p n , ϰ q n .
For each  n   n 0 ,  we obtain
𝜃 ( D Δ ϰ p n , Δ ϰ q n 𝜃 D ϰ p n , ϰ q n k .
Letting  n    in (7) and using (6), we obtain
𝜃 ε 𝜃 ε k .
Which is a contradiction for  k 0 ,   1 . That is,  ϰ n  is a Cauchy sequence. So, we have OCMS; then,    e Ξ  such that  ϰ n e  as  n ,  so that
l i m n D ϰ n , e = 0 .
We claim that
1 2 D ϰ n , Δ ϰ n < D ϰ n , e o r 1 2 D Δ ϰ n , Δ 2 ϰ n < D Δ ϰ n , e ,     n N .  
Let  m N  such that
1 2 D ϰ m , Δ ϰ m D ϰ n , e   and
1 2 D Δ ϰ m , Δ 2 ϰ m D Δ ϰ n , e .  
Then, we obtain
2 D ϰ n , e D ϰ m , Δ ϰ m   D ϰ m , e + D e , Δ ϰ m .
This implies that
D ϰ n , e D e , Δ ϰ m .
Using Equations (9) and (10), we obtain
D ϰ m , e D e , Δ ϰ m 1 2 D Δ ϰ m , Δ 2 ϰ m .
Since
1 2 D Δ ϰ m , Δ 2 ϰ m < D ϰ m , Δ ϰ m .
We obtain
𝜃 D Δ ϰ m , Δ 2 ϰ m 𝜃 D ϰ m , Δ ϰ m k .
Using ( 𝜃 1 ) , we have
D Δ ϰ m , Δ 2 ϰ m < D ϰ m , Δ ϰ m .  
Using Equations (9)–(11), we obtain
D Δ ϰ m , Δ 2 ϰ m < D ϰ m , Δ ϰ m D ϰ m , e + D e , Δ ϰ m 1 2 D Δ ϰ m , Δ 2 ϰ m + 1 2 D Δ ϰ m , Δ 2 ϰ m = D Δ ϰ m , Δ 2 ϰ m .
This is a contradiction. If we let Equation (8) hold, then    n N , and we have
1 < 𝜃 D Δ ϰ m , Δ e 𝜃 D ϰ m , e k .
By letting  n , we obtain
𝜃 D Δ ϰ m , Δ e 1 ,
by ( 𝜃 2 ) , we obtain
D Δ ϰ m , Δ e = 0 .
Therefore,
D e , Δ e = l i m n D ϰ n + 1 , Δ e = l i m n D Δ ϰ n , Δ e .
So  e  is an FP of  Δ . Now, we show that  e  is a UFP of  Δ . We suppose contrary that there is another fixed  u  of  Δ . If  e u ,  we can obtain  ϰ 0 e  and  ϰ 0 u . Since  Δ  is OP, we can write  Δ ϰ 0 Δ e  and  Δ ϰ 0 Δ u ;  then
Δ e = e u = Δ u .
So, we have
1 2 D e ,   Δ e   < D e   ,   u   .
By the assumption
𝜃 D e   ,   u   = 𝜃 D Δ e   ,   Δ u   𝜃 D e   ,   u k = D e   ,   u .
Which is contradiction, since  k 0   ,   1 . Thus  e  is the UFP of  Δ . □
Corollary 1.
Let  Ξ ,   D ,    be an OCMS and  Δ : Ξ Ξ    is OC, OP, and  𝜃 -contraction. If  a , k 0   ,   1  exists, such that
  ϰ , ѡ     Ξ   and   k 0 ,   1 , with   ϰ ѡ   o r   ѡ ϰ
D Δ ϰ   , Δ ѡ 0 2 2 ѡ arctan 1 D Δ ϰ   ,   Δ ѡ a 2 2 ѡ arctan 1 D ϰ   , ѡ a k .
Then,  Δ  has a UFP   e Ξ  for every  ϰ 0 Ξ , and the sequence { Δ n ϰ o } converges to the point   e .
Proof. 
If we take  𝜃 t = 2 2 ѡ arctan 1 t a ;  then, by using Theorem 1, we obtain the solution. □
Example 1.
Consider   Ξ = 0 , .  Define an OCMS by
D ϰ   , ѡ = ϰ ѡ ,     ϰ , ѡ Ξ ,
where  ϰ ѡ   ѡ < ϰ  and orthogonal Cauchy sequence  ϰ n    by
ϰ n = n n + 1 2 ,   n N .
Define a mapping  Δ   : Ξ   Ξ  by
Δ ϰ n = ϰ 1                       i f       n = 1 , ϰ n 1                 i f       n > 1 .
If  ѡ < ϰ  then, it is easy to see that  Δ ѡ < Δ ϰ .  Since  Δ  is an OP and OC. For each  n > 1 ,   Δ  does not fulfill Banach’s contraction. We can quickly examine that
l i m n D Δ ϰ n   ,   Δ ϰ 1 D ( ϰ n   , ϰ 1 ) = l i m n D ϰ n 1   ,   ϰ 1 D ( ϰ n   , ϰ 1 ) = l i m n n n 1 2 n n + 1 2 = 1 .
Assume that  𝜃 : 0 , 1 ,  be non-decreasing function defined by
𝜃 t = e t e t ,     t > 0 .
We, prove that  Δ  is an  𝜃 -contraction. Without the loss of generality
ϰ n ϰ m n < m     n , m N ,  we obtain
D Δ ϰ n   ,   Δ ϰ m 0 e D Δ ϰ n   ,   Δ ϰ m e D Δ ϰ n   ,   Δ ϰ m e k [ D ϰ n   ,   ϰ m e D ϰ n   ,   ϰ m .
For some  k 0 ,   1 ,  we have the following cases:
Case 1: If every  n , m   N ,   take   n = 1   a n d   m > 1 ,  we have
e D Δ ϰ 1   ,   Δ ϰ m e D Δ ϰ 1   ,   Δ ϰ m e k [ D ϰ 1   ,   ϰ m e D ϰ 1   ,   ϰ m , e D ϰ 1   ,   ϰ m 1   e D ϰ 1   ,   ϰ m 1 e k [ D ϰ 1   ,   ϰ m e D ϰ 1   ,   ϰ m , D ϰ 1   ,   ϰ m 1 e D ϰ 1   ,   ϰ m 1 k [ D ϰ 1   ,   ϰ m e D ϰ 1   ,   ϰ m . D Δ ϰ n   ,   Δ ϰ m 0 D ϰ 1   ,   ϰ m 1 ( D ϰ 1   ,   ϰ m e D ϰ 1   ,   ϰ m 1 D ϰ 1   ,   ϰ m k   D ϰ 1   ,       ϰ m 1 ( D ϰ 1   ,       ϰ m e D ϰ 1   ,       ϰ m 1 D ϰ 1     ,       ϰ m = m m 1 2 m m + 1 2 e m m 1 m m + 1 2 < e 1 .
Case 2: If for every  n , m   N  and  m > n > 1 ,  we have
e D Δ ϰ n   ,   Δ ϰ m e D Δ ϰ n   ,   Δ ϰ m e k [ D ϰ n   ,   ϰ m e D ϰ n   ,   ϰ m D ϰ m 1   ,   ϰ n 1 D ϰ m   ,   ϰ n e D ϰ m 1   ,   ϰ n 1 D ϰ m   ,   ϰ n = m m 1 n n 1 m m + 1 n n + 1 e m m 1 n n 1 m m + 1 + n n + 1 2 < e 1 ,
for  k = e 1 0 , 1  Equation (12) is satisfied. Hence,  Δ  is a  𝜃 -contraction of Theorem 1  Δ  and has a UFP  ϰ 1 .
Theorem 2.
Let  Ξ ,   D ,    be an OCMS and  Δ : Ξ Ξ    be OC, OP and  𝜃 -contraction, such that
1 2 D ϰ   ,   Δ ϰ < D ϰ , ѡ 𝜃 ( D Δ ϰ   , Δ ѡ 𝜃 m a x { D ( ϰ ,   ѡ , D ϰ , Δ ϰ , D ѡ , Δ ѡ k + H min D ϰ   ,   Δ ϰ ,   D ѡ   ,   Δ ϰ , D ϰ ,   Δ ѡ ,  
  ϰ , ѡ   Ξ   with   ϰ ѡ ,   H 0   and   k 0 ,   1 .  Then,  Δ  has a UFP   e Ξ .
Proof. 
Easy to show on the lines of Theorem 1. □
Theorem 3.
Let  Ξ ,   D ,    be an OCMS and  Δ : Ξ Ξ    be OC, OP and  𝜃 -contraction, such that
D Δ ϰ   , Δ ѡ 0 𝜃 ( D Δ ϰ   , Δ ѡ 𝜃 U ϰ , ѡ k ,    
  ϰ , ѡ     Ξ   w i t h   ϰ ѡ   a n d   k 0 ,   1 , where
U ϰ , ѡ = max D ϰ , ѡ , D ϰ , Δ ϰ , D ѡ , Δ ѡ ,   D ϰ , Δ ϰ D ѡ , Δ ѡ 1 + D ϰ , ѡ .  
Then,  Δ  has a UFP   e Ξ .
Proof. 
It is easy to show on the lines of Theorem 1. □
Corollary 2.
Let  Ξ , D ,  be an OCMS and  Δ : Ξ Ξ  be a self-mapping. Assume that  Γ 0 , 1 ,  such that
D Δ ϰ , Δ ѡ Γ max D ϰ , ѡ , D ϰ , Δ ϰ , D ѡ , Δ ѡ ,   ϰ , ѡ Ξ   with   ϰ ѡ .
Then,  Δ  has a UFP.
Proof. 
The function  𝜃 : 0 , 1 ,  defined by  𝜃 t = e t ,  so
e D Δ ϰ , Δ ѡ e max D ϰ , ѡ , D ϰ , Δ ϰ , D ѡ , Δ ѡ Γ   ϰ , ѡ Ξ .
Using Theorem 1,  Δ  has a UFP. □
Corollary 3.
Let  Ξ ,   D ,    be an OCMS, and  Δ  is a self-mapping and is the OC, OP, and  𝜃 -contraction. If these constants exist,  a , k 0   ,   1 ,  such that
D Δ ϰ   , Δ ѡ 0 2 2 ѡ arctan 1 D Δ ϰ , Δ ѡ a
2 2 ѡ arctan 1 max D ϰ , ѡ , D ϰ , Δ ϰ , D ѡ , Δ ѡ ,   D ϰ , Δ ϰ D ѡ , Δ ѡ 1 + D ϰ , ѡ a , k
  ϰ , ѡ Ξ   a n d   k 0 ,   1 , where   ϰ ѡ   o r   ѡ ϰ .  Then,  Δ  has a UPF  e Ξ  for every  ϰ 0   Ξ , and the sequence { Δ n ϰ o } converges to point   e .
Proof. 
Let  𝜃 t = 2 2 ѡ arctan 1 t a  and Theorem 3 gives the proof. □

4. Fixed Point Theorems for  α 𝜃 -Contraction

In this part, we prove several FP results for  α 𝜃 -contraction in OCMS.
Definition 9.
Let  Ξ ,   D  be an OCMS and  Δ : Ξ Ξ    be a mapping. We say that  Δ  is an orthogonal  α 𝜃 -contraction if two functions  α : Ξ × Ξ 0 ,  and  𝜃 Ω   e x i s t ,  such that
α ϰ , ѡ 𝜃 ( D Δ   ϰ   , Δ   ѡ 𝜃 D ( ϰ ,   ѡ k ,   ϰ , ѡ Ξ   with   ϰ ѡ   and   k 0 ,   1 .
Definition 10.
Let  Δ : Ξ Ξ    and  α : Ξ × Ξ 0 , . Then,  Δ  is called an  α -admissible if  ϰ , ѡ Ξ   w i t h   ϰ ѡ ,  such that
α ϰ , ѡ 1 α Δ ϰ , Δ ѡ 1 .
Example 2.
Let  Ξ = 0 ,   1 ] = A B = 0 , 1 1 4 , 1 3 , 1 2 1 4 , 1 3 , 1 2 . Define   Δ : Ξ Ξ    and  α : Ξ × Ξ 0 ,  by  Δ ϰ = 5 3 ϰ ,     ϰ Ξ . Define an orthogonal relation   by   { ϰ ѡ ϰ ѡ }  and
α ϰ , ѡ = 1 m a x ϰ , ѡ   ϰ A , ѡ B .  
Then,  Δ  is an  α -admissible.
Example 3.
Let   Ξ = 2 ,   2  and define a relation   by   ϰ ѡ   ϰ + ѡ 0   . Define a mapping  α : Ξ × Ξ 0 ,  by
α ϰ , ѡ = min ϰ , ѡ 1 + max ϰ ,   ѡ                     i f       ϰ , ѡ 0 , 2 , e ϰ                                           i f     ϰ , ѡ 0 , 2 , 0                                                                       O t h e r w i s e .  
Define a mapping  Δ   : Ξ   Ξ  by
Δ ϰ = 1                                                               i f       ϰ 1 2 , 1 2 , m i n 1 , ϰ 1 + m a x 1 , ϰ                                   i f       O t h e r w i s e .  
Then,  Δ  is an  α -admissible, but not an  α -admissible mapping. Let  ϰ = 0   and   ѡ = 1 ;  then,
α 0 , 1 = e 0 = 1 ,  
But,
α Δ 0 , Δ 1 = α 1 , 1 2 = 0 .
Remark 1.
Every   α -admissible mapping is an   α -admissible, but the converse is not true in general.
Theorem 4.
Suppose  Ξ ,   D ,    is an OCMS. Let  Δ  is a self mapping and  α : Ξ × Ξ 0 ,  be a mapping. Suppose that the below conditions verify:
(i)
ϰ , ѡ Ξ   w i t h   ϰ ѡ  and  k 0 ,   1
α ϰ , ѡ 𝜃 ( D Δ ϰ   , Δ ѡ 𝜃 D ( ϰ ,   ѡ k ,  
(ii)
Δ  is an  α -admissible;
(iii)
ϰ 0 Ξ  exists, such that  ϰ 0 Δ ϰ 0  and  α ϰ 0 , Δ ϰ 0 1 ;
(iv)
Δ  is an OP;
(v)
Δ  is an OC.
Then,  Δ  has a UFP  e Ξ .
Proof. 
Let  ϰ 0 Ξ , such that  ѡ Ξ   ϰ 0 ѡ   o r     ѡ Ξ   ѡ ϰ 0  for   n N . Define a sequence  { ϰ n } ,  it follows that  ϰ 0 Δ ϰ 0  or  Δ ϰ 0   ϰ 0 .  Assume that  ϰ 1 = Δ ϰ 0  and  ϰ 2 = Δ ϰ 1 = Δ 2 ϰ o ϰ n + 1 = Δ n ϰ o  for each  Δ ϰ n = Δ ϰ n + 1  for some  n   N ; then,  Δ ϰ n  is an FP of  Δ ,  and so, the proof is completed. Let  Δ ϰ n Δ ϰ n + 1  for all  n N . Since  Δ  is OP, then  Δ ϰ n Δ ϰ n + 1   o r   Δ ϰ n + 1 Δ ϰ n . Hence,  { ϰ n }  is an O-sequence. Then, by condition (iii), we have
α ϰ n , Δ ϰ n = α ϰ n , ϰ n + 1 1 ,     n N .    
From (15) and (16), we obtain
1 < 𝜃 D ϰ n   , ϰ n + 1 = 𝜃 ( D Δ ϰ n 1 , Δ ϰ n α ϰ n 1 , ϰ n 𝜃 ( D Δ ϰ n 1 , Δ ϰ n 𝜃 D ϰ n 1   , ϰ n k .  
Using  𝜃 1 ,  we have
D ϰ n   , ϰ n + 1 < D ϰ n 1   , ϰ n .  
Hence, the sequence  { D ϰ n   , ϰ n + 1 }  is decreasing and  { D ϰ n   , ϰ n + 1 }  converges to a non-negative real number.  r 0  exists, such that
l i m n d ϰ n , ϰ n + 1 = r   and   D ϰ n , ϰ n + 1 r .  
Now, we show that  r = 0 . By assuming that  r > 0  utilizing  𝜃 1  and Equations (17) and (18), we obtain
1 < 𝜃 r = 𝜃 D ϰ n   , ϰ n + 1 𝜃 D ϰ n 1   , ϰ n k   𝜃 D ϰ 0   , ϰ 1 k n n N .  
By letting  n ,  we obtain  𝜃 r = 1  and by using  𝜃 2 ,  we have  r = 0 ; therefore,
l i m n D ϰ n , ϰ n + 1 = 0 .
Assume that    n , p N  such that  ϰ n = ϰ n + p ,  and we show that  p = 1 .  Assume that  p > 1 ;  then, by using (15) and (16), we obtain
𝜃 D ϰ n   , ϰ n + 1 = 𝜃 D ϰ n + p   , ϰ n + p + 1 = 𝜃 ( D Δ ϰ n + p 1 , Δ ϰ n + p   α ϰ n + p 1 , ϰ n + p 𝜃 ( D Δ ϰ n + p 1 , Δ ϰ n + p   𝜃 D ϰ n + p 1   , ϰ n + p k .    
Using ( 𝜃 1 ), we obtain
𝜃 D ϰ n   , ϰ n + 1 < D ϰ n + p 1   , ϰ n + p ,  
by using (15), we obtain
𝜃 D ϰ n + p 1   , ϰ n + p = 𝜃 ( D Δ ϰ n + p 2 , Δ ϰ n + p 1   α ϰ n + p 2 , ϰ n + p 1 𝜃 ( D Δ ϰ n + p 2 , Δ ϰ n + p 1   𝜃 D ϰ n + p 2   , ϰ n + p 1 k < D ϰ n + p 1   , ϰ n + p .    
Since by   𝜃 1 ,  we obtain
D ϰ n + p 1   , ϰ n + p < D ϰ n + p 1   , ϰ n + p ,  
continuing this process, we obtain
D ϰ n   , ϰ n + 1 < D ϰ n + p 1 , ϰ n + p < D ϰ n + p 2 , ϰ n + p 1 < < D ϰ n , ϰ n + 1 .  
Which is contradiction, and hence,  p = 1 .  We assume that  Δ  has an FP. Now, we show that { ϰ n }  is a Cauchy sequence. Assume that { ϰ n }  is not a Cauchy sequence. So,  ε > 0  exists, and we consider two subsequences of { ϰ n } ,  which are { ϰ n k }   and  { ϰ m k }  with  n k > m k > k , for which
D ϰ n k , ϰ m k ε   D ϰ n k , ϰ m k 1 < ε .  
Using the triangular inequality, we have
ε D ϰ n k , ϰ m k D ϰ n k , ϰ m k 1 + D ϰ m k 1 , ϰ m k .    
Letting  k  and using (22), (18), and then (24), we have
l i m n D ϰ n k , ϰ m k = ε .    
Using Equation (15) there exist a positive integer  k 0 ,  such that
D ϰ n k , ϰ m k > 0   n k > m k > k k 0 .  
Then, we have
𝜃 ε 𝜃 D ϰ n k + 1 , ϰ m k + 1 = 𝜃 D Δ ϰ n k , Δ ϰ m k α ϰ n k , ϰ m k 𝜃 ( D Δ ϰ n k , Δ ϰ m k 𝜃 D ϰ n k , ϰ m k k = 𝜃 ε k .
Which is a contradiction because  k 0 , 1 ; hence,  ϰ n  is Cauchy sequence. Thus, we have OCMS; then,    e Ξ  such that  ϰ n e  as  n ,  so that
e = l i m n ϰ n + 1 = l i m n Δ ϰ n = Δ e .  
So,  e  is an FP of   Δ . □
Theorem 5.
Let  Ξ ,   D ,    be an OCMS. Let  Δ  is a self mapping and  α : Ξ × Ξ 0 , ) be a mapping. Assume that the below conditions are verified:
(i)
ϰ , ѡ Ξ   w i t h   ϰ ѡ  and   k 0 ,   1
α ϰ , ѡ 𝜃 ( D Δ ϰ   , Δ ѡ 𝜃 D ( ϰ ,   ѡ k ,  
(ii)
Δ  is an  α -admissible;
(iii)
there exist  ϰ 0 Ξ , such that  α ϰ 0 , Δ ϰ 0 1 ;
(iv)
Δ   is an OP;
(v)
If  { ϰ n }  is an orthogonal sequence in  Ξ  such that  α ϰ n , ϰ n + 1 1  for each  n  and
(vi)
ϰ n .  Then, there exists an orthogonal subsequence  { ϰ n k }  of  { ϰ n }  such that  α ϰ n k , ϰ 1  for each  k .
Then,  Δ  has a UFP   e Ξ .
Proof. 
Easy to show on the lines of Theorem 4. □
Theorem 6.
Let  Ξ ,   ,   D  be an OCMS. Let  Δ : Ξ Ξ  be a self-mapping and  α : Ξ × Ξ 0 ,  be a mapping then the below conditions hold:
(i)
Suppose that    𝜃 Ω  and  k 0 ,   1  such that
D Δ ϰ   , Δ ѡ 0 𝜃 ( D Δ ϰ   , Δ ѡ 𝜃 U ϰ , ѡ k ,  
    ϰ , ѡ     Ξ   w i t h   ϰ ѡ   a n d   k 0 ,   1 ,  where
U ϰ , ѡ = max D ϰ , ѡ , D ϰ , Δ ϰ , D ѡ , Δ ѡ ,   D ϰ , Δ ϰ D ѡ , Δ ѡ 1 + D ϰ , ѡ   ,  
(ii)
Δ  is an  α -admissible;
(iv)
there exist  ϰ 0 Ξ , such that  ϰ 0 Δ ϰ 0  and  α ϰ 0 , Δ ϰ 0 1 ;
(iv)
Δ  is an OP;
(v)
Δ  is an OC.
Then,  Δ  has a UFP  e Ξ .
Proof. 
It is easy to show on the lines of Theorem 4. □
Corollary 4.
Let  Ξ ,   ,   D  be an OCMS. Let  Δ : Ξ Ξ  be a self-mapping. Assume that  𝜃 Ω  and  k 0 ,   1  exist, such that
ϰ , ѡ Ξ   a n d   ϰ ѡ   D Δ ϰ , Δ ѡ 0   𝜃 D Δ ϰ ,   Δ ѡ 𝜃 Ξ ϰ ,   ѡ k ,  
where  Ξ ϰ ,   ѡ = max D ϰ , ѡ ,   D ϰ ,   Δ   ϰ , D ѡ ,   Δ   ѡ .  Then,  Δ  has a UFP.
Corollary 5.
Let  Ξ ,   ,   D  be an OCMS. Suppose  Δ : Ξ Ξ  is a self-mapping and  α : Ξ × Ξ 0 ,  is a mapping; if the below conditions hold:
(1)
Suppose that    𝜃 Ω  and  k 0 ,   1  such that
ϰ , ѡ Ξ   a n d   ϰ ѡ   α ϰ ,   ѡ   D Δ ϰ , Δ ѡ 0   𝜃 D ( Δ ϰ ,   Δ ѡ 𝜃 U ϰ ,   ѡ k ,  
where  U ϰ ,   ѡ = max D ϰ , ѡ ,   D ϰ ,   Δ   ϰ , D ѡ ,   Δ   ѡ , D ϰ , Δ   ϰ , D ѡ , Δ   ѡ 1 + D ϰ ,   ѡ , D ϰ , Δ   ϰ + D ѡ , Δ   ѡ 2 ,
(2)
Δ  is an  α -admissible;
(3)
ϰ 0 Ξ  exists, such that  ϰ 0 Δ ϰ 0  and  α ϰ 0 , Δ ϰ 0 1 ;
(4)
Δ  is an OP;
(5)
Δ  is an OC.
Then,  Δ  has a UFP  e Ξ ,  and  { Δ ϰ n }   converges to  e .
Example 4.
Consider  Ξ = 2 ,   2  and
D ϰ   , ѡ = ϰ ѡ                     ϰ , ѡ Ξ ,    
where  ϰ ѡ   ѡ + ϰ 0 ,   then  Ξ , D  is an OCMS.
Define a mapping  α : Ξ × Ξ 0 ,  by
α ϰ , ѡ = min ϰ , ѡ 1 + max ϰ ,   ѡ ,                                 i f             ϰ , ѡ 0 , 2 e ϰ ,                                                         i f       ϰ , ѡ 0 , 2 1     ,                                                             i f                   ϰ = ѡ = 1 0 ,                                                                                       O t h e r w i s e .  
Define a mapping  Δ   : Ξ   Ξ   by
Δ ϰ = 1 ,                                                               i f       ϰ 1 2 , 1 2 1 min 1 , ϰ 1 + max 1 , ϰ ,   i f   ϰ 2 , 1 2 1 2 , 2 1 .  
If  ѡ ϰ ѡ + ϰ 0 ,  then it is easy to observe that  Δ ѡ Δ ϰ Δ ѡ , Δ ϰ 0 .  So,  Δ  is an OP. Assume  ϰ n  be an O-sequence that converges to  ϰ ; then,
lim n D ϰ n ,   ϰ = l i m n ϰ n , ϰ = 0 ,  
which implies that
lim n D Δ ϰ n , Δ ϰ = l i m n Δ ϰ n , Δ ϰ = 0 .
Consider  ϰ n = 1 n , we have
lim n D 1 n ,   0 = 0 ,  
Then
lim n D Δ 1 n , Δ   0 = D Δ 0 , Δ   0 = D 1 , 1 = 0 .
Which shows that  Δ  is an OC. Also,  Δ  is an  α -admissible, but not  α -admissible mapping. Let  Ξ  is not an OS,  ϰ = 0  and  ѡ = 1 ;  then,
α 0 , 1 = e 0 = 1  
and
α Δ 0 , Δ 1 = α 1 , 1 2 = 0 1 .  
Assume that  𝜃 : 0 , 1 ,  be ND function defined by
𝜃 t = e t ,     t > 0 ,
Now we show that  Δ  is not an  α 𝜃 -contraction, but  Δ  is an  α 𝜃 -contraction. For this, let  ϰ = 1  and  ѡ = 2 ;  then,  α 1 , 2 = e 1 = e 1 , and
α 1 , 2 e D 1 2 , 2 2 = e 1 e 0.5 e k   D 1 , 2 = e k .
So,  Δ  is not an  α 𝜃 -contraction, but  Δ  is an  α 𝜃 -contraction for each  k 1 2 , 1 .  Hence, all the conditions of Theorem 4 are satisfied, and  Δ  has a UFP   e = 1 .

5. Conclusions

In this manuscript, we introduced the notions of orthogonal  𝜃 -contraction and orthogonal  α 𝜃 -contraction and proved several FP results by utilizing these contraction mappings in the context of OCMSs. Further, we provided several non-trivial examples to support our main results. This work can be extended to include orthogonal controlled metric spaces, orthogonal  S -metric spaces, orthogonal  b v s -metric spaces, and many other generalized spaces.

Author Contributions

Conceptualization, I.K.A., U.I. and F.U.D.; methodology, K.A.; software, U.I.; validation, F.U.D., D.A.K. and I.K.A.; formal analysis, U.I.; investigation, F.U.D.; resources, K.A.; data curation, D.A.K.; writing—original draft preparation, U.I.; writing—review and editing, I.K.A.; visualization, D.A.K.; supervision, F.U.D. and I.K.A.; project administration, D.A.K.; funding acquisition, I.K.A. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Data will be available on demand from corresponding author.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundam. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
  2. Caccioppoli, R. Un teorema generale sull’ esistenza di elementi uniti in unatrasformazionefunzionale. Rend. Lincei 1930, 11, 794–799. [Google Scholar]
  3. Branciari, A. A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces. Publ. Math. Debr. 2000, 57, 31–37. [Google Scholar] [CrossRef]
  4. Jleli, M.; Samet, B. A new generalization of the Banach contraction principle. J. Inequalities Appl. 2014, 38. [Google Scholar] [CrossRef]
  5. Samet, B.; Vetro, C.; Vetro, P. Fixed point theorems for α-𝜘-contractive mappings. Nonlinear Anal. 2012, 75, 2154–2165. [Google Scholar] [CrossRef] [Green Version]
  6. Ahmad, J.; Al-Mazrooei, A.E.; Cho, Y.; Yang, Y. Fixed point results for generalized 𝜃-contractions. J. Nonlinear Sci. Appl. 2017, 10, 2350–2358. [Google Scholar] [CrossRef] [Green Version]
  7. Arshad, M.; Ameer, E.; Karapinar, E. Generalized contractions with triangular α-orbital admissible mapping on Branciari metric spaces. J. Inequalities Appl. 2016, 63. [Google Scholar] [CrossRef] [Green Version]
  8. Gordji, M.E.; Rameani, M.; de la Sen, M.; Cho, Y. On orthogonal sets and Banach Fixed point theorem. Fixed Point Theory 2017, 18, 569–578. [Google Scholar] [CrossRef]
  9. Diminnie, C.R. A new orthogonality relation for normed linear spaces. Math. Nachrichten 1983, 114, 197–203. [Google Scholar] [CrossRef]
  10. Javed, K.; Aydi, H.; Uddin, F.; Arshad, M. On Orthogonal Partial b-Metric Spaces with an Application. J. Math. 2021, 6692063. [Google Scholar] [CrossRef]
  11. Uddin, F.; Park, C.; Javed, K.; Arshad, M.; Lee, J.R. Orthogonal m-metric spaces and an application to solve integral equations. Adv. Differ. Equ. 2021, 159. [Google Scholar] [CrossRef]
  12. Uddin, F.; Javed, K.; Aydi, H.; Ishtiaq, U.; Arshad, M. Control Fuzzy Metric Spaces via Orthogonality with an Application, J. Math. 2021, 5551833. [Google Scholar] [CrossRef]
  13. Aydi, H.; Karapinar, E.; Yazidi, H. Modified 𝐹-Contractions via 𝛼-Admissible Mappings and Application to Integral Equations. Filomat 2017, 31, 1141–1148. [Google Scholar] [CrossRef]
  14. Aydi, H.; Karapinar, E.; Zhang, D. A note on generalized admissible-Meir-Keeler-contractions in the context of generalized metric space. Results Math. 2017, 71, 73–92. [Google Scholar] [CrossRef]
  15. Karapınar, E.; Samet, B. Generalized 𝜶-𝝍 Contractive Type Mappings and Related FPTs with Applications. Abstr. Appl. Anal. 2012, 793486. [Google Scholar]
  16. Suzuki, T. Generalized metric spaces do not have the compatible topology. Abstr. Appl. Anal. 2014, 458098. [Google Scholar] [CrossRef]
  17. Karapinar, E.; Fulga, A. A fixed point on convex b-metric spaces via admissible mappings. TWMS J. Pure Appl. Math. 2021, 12, 254–264. [Google Scholar]
  18. Karapinar, E.; Petruşel, A.; Petruşel, G. On admissible hybrid Geraghty contractions. Carpathian J. Math. 2020, 36, 433–442. [Google Scholar] [CrossRef]
  19. Karapinar, E.; Moustafa, S.I.; Shehata, A.; Agarwal, R.P. Fractional Hybrid Differential Equations and Coupled Fixed Point Results for 𝛼-Admissible  F ( 𝜓 1 𝜓 2 ) -Contractions in M-Metric Spaces. Discret. Dyn. Nat. Soc. 2020, 7126045. [Google Scholar]
  20. Ahmad, A.; Al-Rawashdeh, A.S.; Azam, A. Fixed point results for {α, ξ}-expansive locally contractive mappings. J. Inequalities Appl. 2014, 364. [Google Scholar] [CrossRef] [Green Version]
  21. Ahmad, J.; Al-Rawashdeh, A.; Azam, A. New fixed point theorems for generalized F-contractions in CMS. Fixed Point Theory Appl. 2015, 80. [Google Scholar] [CrossRef] [Green Version]
  22. Ciric, L.J.B. A generalization of Banach’s contraction principle. Proc. Am. Math. Soc. 1974, 45, 267–273. [Google Scholar] [CrossRef]
  23. Jleli, M.; Karapinar, E.; Samet, B. Further generalization of the Banach contraction principle. J. Inequalities Appl. 2014, 439. [Google Scholar] [CrossRef]
  24. Naeem, M.; Yasmin, H.; Shah, N.A.; Kafle, J.; Nonlaopon, K. Analytical Approaches for Approximate Solution of the Time-Fractional Coupled Schrödinger–KdV Equation. Symmetry 2022, 14, 2602. [Google Scholar] [CrossRef]
  25. Aljahdaly, N.H.; Akgül, A.; Shah, R.; Mahariq, I.; Kafle, J. A comparative analysis of the fractional-order coupled Korteweg–De Vries equations with the Mittag–Leffler law. J. Math. 2022, 8876149. [Google Scholar] [CrossRef]
  26. Manafian, J. An optimal Galerkin-homotopy asymptotic method applied to the nonlinear second-order bvps. Proc. Inst. Math. Mech. 2021, 47, 156–182. [Google Scholar] [CrossRef]
  27. Manafian, J.; Allahverdiyeva, N. An analytical analysis to solve the fractional differential equations. Adv. Math. Models Appl. 2021, 6, 128–161. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Ishtiaq, U.; Din, F.U.; Ahmad, K.; Kattan, D.A.; Argyros, I.K. Fixed Point Results for Generalized. Foundations 2023, 3, 393-405. https://doi.org/10.3390/foundations3030028

AMA Style

Ishtiaq U, Din FU, Ahmad K, Kattan DA, Argyros IK. Fixed Point Results for Generalized. Foundations. 2023; 3(3):393-405. https://doi.org/10.3390/foundations3030028

Chicago/Turabian Style

Ishtiaq, Umar, Fahim Ud Din, Khaleel Ahmad, Doha A. Kattan, and Ioannis K. Argyros. 2023. "Fixed Point Results for Generalized" Foundations 3, no. 3: 393-405. https://doi.org/10.3390/foundations3030028

APA Style

Ishtiaq, U., Din, F. U., Ahmad, K., Kattan, D. A., & Argyros, I. K. (2023). Fixed Point Results for Generalized. Foundations, 3(3), 393-405. https://doi.org/10.3390/foundations3030028

Article Metrics

Back to TopTop