Assessment of Humic and Fulvic Acid Sorbing Potential for Heavy Metals in Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals, Reagents, and Raw Materials
2.2. HA and FA Preparation
2.3. Fourier Transform Infrared (FT-IR) Analysis
2.4. Sorption Process
2.5. Distribution Coefficient (Kd) Calculation
2.6. Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
2.7. Spectroscopic Measurement and Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Characterization of the Sorbents
3.2. Removal of Metals by HA
3.3. Removal of Metals by FA
3.4. Spectroscopic Measurement of Sorption
3.5. Principal Component Analysis (PCA)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mitra, S.; Chakraborty, A.J.; Tareq, A.M.; Emran, T.B.; Nainu, F.; Khusro, A.; Idris, A.M.; Khandaker, M.U.; Osman, H.; Alhumaydhi, F.A.; et al. Impact of Heavy Metals on the Environment and Human Health: Novel Therapeutic Insights to Counter the Toxicity. J. King Saud Univ. Sci. 2022, 34, 101865. [Google Scholar] [CrossRef]
- Singh, A.; Sharma, A.; Verma, R.K.; Chopade, R.L.; Pandit, P.P.; Nagar, V.; Aseri, V.; Choudhary, S.K.; Awasthi, G.; Awasthi, K.K.; et al. Heavy Metal Contamination of Water and Their Toxic Effect on Living Organisms. In The Toxicity of Environmental Pollutants; IntechOpen: London, UK, 2022; ISBN 978-1-80355-580-5. [Google Scholar]
- Rehman, K.; Fatima, F.; Waheed, I.; Akash, M.S.H. Prevalence of Exposure of Heavy Metals and Their Impact on Health Consequences. J. Cell. Biochem. 2018, 119, 157–184. [Google Scholar] [CrossRef] [PubMed]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 2021, 12, 227. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Xi, S. The Effects of Heavy Metals on Human Metabolism. Toxicol. Mech. Methods 2020, 30, 167–176. [Google Scholar] [CrossRef]
- Rahman, Z.; Singh, V.P. The Relative Impact of Toxic Heavy Metals (THMs) (Arsenic (As), Cadmium (Cd), Chromium (Cr)(VI), Mercury (Hg), and Lead (Pb)) on the Total Environment: An Overview. Environ. Monit. Assess. 2019, 191, 419. [Google Scholar] [CrossRef] [PubMed]
- Al Osman, M.; Yang, F.; Massey, I.Y. Exposure Routes and Health Effects of Heavy Metals on Children. BioMetals 2019, 32, 563–573. [Google Scholar] [CrossRef]
- Miró, M.; Estela, J.M.; Cerdà, V. Application of Flowing Stream Techniques to Water Analysis: Part III. Metal Ions: Alkaline and Alkaline-Earth Metals, Elemental and Harmful Transition Metals, and Multielemental Analysis. Talanta 2004, 63, 201–223. [Google Scholar] [CrossRef]
- Izah, S.C.; Chakrabarty, N.; Srivastav, A.L. A Review on Heavy Metal Concentration in Potable Water Sources in Nigeria: Human Health Effects and Mitigating Measures. Expo. Health 2016, 8, 285–304. [Google Scholar] [CrossRef]
- Richardson, J.B. Alkaline Earth Metals in Soil. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Pathak, P.; Srivastava, R.R.; Keceli, G.; Mishra, S. Assessment of the Alkaline Earth Metals (Ca, Sr, Ba) and Their Associated Health Impacts. In Strontium Contamination in the Environment; Pathak, P., Gupta, D.K., Eds.; The Handbook of Environmental Chemistry; Springer International Publishing: Cham, Switzerland, 2020; pp. 227–243. ISBN 978-3-030-15314-4. [Google Scholar]
- de Paiva Magalhães, D.; da Costa Marques, M.R.; Baptista, D.F.; Buss, D.F. Metal Bioavailability and Toxicity in Freshwaters. Environ. Chem. Lett. 2015, 13, 69–87. [Google Scholar] [CrossRef]
- Qasem, N.A.A.; Mohammed, R.H.; Lawal, D.U. Removal of Heavy Metal Ions from Wastewater: A Comprehensive and Critical Review. Npj Clean Water 2021, 4, 36. [Google Scholar] [CrossRef]
- Saleh, T.A.; Mustaqeem, M.; Khaled, M. Water Treatment Technologies in Removing Heavy Metal Ions from Wastewater: A Review. Environ. Nanotechnol. Monit. Manag. 2022, 17, 100617. [Google Scholar] [CrossRef]
- Yadav, M.; Singh, G.; Jadeja, R.N. Physical and Chemical Methods for Heavy Metal Removal. In Pollutants and Water Management; Wiley: Hoboken, NJ, USA, 2021; pp. 377–397. [Google Scholar]
- Nasef, M.M.; Ujang, Z. Introduction to Ion Exchange Processes. In Ion Exchange Technology I: Theory and Materials; Inamuddin, D., Luqman, M., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 1–39. ISBN 978-94-007-1700-8. [Google Scholar]
- Ersahin, M.E.; Ozgun, H.; Dereli, R.K.; Ozturk, I.; Roest, K.; van Lier, J.B. A Review on Dynamic Membrane Filtration: Materials, Applications and Future Perspectives. Bioresour. Technol. 2012, 122, 196–206. [Google Scholar] [CrossRef]
- Hussain, A.; Madan, S.; Madan, R. Removal of Heavy Metals from Wastewater by Adsorption. In Heavy Metals–Their Environmental Impacts and Mitigation; IntechOpen: London, UK, 2021. [Google Scholar]
- Judkins, D.G.; McTeer, A.V. Alkali Toxicity; StatPearls Publishing: Treasure Island, FL, USA, 2023; Volume 14. [Google Scholar]
- Gupta, A.; Sharma, V.; Sharma, K.; Kumar, V.; Choudhary, S.; Mankotia, P.; Kumar, B.; Mishra, H.; Moulick, A.; Ekielski, A.; et al. A Review of Adsorbents for Heavy Metal Decontamination: Growing Approach to Wastewater Treatment. Materials 2021, 14, 4702. [Google Scholar] [CrossRef]
- Smržová, D.; Szatmáry, L.; Ecorchard, P.; Machálková, A.; Maříková, M.; Salačová, P.; Straka, M. Carbon and Zeolite-Based Composites for Radionuclide and Heavy Metal Sorption. Heliyon 2022, 8, e12293. [Google Scholar] [CrossRef]
- Stepanov, S.; Panfilova, O. Removal of Heavy Metal Ions with Clay-Based Sorbent. IOP Conf. Ser. Earth Environ. Sci. 2019, 272, 022248. [Google Scholar] [CrossRef]
- Trikkaliotis, D.G.; Ainali, N.M.; Tolkou, A.K.; Mitropoulos, A.C.; Lambropoulou, D.A.; Bikiaris, D.N.; Kyzas, G.Z. Removal of Heavy Metal Ions from Wastewaters by Using Chitosan/Poly(Vinyl Alcohol) Adsorbents: A Review. Macromol 2022, 2, 403–425. [Google Scholar] [CrossRef]
- Gupta, S.; Sireesha, S.; Sreedhar, I.; Patel, C.M.; Anitha, K.L. Latest Trends in Heavy Metal Removal from Wastewater by Biochar Based Sorbents. J. Water Process Eng. 2020, 38, 101561. [Google Scholar] [CrossRef]
- Abit, K.E.; Carlsen, L.; Nurzhanova, A.A.; Nauryzbaev, M.K. Activated Carbons from Miscanthus Straw for Cleaning Water Bodies in Kazakhstan. Eurasian Chem. Technol. J. 2019, 21, 259–267. [Google Scholar] [CrossRef]
- Vo-Minh Nguyen, H.; Hur, J.; Shin, H.-S. Humic Acids and Fulvic Acids: Characteristics, Sorption of Hydrophobic Organic Contaminants, and Formation of Disinfection by-Products during Chlorination. In Humus and Humic Substances–Recent Advances; IntechOpen: London, UK, 2022. [Google Scholar]
- Nardi, S.; Schiavon, M.; Francioso, O. Chemical Structure and Biological Activity of Humic Substances Define Their Role as Plant Growth Promoters. Molecules 2021, 26, 2256. [Google Scholar] [CrossRef] [PubMed]
- Vašková, J.; Stupák, M.; Vidová Ugurbaş, M.; Žatko, D.; Vaško, L. Therapeutic Efficiency of Humic Acids in Intoxications. Life 2023, 13, 971. [Google Scholar] [CrossRef] [PubMed]
- Chiavola, A.; D’Amato, E.; Di Marcantonio, C. Comparison of Adsorptive Removal of Fluoride from Water by Different Adsorbents under Laboratory and Real Conditions. Water 2022, 14, 1423. [Google Scholar] [CrossRef]
- Makrigianni, E.A.; Papadaki, E.S.; Chatzimitakos, T.; Athanasiadis, V.; Bozinou, E.; Lalas, S.I. Application of Humic and Fulvic Acids as an Alternative Method of Cleaning Water from Plant Protection Product Residues. Separations 2022, 9, 313. [Google Scholar] [CrossRef]
- ASTM D4959-07; Standard Test Method for Determination of Water (Moisture) Content of Soil by Direct Heating. ASTM International: West Conshohocken, PA, USA, 2007. [CrossRef]
- Sedeño-Díaz, J.E.; López-López, E.; Mendoza-Martínez, E.; Rodríguez-Romero, A.J.; Morales-García, S.S. Distribution Coefficient and Metal Pollution Index in Water and Sediments: Proposal of a New Index for Ecological Risk Assessment of Metals. Water 2020, 12, 29. [Google Scholar] [CrossRef]
- Nabelkova, J.; Kominkova, D. Trace Metals in the Bed Sediment of Small Urban Streams. Open Environ. Biol. Monit. J. 2012, 5, 48–55. [Google Scholar] [CrossRef]
- Schnitzer, M.; Monreal, C. Chapter Three. Quo Vadis Soil Organic Matter Research? A Biological Link to the Chemistry of Humification. Adv. Agron. 2011, 113, 143–217. [Google Scholar] [CrossRef]
- Klučáková, M.; Kalina, M. Composition, Particle Size, Charge, and Colloidal Stability of pH-Fractionated Humic Acids. J. Soils Sediments 2015, 15, 1900–1908. [Google Scholar] [CrossRef]
- Havelcová, M.; Mizera, J.; Sýkorová, I.; Pekař, M. Sorption of Metal Ions on Lignite and the Derived Humic Substances. J. Hazard. Mater. 2009, 161, 559–564. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yue, Q.; Gao, B. Adsorption Kinetics and Desorption of Cu(II) and Zn(II) from Aqueous Solution onto Humic Acid. J. Hazard. Mater. 2010, 178, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Shaker, M.A.; Albishri, H.M. Dynamics and Thermodynamics of Toxic Metals Adsorption onto Soil-Extracted Humic Acid. Chemosphere 2014, 111, 587–595. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Mulligan, C.N. Effect of Natural Organic Matter on Arsenic Release from Soilsand Sediments into Groundwater. Environ. Geochem. Health 2006, 28, 197–214. [Google Scholar] [CrossRef]
- Machado, W.; Franchini, J.C.; De Fátima Guimarães, M.; Filho, J.T. Spectroscopic Characterization of Humic and Fulvic Acids in Soil Aggregates, Brazil. Heliyon 2020, 6, e04078. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.; Yang, H.; Tong, L.; Zhong, S.; Liu, Y. Spectral Study of Humic Substance Extract from Pressurized Oxidizing Slag of Carlin-Typed Gold Deposit. J. Phys. Conf. Ser. 2019, 1347, 012027. [Google Scholar] [CrossRef]
- Kar, S.; Maity, J.P.; Jean, J.-S.; Liu, C.-C.; Nath, B.; Lee, Y.-C.; Bundschuh, J.; Chen, C.-Y.; Li, Z. Role of Organic Matter and Humic Substances in the Binding and Mobility of Arsenic in a Gangetic Aquifer. J. Environ. Sci. Health Part A 2011, 46, 1231–1238. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Song, M.; Liu, M.; Jiang, C.; Li, Z. Fungicidal Activities of Soil Humic/Fulvic Acids as Related to Their Chemical Structures in Greenhouse Vegetable Fields with Cultivation Chronosequence. Sci. Rep. 2016, 6, 32858. [Google Scholar] [CrossRef] [PubMed]
- Rashid, T.; Sher, F.; Jusoh, M.; Joya, T.A.; Zhang, S.; Rasheed, T.; Lima, E.C. Parametric Optimization and Structural Feature Analysis of Humic Acid Extraction from Lignite. Environ. Res. 2023, 220, 115160. [Google Scholar] [CrossRef] [PubMed]
- Huculak-Mączka, M.; Hoffmann, J.; Hoffmann, K. Evaluation of the Possibilities of Using Humic Acids Obtained from Lignite in the Production of Commercial Fertilizers. J. Soils Sediments 2018, 18, 2868–2880. [Google Scholar] [CrossRef]
- Klučáková, M.; Pavlíková, M. Lignitic Humic Acids as Environmentally-Friendly Adsorbent for Heavy Metals. J. Chem. 2017, 2017, 7169019. [Google Scholar] [CrossRef]
- Guo, S.; Dan, Z.; Duan, N.; Chen, G.; Gao, W.; Zhao, W. Zn(II), Pb(II), and Cd(II) Adsorption from Aqueous Solution by Magnetic Silica Gel: Preparation, Characterization, and Adsorption. Environ. Sci. Pollut. Res. 2018, 25, 30938–30948. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Z.; Yue, R.; Gao, F.; Ren, R.; Wei, J.; Wang, X.; Kong, Z. Rapid Preparation of Adsorbent Based on Mussel Inspired Chemistry and Simultaneous Removal of Heavy Metal Ions in Water. Chem. Eng. J. 2020, 383, 123107. [Google Scholar] [CrossRef]
- Pandey, A.K.; Pandey, S.D.; Misra, V. Stability Constants of Metal-Humic Acid Complexes and Its Role in Environmental Detoxification. Ecotoxicol. Environ. Saf. 2000, 47, 195–200. [Google Scholar] [CrossRef]
- Kiswanto, K.; Wintah, W. Wintah Ability of Humic Acid in the Absorption of Heavy Metal Content of Lead and Iron in Fish Culture Media. J. Ecol. Eng. 2023, 24, 95–102. [Google Scholar] [CrossRef]
- Song, C.; Sun, S.; Wang, J.; Gao, Y.; Yu, G.; Li, Y.; Liu, Z.; Zhang, W.; Zhou, L. Applying Fulvic Acid for Sediment Metals Remediation: Mechanism, Factors, and Prospect. Front. Microbiol. 2023, 13, 1084097. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Li, Z.; Huang, B.; Luo, N.; Huang, M.; Wen, J.; Zhang, Q.; Zhai, X.; Zeng, G. Effects of Fe(III)-Fulvic Acid on Cu Removal via Adsorption versus Coprecipitation. Chemosphere 2018, 197, 291–298. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, J.V.; Fregolente, L.G.; Mounier, S.; Hajjoul, H.; Ferreira, O.P.; Moreira, A.B.; Bisinoti, M.C. Fulvic Acids from Amazonian Anthropogenic Soils: Insight into the Molecular Composition and Copper Binding Properties Using Fluorescence Techniques. Ecotoxicol. Environ. Saf. 2020, 205, 111173. [Google Scholar] [CrossRef] [PubMed]
- Lalas, S.; Athanasiadis, V.; Dourtoglou, V.G. Humic and Fulvic Acids as Potentially Toxic Metal Reducing Agents in Water. CLEAN Soil Air Water 2018, 46, 1700608. [Google Scholar] [CrossRef]
- Raji, Z.; Karim, A.; Karam, A.; Khalloufi, S. Adsorption of Heavy Metals: Mechanisms, Kinetics, and Applications of Various Adsorbents in Wastewater Remediation—A Review. Waste 2023, 1, 775–805. [Google Scholar] [CrossRef]
- Parmanbek, N.; Sütekin, D.S.; Barsbay, M.; Mashentseva, A.A.; Zheltov, D.A.; Aimanova, N.A.; Jakupova, Z.Y.; Zdorovets, M.V. Hybrid PET Track-Etched Membranes Grafted by Well-Defined Poly(2-(Dimethylamino)Ethyl Methacrylate) Brushes and Loaded with Silver Nanoparticles for the Removal of As(III). Polymers 2022, 14, 4026. [Google Scholar] [CrossRef]
- Mashentseva, A.A.; Seitzhapar, N.; Barsbay, M.; Aimanova, N.A.; Alimkhanova, A.N.; Zheltov, D.A.; Zhumabayev, A.M.; Temirgaziev, B.S.; Almanov, A.A.; Sadyrbekov, D.T. Adsorption Isotherms and Kinetics for Pb(Ii) Ion Removal from Aqueous Solutions with Biogenic Metal Oxide Nanoparticles. RSC Adv. 2023, 13, 26839–26850. [Google Scholar] [CrossRef]
- Tinnacher, R.M.; Nico, P.S.; Davis, J.A.; Honeyman, B.D. Effects of Fulvic Acid on Uranium(VI) Sorption Kinetics. Environ. Sci. Technol. 2013, 47, 6214–6222. [Google Scholar] [CrossRef]
- Heidmann, I.; Christl, I.; Kretzschmar, R. Sorption of Cu and Pb to Kaolinite-Fulvic Acid Colloids: Assessment of Sorbent Interactions. Geochim. Cosmochim. Acta 2005, 69, 1675–1686. [Google Scholar] [CrossRef]
- Wu, C.-H.; Lin, C.-F.; Ma, H.-W.; Hsi, T.-Q. Effect of Fulvic Acid on the Sorption of Cu and Pb onto γ-Al2O3. Water Res. 2003, 37, 743–752. [Google Scholar] [CrossRef] [PubMed]
- Rate, A.W. Sorption of Cadmium(II) and Copper(II) by Soil Humic Acids: Temperature Effects and Sorption Heterogeneity. Chem. Ecol. 2010, 26, 371–383. [Google Scholar] [CrossRef]
- Alvarez-Puebla, R.A.; Valenzuela-Calahorro, C.; Garrido, J.J. Retention of Co(II), Ni(II), and Cu(II) on a Purified Brown Humic Acid. Modeling and Characterization of the Sorption Process. Langmuir 2004, 20, 3657–3664. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Hossain, M.F.; Duan, C.; Lu, J.; Tsang, Y.F.; Islam, M.S.; Zhou, Y. Isotherm Models for Adsorption of Heavy Metals from Water—A Review. Chemosphere 2022, 307, 135545. [Google Scholar] [CrossRef]
- Pan, G.; Liss, P.S.; Krom, M.D. Particle Concentration Effect and Adsorption Reversibility. Colloids Surf. Physicochem. Eng. Asp. 1999, 151, 127–133. [Google Scholar] [CrossRef]
- Saleh, T.A. Chapter 4—Isotherm Models of Adsorption Processes on Adsorbents and Nanoadsorbents. In Interface Science and Technology; Saleh, T.A., Ed.; Surface Science of Adsorbents and Nanoadsorbents; Elsevier: Amsterdam, The Netherlands, 2022; Volume 34, pp. 99–126. [Google Scholar]
- Martín, A.P.-S.; Marhuenda-Egea, F.C.; Bustamante, M.A.; Curaqueo, G. Spectroscopy Techniques for Monitoring the Composting Process: A Review. Agronomy 2023, 13, 2245. [Google Scholar] [CrossRef]
Metals | HA from South Field Mine (ppm) | HA from Mavropigi Mine (ppm) | ||||
---|---|---|---|---|---|---|
300 | 600 | 900 | 300 | 600 | 900 | |
Ag | 46.95 ± 1.46 C,c (3.47) | 89.39 ± 2.88 B,b (4.15) | 99.35 ± 3.46 A,a (5.23) | 40.86 ± 1.26 C,c (3.36) | 88.27 ± 2.68 B,b (4.10) | 99.78 ± 3.67 A,a (5.70) |
Al | ≤0.1 (≤0.52) | ≤0.1 (≤0.22) | ≤0.1 (≤0.05) | ≤0.1 (≤0.52) | ≤0.1 (≤0.22) | ≤0.1 (≤0.05) |
As | 14.47 ± 0.44 E,c (2.75) | 24.29 ± 0.79 C,b (2.73) | 34.11 ± 1.16 B,a (2.76) | 17.69 ± 0.54 D,c (2.86) | 33.8 ± 1.14 B,b (2.93) | 49.90 ± 1.56 A,a (3.04) |
B | 14.02 ± 0.44 C,c (2.74) | 31.79 ± 0.99 B,b (2.89) | 49.56 ± 1.53 A,a (3.04) | 14.54 ± 0.48 C,c (2.75) | 32.01 ± 1.03 B,b (2.89) | 49.47 ± 1.52 A,a (3.04) |
Ba | ≤0.1 (≤0.52) | ≤0.1 (≤0.22) | ≤0.1 (≤0.05) | ≤0.1 (≤0.52) | ≤0.1 (≤0.22) | ≤0.1 (≤0.05) |
Be | 8.71 ± 0.27 C,c (2.5) | 18.07 ± 0.53 B,b (02.57) | 27.44 ± 0.81 A,a (2.62) | 8.15 ± 0.25 C,c (2.47) | 17.61 ± 0.50 B,b (2.55) | 27.06 ± 0.79 A,a (2.62) |
Ca | ≤0.1 (≤0.52) | ≤0.1 (≤0.22) | ≤0.1 (≤0.05) | ≤0.1 (≤0.52) | ≤0.1 (≤0.22) | ≤0.1 (≤0.05) |
Cd | 14.21 ± 0.66 E,c (2.74) | 27.64 ± 1.29 C,b (2.80) | 41.08 ± 1.97 A,a (2.89) | 11.97 ± 0.66 E,c (2.66) | 22.5 ± 1.32 D,b (2.68) | 33.02 ± 1.97 B,a (2.74) |
Co | 6.54 ± 0.24 E,c (2.37) | 14.46 ± 0.46 D,b (2.45) | 22.39 ± 0.71 B,a (2.51) | 3.59 ± 0.14 F,c (2.09) | 16.75 ± 0.56 C,b (2.53) | 29.90 ± 0.91 A,a (2.68) |
Cr | ≤0.1 (≤0.52) | ≤0.1 (≤0.22) | ≤0.1 (≤0.05) | 3.53 ± 0.12 C,c (2.09) | 6.21 ± 0.21 B,b (2.04) | 8.22 ± 0.27 A,a (2.00) |
Cu | 67.48 ± 2.12 B,b (3.84) | 98.95 ± 3.55 A,a (5.20) | 99.23 ± 3.71 A,a (5.16) | 48.08 ± 3.17 C,b (3.49) | 98.24 ± 3.45 A,a (4.97) | 99.15 ± 3.66 A,a (5.11) |
Fe | ≤0.1 (≤0.52) | ≤0.1 (≤0.22) | ≤0.1 (≤0.05) | ≤0.1 (≤0.52) | ≤0.1 (≤0.22) | ≤0.1 (≤0.05) |
K | 9.81 ± 0.31 D,c (2.56) | 18.16 ± 0.54 B,b (2.57) | 26.52 ± 0.79 A,a (2.60) | 1.27 ± 0.05 F,c (1.63) | 6.42 ± 0.21 E,b (2.06) | 12.84 ± 0.41 C,a (2.21) |
Li | 9.18 ± 0.28 C,c (2.53) | 18.45 ± 0.57 B,b (2.58) | 27.72 ± 0.84 A,a (2.63) | 7.78 ± 0.23 C,c (2.45) | 17.05 ± 0.51 B,b (2.53) | 26.31 ± 0.77 A,a (2.60) |
Mg | ≤0.1 (≤0.52) | ≤0.1 (≤0.22) | ≤0.1 (≤0.05) | ≤0.1 (≤0.52) | ≤0.1 (≤0.22) | ≤0.1 (≤0.05) |
Mn | ≤0.1 (≤0.52) | ≤0.1 (≤0.22) | ≤0.1 (≤0.05) | ≤0.1 (≤0.52) | ≤0.1 (≤0.22) | ≤0.1 (≤0.05) |
Mo | 62.84 ± 1.91 C,b (3.75) | 94.05 ± 2.98 A,a (4.42) | 99. 27 ± 4.02 A,a (5.18) | 42.38 ± 1.48 D,c (3.39) | 85.18 ± 2.98 B,b (3.98) | 98.13 ± 3.98 A,a (4.77) |
Na | ≤0.1 (≤0.52) | ≤0.1 (≤0.22) | ≤0.1 (≤0.05) | ≤0.1 (≤0.52) | ≤0.1 (≤0.22) | ≤0.1 (≤0.05) |
Ni | 4.18 ± 0.15 C,c (2.16) | 9.24 ± 0.36 B,b (2.23) | 14.30 ± 0.57 A,a (2.27) | 2.28 ± 0.09 D,c (1.89) | 4.24 ± 0.16 C,b (1.87) | 8.48 ± 0.32 B,a (2.01) |
Pb | 56.81 ± 2.23 C,c (3.64) | 91.25 ± 3.92 A,B,b (4.24) | 99.86 ± 3.77 A,a (5.90) | 46.31 ± 1.52 D,c (3.46) | 90.31 ± 3.42 B,b (4.19) | 98.67 ± 3.87 A,a (4.92) |
Se | 21.74 ± 0.85 E,c (2.97) | 34.21 ± 1.32 D,b (2.94) | 46.69 ± 1.82 B,a (2.99) | 20.14 ± 0.85 E,c (2.92) | 42.31 ± 1.62 C,b (3.09) | 64.47 ± 2.32 A,a (3.30) |
Sr | ≤0.1 (≤0.52) | ≤0.1 (≤0.22) | ≤0.1 (≤0.05) | ≤0.1 (≤0.52) | ≤0.1 (≤0.22) | ≤0.1 (≤0.05) |
Tl | 17.20 ± 0.63 E,c (2.84) | 31.85 ± 1.23 D,b (2.89) | 46.51 ± 1.78 C,a (2.99) | 29.86 ± 1.13 D,c (3.15) | 57.93 ± 2.11 B,b (3.36) | 85.96 ± 3.27 A,a (3.83) |
U | 49.22 ± 1.86 C,c (3.51) | 88.06 ± 3.44 B,b (4.09) | 99.69 ± 3.95 A,a (5.55) | 37.53 ± 1.42 D,c (3.30) | 81.44 ± 3.16 B,b (3.86) | 98.69 ± 4.01 A,a (4.92) |
V | 28.70 ± 1.09 C,c (3.13) | 61.67 ± 2.32 B,b (3.43) | 94.64 ± 3.64 A,a (4.29) | 33.77 ± 1.25 C,c (3.23) | 64.51 ± 2.42 B,b (3.48) | 95.24 ± 3.67 A,a (4.35) |
Zn | 11.42 ± 0.43 E,c (3.63) | 30.29 ± 1.16 C,b (2.86) | 49.17 ± 1.87 A,a (3.03) | 14.28 ± 0.44 E,c (2.74) | 26.71 ± 1.06 D,b (2.78) | 39.13 ± 1.53 B,a (2.85) |
Metals | FA from South Field Mine (ppm) | FA from Mavropigi Mine (ppm) | ||||
---|---|---|---|---|---|---|
300 | 600 | 900 | 300 | 600 | 900 | |
Ag | 48.24 ± 1.64 C,c (3.49) | 89.33 ± 2.92 B,b (4.14) | 99.19 ± 3.78 A,a (5.13) | 42.72 ± 1.67 C,c (3.40) | 85.96 ± 3.03 B,b (4.01) | 98.45 ± 3.92 A,a (2.05) |
Al | ≤0.1 (≤0.52) | ≤0.1 (≤0.22) | ≤0.1 (≤0.05) | ≤0.1 (≤0.52) | ≤0.1 (≤0.22) | ≤0.1 (≤0.05) |
As | 14.12 ± 0.55 D,c (2.74) | 24.34 ± 1.11 C,b (2.73) | 34.57 ± 1.31 B,a (2.77) | 14.24 ± 0.52 D,c (2.74) | 26.37 ± 0.99 C,b (2.78) | 38.51 ± 1.50 A,a (2.84) |
B | 16.26 ± 0.65 E,c (2.81) | 30.68 ± 1.19 D,b (2.87) | 45.10 ± 1.54 B,a (2.96) | 15.87 ± 0.61 E,c (2.80) | 34.51 ± 1.35 C,b (2.94) | 53.15 ± 2.03 A,a (3.10) |
Ba | 10.51 ± 0.46 E,c (2.59) | 22.36 ± 0.72 C,b (2.68) | 34.22 ± 1.26 B,a (2.76) | 14.22 ± 0.55 D,c (2.74) | 24.72 ± 1.14 C,b (2.74) | 37.77 ± 1.53 A,a (2.83) |
Be | 9.94 ± 0.43 C,c (2.57) | 17.75 ± 0.74 B,b (2.56) | 25.56 ± 1.2 A,a (2.58) | 8.57 ± 0.35 C,c (2.49) | 17.14 ± 0.69 B,b (2.54) | 25.72 ± 0.99 A,a (2.59) |
Ca | 51.85 ± 1.93 B,b (3.56) | 98.76 ± 3.4 A,a (5.12) | 99.58 ± 5.21 A,a (5.42) | 52.01 ± 1.99 B,b (3.56) | 98.34 ± 2.7 A,a (4.99) | 99.12± 3.71 A,a (5.10) |
Cd | 15.80 ± 0.51 C,c (2.80) | 27.73 ± 1.12 B,b (2.81) | 39.65 ± 1.45 A,a (2.86) | 7.86 ± 0.29 D,c (2.45) | 17.09 ± 0.69 C,b (2.54) | 26.32 ± 0.91 B,a (2.60) |
Co | 8.23 ± 0.32 D,c (2.48) | 14.70 ± 0.61 B,b (2.46) | 21.16 ± 0.81 A,a (2.47) | 5.97 ± 0.26 E,c (2.33) | 10.48 ± 0.44 C,b (2.29) | 14.99 ± 0.56 B,a (2.29) |
Cr | ≤0.1 (≤0.52) | ≤0.1 (≤0.22) | ≤0.1 (≤0.05) | ≤0.1 (≤0.52) | ≤0.1 (≤0.22) | ≤0.1 (≤0.05) |
Cu | 52.57 ± 1.96 C,b (3.57) | 98.12 ± 3.5 A,a (4.94) | 99.89 ± 3.84 A,a (6.00) | 46.26 ± 1.79 C,c (3.46) | 90.12 ± 3.22 B,b (4.18) | 99.95 ± 3.36 A,a (6.35) |
Fe | ≤0.1 (≤0.52) | ≤0.1 (≤0.22) | ≤0.1 (≤0.05) | ≤0.1 (≤0.52) | ≤0.1 (≤0.22) | ≤0.1 (≤0.05) |
K | 23.75 ± 0.88 C,c (3.02) | 47.50 ± 1.92 B,b (3.18) | 71.25 ± 2.72 A,a (3.44) | 21.55 ± 0.78 C,c (2.96) | 47.50 ± 2.02 B,b (3.18) | 68.45 ± 2.63 A,a (3.38) |
Li | 10.98 ± 0.41 D,c (2.61) | 19.27 ± 0.71 C,b (2.60) | 27.56 ± 0.98 B,a (2.63) | 12.8 ± 0.45 D,c (2.69) | 26.19 ± 1.02 B,b (2.77) | 39.54 ± 1.52 A,a (2.86) |
Mg | ≤0.1 (≤0.52) | ≤0.1 (≤0.22) | ≤0.1 (≤0.05) | ≤0.1 (≤0.52) | ≤0.1 (≤0.22) | ≤0.1 (≤0.05) |
Mn | 3.34 ± 0.15 C,c (2.06) | 5.97 ± 0.23 B,b (2.02) | 8.60 ± 0.32 A,a (2.02) | ≤0.1 (≤0.52) | ≤0.1 (≤0.22) | ≤0.1 (≤0.05) |
Mo | 43.78 ± 1.61 C,c (3.41) | 79.60 ± 2.81 B,b (3.81) | 97.67 ± 4.61 A,a (4.67) | 23.57 ± 0.82 D,c (3.01) | 49.12 ± 1.75 C,b (3.21) | 74.66 ± 2.91 B,a (3.52) |
Na | 56.1 ± 2.19 B,b (3.63) | 98.76 ± 3.82 A,a (5.12) | 99.59 ± 4.75 A,a (5.43) | 41.1 ± 1.54 C,b (3.37) | 98.12 ± 4.13 A,a (4.94) | 99.28 ± 4.52 A,a (5.19) |
Ni | 17.99 ± 0.68 D,c (2.86) | 31.02 ± 1.19 B,b (2.87) | 44.05 ± 1.71 A,a (2.94) | 19.17 ± 0.81 D,c (2.90) | 26.67 ± 1.08 C,b (2.78) | 44.17 ± 1.72 A,a (2.94) |
Pb | 48.37 ± 1.72 C,b (3.49) | 91.26 ± 3.38 A,B,a (4.24) | 99.36 ± 4.90 A,a (5.24) | 50.96 ± 1.88 C,c (3.54) | 87.86 ± 3.54 B,b (4.08) | 98.13 ± 5.73 A,a (4.77) |
Se | 19.51 ± 0.64 C,c (2.91) | 34.84 ± 1.33 B,b (2.95) | 50.18 ± 2.05 A,a (3.05) | 20.68 ± 0.70 C,c (2.94) | 36.93 ± 1.55 B,b (2.99) | 53.17 ± 2.04 A,a (3.10) |
Sr | 39.33 ± 1.66 C,c (3.33) | 85.50 ± 3.32 B,b (3.99) | 97.89 ± 3.81 A,a (4.71) | 37.48 ± 1.46 C,c (3.30) | 87.15 ± 2.89 B,b (4.05) | 98.12 ± 3.19 A,a (4.76) |
Tl | 17.46 ± 0.52 C,c (2.85) | 31.75 ± 0.98 B,b (2.89) | 46.04 ± 1.93 A,a (2.98) | 10.73 ± 0.43 D,c (2.60) | 20.24 ± 0.79 C,b (2.63) | 29.76 ± 1.07 B,a (2.67) |
U | 8.49 ± 0.38 D,c (2.49) | 16.65 ± 0.54 C,b (2.52) | 24.81 ± 0.81 B,a (2.56) | 14.87 ± 0.51 C,c (2.77) | 27.06 ± 0.94 B,b (2.79) | 39.24 ± 1.49 A,a (2.86) |
V | 54.42 ± 2.15 B,b (3.60) | 96.12± 3.83 A,a (4.62) | 98.45 ± 5.42 A,a (4.85) | 53.73 ± 2.04 B,b (3.59) | 95.65 ± 3.76 A,a (4.56) | 98. 21 ± 5.53 A,a (4.79) |
Zn | 14.64 ± 0.58 D,c (2.76) | 30.50 ± 1.17 B,b (2.86) | 46.36 ± 1.84 A,a (2.98) | 11.01 ± 0.46 E,c (2.62) | 20.03 ± 0.74 C,b (2.62) | 29.04 ± 1.19 B,a (2.66) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papadaki, E.S.; Chatzimitakos, T.; Athanasiadis, V.; Kalompatsios, D.; Bozinou, E.; Mitlianga, P.; Lalas, S.I. Assessment of Humic and Fulvic Acid Sorbing Potential for Heavy Metals in Water. Foundations 2023, 3, 788-804. https://doi.org/10.3390/foundations3040044
Papadaki ES, Chatzimitakos T, Athanasiadis V, Kalompatsios D, Bozinou E, Mitlianga P, Lalas SI. Assessment of Humic and Fulvic Acid Sorbing Potential for Heavy Metals in Water. Foundations. 2023; 3(4):788-804. https://doi.org/10.3390/foundations3040044
Chicago/Turabian StylePapadaki, Eirini S., Theodoros Chatzimitakos, Vassilis Athanasiadis, Dimitrios Kalompatsios, Eleni Bozinou, Paraskevi Mitlianga, and Stavros I. Lalas. 2023. "Assessment of Humic and Fulvic Acid Sorbing Potential for Heavy Metals in Water" Foundations 3, no. 4: 788-804. https://doi.org/10.3390/foundations3040044
APA StylePapadaki, E. S., Chatzimitakos, T., Athanasiadis, V., Kalompatsios, D., Bozinou, E., Mitlianga, P., & Lalas, S. I. (2023). Assessment of Humic and Fulvic Acid Sorbing Potential for Heavy Metals in Water. Foundations, 3(4), 788-804. https://doi.org/10.3390/foundations3040044