Dirac Field, van der Waals Gas, Weyssenhoff Fluid, and Newton Particle
Abstract
:1. Introduction
2. Dirac Field in Polar Form
2.1. Dirac Spinors
2.2. Polar Decomposition
3. Torsion Effective Approximation and van der Waals Gas
3.1. General Thermodynamic Variables
3.2. Massive Propagating Torsion
4. Zero Chiral Angle and Weyssenhoff Fluid
4.1. Non-Relativistic Regime
4.2. Hydrodynamics with Spin
5. Spinlessness and Newton Mechanics
5.1. Classical Limit
5.2. Point Particle
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Jakobi, G.; Lochak, G. Introduction des paramètres relativistes de Cayley-Klein dans la représentation hydrodynamique de l’équation de Dirac. C. R. Acad. Sci. 1956, 243, 234. [Google Scholar]
- Jakobi, G.; Lochak, G. Decomposition en paramètres de Clebsch de l’impulsion de Dirac et interprétation physique de l’invariance de jauge des équations de la Mécanique ondulatoire. C. R. Acad. Sci. 1956, 243, 357. [Google Scholar]
- Fabbri, L. Dirac Theory in Hydrodynamic Form. Found. Phys. 2023, 53, 54. [Google Scholar] [CrossRef]
- Bohm, D. A Suggested Interpretation of the Quantum Theory in Terms of ‘Hidden’ Variables. Phys. Rev. 1952, 85, 166. [Google Scholar] [CrossRef]
- Takabayasi, T. On the Formulation of Quantum Mechanics associated with Classical Pictures. Prog. Theor. Phys. 1952, 8, 143. [Google Scholar] [CrossRef]
- Bohm, D. Comments on an Article of Takabayasi conserning the Formulation of Quantum Mechanics with Classical Pictures. Prog. Theor. Phys. 1953, 9, 273. [Google Scholar] [CrossRef]
- Takabayasi, T. Relativistic Hydrodynamics of the Dirac Matter. Prog. Theor. Phys. Suppl. 1957, 4, 1. [Google Scholar] [CrossRef]
- Fabbri, L. Torsionally-Induced Stability in Spinors. Universe 2023, 9, 73. [Google Scholar] [CrossRef]
- Salesi, G.; Recami, E. About the kinematics of spinning particles. Adv. Appl. Cliff. Alg. 1997, 7, S253. [Google Scholar]
- Recami, E.; Salesi, G. Kinematics and hydrodynamics of spinning particles. Phys. Rev. A 1998, 57, 98. [Google Scholar] [CrossRef]
- Hehl, F.W.; Kerlick, G.D.; von der Heyde, P. General relativity with spin and torsion and its deviations from Einstein’s theory. Phys. Rev. D 1974, 10, 1066. [Google Scholar] [CrossRef]
- Obukhov, Y.N.; Korotky, V.A. The Weyssenhoff fluid in Einstein-Cartan theory. Class. Quant. Grav. 1987, 4, 1633. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fabbri, L. Dirac Field, van der Waals Gas, Weyssenhoff Fluid, and Newton Particle. Foundations 2024, 4, 134-145. https://doi.org/10.3390/foundations4020010
Fabbri L. Dirac Field, van der Waals Gas, Weyssenhoff Fluid, and Newton Particle. Foundations. 2024; 4(2):134-145. https://doi.org/10.3390/foundations4020010
Chicago/Turabian StyleFabbri, Luca. 2024. "Dirac Field, van der Waals Gas, Weyssenhoff Fluid, and Newton Particle" Foundations 4, no. 2: 134-145. https://doi.org/10.3390/foundations4020010
APA StyleFabbri, L. (2024). Dirac Field, van der Waals Gas, Weyssenhoff Fluid, and Newton Particle. Foundations, 4(2), 134-145. https://doi.org/10.3390/foundations4020010