Demon Registration for 2D Empirical Wavelet Transforms
Abstract
:1. Introduction
2. Notations
3. Construction of Empirical Wavelet Transforms
3.1. Empirical Wavelet Systems
3.2. Empirical Wavelet Transform
3.3. Band-Pass Empirical Wavelets
3.4. Mapping Estimation
Algorithm 1: Vercauteren’s demons algorithm |
Algorithm 2: Multiresolution demons algorithm |
4. Numerical Experiments
4.1. Mapping Estimation Set-Up
4.2. Assessment Measures
4.3. Mapping Estimation Assessment
4.4. Reconstruction Assessment
4.5. Application to Texture Segmentation
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gilles, J. Empirical Wavelet Transform. IEEE Trans. Signal Process. 2013, 61, 3999–4010. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Maheshwari, S.; Pachori, R.B.; Acharya, U.R. Automated diagnosis of glaucoma using empirical wavelet transform and correntropy features extracted from fundus images. IEEE J. Biomed. Health Inform. 2016, 21, 803–813. [Google Scholar] [CrossRef]
- Parashar, D.; Agrawal, D.K. Automatic classification of glaucoma stages using two-dimensional tensor empirical wavelet transform. IEEE Signal Process. Lett. 2020, 28, 66–70. [Google Scholar] [CrossRef]
- Nidhin Prabhakar, T.V.; Geetha, P. Two-dimensional empirical wavelet transform based supervised hyperspectral image classification. ISPRS J. Photogramm. Remote Sens. 2017, 133, 37–45. [Google Scholar] [CrossRef]
- Deo, B.S.; Pal, M.; Panigrahi, P.K.; Pradhan, A. An ensemble deep learning model with empirical wavelet transform feature for oral cancer histopathological image classification. Int. J. Data Sci. Anal. 2024, 1–18. [Google Scholar] [CrossRef]
- Sundar, K.J.A.; Jahnavi, M.; Lakshmisaritha, K. Multi-sensor image fusion based on empirical wavelet transform. In Proceedings of the IEEE 2017 International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT), Mysuru, India, 15–16 December 2017; pp. 93–97. [Google Scholar] [CrossRef]
- Polinati, S.; Dhuli, R. Multimodal medical image fusion using empirical wavelet decomposition and local energy maxima. Optik 2020, 205, 163947. [Google Scholar] [CrossRef]
- Huang, Y.; Zhou, F.; Gilles, J. Empirical curvelet based Fully Convolutional Network for supervised texture image segmentation. Neurocomputing 2019, 349, 31–43. [Google Scholar] [CrossRef]
- Huang, Y.; De Bortoli, V.; Zhou, F.; Gilles, J. Review of wavelet-based unsupervised texture segmentation, advantage of adaptive wavelets. IET Image Process. 2018, 12, 1626–1638. [Google Scholar] [CrossRef]
- Hurat, B.; Alvarado, Z.; Gilles, J. The Empirical Watershed Wavelet. J. Imaging 2020, 6, 140. [Google Scholar] [CrossRef]
- Gilles, J.; Heal, K. A parameterless scale-space approach to find meaningful modes in histograms—Application to image and spectrum segmentation. Int. J. Wavelets Multiresolut. Inf. Process. 2014, 12, 1450044. [Google Scholar] [CrossRef]
- Gilles, J.; Tran, G.; Osher, S. 2D Empirical transforms. Wavelets, Ridgelets and Curvelets Revisited. SIAM J. Imaging Sci. 2014, 7, 157–186. [Google Scholar] [CrossRef]
- Gilles, J. Empirical Voronoi wavelets. Constr. Math. Anal. 2022, 5, 183–189. [Google Scholar] [CrossRef]
- Lucas, C.G.; Gilles, J. Multidimensional empirical wavelet transform. arXiv 2024, arXiv:2405.06188. [Google Scholar]
- Thirion, J.P. Image matching as a diffusion process: An analogy with Maxwell’s demons. Med Image Anal. 1998, 2, 243–260. [Google Scholar] [CrossRef]
- Cachier, P.; Bardinet, E.; Dormont, D.; Pennec, X.; Ayache, N. Iconic feature based nonrigid registration: The PASHA algorithm. Comput. Vis. Image Underst. 2003, 89, 272–298. [Google Scholar] [CrossRef]
- Vercauteren, T.; Pennec, X.; Perchant, A.; Ayache, N. Diffeomorphic demons: Efficient non-parametric image registration. NeuroImage 2009, 45, S61–S72. [Google Scholar] [CrossRef]
- Wang, C.; Ren, Q.; Qin, X.; Yu, Y. Adaptive diffeomorphic multiresolution demons and their application to same modality medical image registration with large deformation. Int. J. Biomed. Imaging 2018, 2018, 7314612. [Google Scholar] [CrossRef]
- Tabassum, I.; Min, L.; Shafique, A.; Saleem, M. Registration of Chest Radiographs Using A Diffeomorphic Demons Based Method. In Proceedings of the 2020 IEEE International Conference on Progress in Informatics and Computing (PIC), Shanghai, China, 18–20 December 2020; pp. 195–201. [Google Scholar] [CrossRef]
- Love, J.C.; Estroff, L.A.; Kriebel, J.K.; Nuzzo, R.G.; Whitesides, G.M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 2005, 105, 1103–1170. [Google Scholar] [CrossRef]
- Gooding, J.J.; Mearns, F.; Yang, W.; Liu, J. Self-assembled monolayers into the 21st century: Recent advances and applications. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 2003, 15, 81–96. [Google Scholar] [CrossRef]
- Guttentag, A.I.; Barr, K.K.; Song, T.B.; Bui, K.V.; Fauman, J.N.; Torres, L.F.; Kes, D.D.; Ciomaga, A.; Gilles, J.; Sullivan, N.F.; et al. Hexagons to ribbons: Flipping cyanide on Au {111}. J. Am. Chem. Soc. 2016, 138, 15580–15586. [Google Scholar] [CrossRef] [PubMed]
- Bui, K.; Fauman, J.; Kes, D.; Torres Mandiola, L.; Ciomaga, A.; Salazar, R.; Bertozzi, A.L.; Gilles, J.; Goronzy, D.P.; Guttentag, A.I.; et al. Segmentation of scanning tunneling microscopy images using variational methods and empirical wavelets. Pattern Anal. Appl. 2020, 23, 625–651. [Google Scholar] [CrossRef]
- Guttentag, A.I.; Wächter, T.; Barr, K.K.; Abendroth, J.M.; Song, T.B.; Sullivan, N.F.; Yang, Y.; Allara, D.L.; Zharnikov, M.; Weiss, P.S. Surface structure and electron transfer dynamics of the self-assembly of cyanide on Au {111}. J. Phys. Chem. C 2016, 120, 26736–26746. [Google Scholar] [CrossRef]
- Aujol, J.F.; Chan, T.F. Combining geometrical and textured information to perform image classification. J. Vis. Commun. Image Represent. 2006, 17, 1004–1023. [Google Scholar] [CrossRef]
- Gilles, J. Multiscale texture separation. Multiscale Model. Simul. 2012, 10, 1409–1427. [Google Scholar] [CrossRef]
- Gilles, J.; Osher, S. Bregman Implementation of Meyer’s G-Norm for Cartoon+ Textures Decomposition; UCLA Cam Report; UCLA Mathematics: Los Angeles, CA, USA, 2011; pp. 11–73. [Google Scholar]
Demon Algorithm | Watershed → Disk | Watershed → Square | Voronoi → Disk | Voronoi → Square |
---|---|---|---|---|
Thirion’s | 4.37 (0.82–18.43) | 4.59 (0.31–20.03) | 2.41 (0.58–13.71) | 2.32 (0.32–6.80) |
Additive | 3.83 (2.13–5.13) | 4.30 (2.47–7.23) | 3.00 (2.14–4.17) | 3.08 (2.23–4.14) |
Diffeomorphic | 5.64 (3.00–10.29) | 7.35 (3.15–14.47) | 4.03 (2.86–6.04) | 6.41 (2.00–17.05) |
Demon Algorithm | Watershed → Disk | Watershed → Square | Voronoi → Disk | Voronoi → Square |
---|---|---|---|---|
Thirion’s | 00:02:44 | 00:02:50 | 00:02:48 | 00:02:44 |
Additive | 00:12:50 | 00:11:35 | 00:14:51 | 00:12:17 |
Diffeomorphic | 01:43:22 | 01:32:25 | 01:27:53 | 01:44:40 |
Normalized | Unnormalized | ||||||||
---|---|---|---|---|---|---|---|---|---|
Demon Algorithm | Watershed | Voronoi | Watershed | Voronoi | |||||
Disk | Square | Disk | Square | Disk | Square | Disk | Square | ||
Thirion’s | |||||||||
Additive | |||||||||
Diffeomorphic | |||||||||
Thirion’s | |||||||||
Additive | |||||||||
Diffeomorphic | |||||||||
Thirion’s | |||||||||
Additive | |||||||||
Diffeomorphic |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucas, C.-G.; Gilles, J. Demon Registration for 2D Empirical Wavelet Transforms. Foundations 2024, 4, 690-703. https://doi.org/10.3390/foundations4040043
Lucas C-G, Gilles J. Demon Registration for 2D Empirical Wavelet Transforms. Foundations. 2024; 4(4):690-703. https://doi.org/10.3390/foundations4040043
Chicago/Turabian StyleLucas, Charles-Gérard, and Jérôme Gilles. 2024. "Demon Registration for 2D Empirical Wavelet Transforms" Foundations 4, no. 4: 690-703. https://doi.org/10.3390/foundations4040043
APA StyleLucas, C.-G., & Gilles, J. (2024). Demon Registration for 2D Empirical Wavelet Transforms. Foundations, 4(4), 690-703. https://doi.org/10.3390/foundations4040043