Feed Restriction in Angus Steers Impacts Ruminal Bacteria, Its Metabolites, and Causes Epithelial Inflammation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Handling, Experimental Design, and Sample Collection
2.2. DNA Extraction and RT-qPCR
2.3. RNA Extraction, cDNA Synthesis, and RT-qPCR
2.4. Metabolomics Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Abundance of Specific Bacteria
3.2. Pro-Inflammatory mRNA Abundance
3.3. Metabolites
3.3.1. Amino Acids and Associated Metabolites
3.3.2. Metabolites Associated with Ribose, Nitrogenous Bases, and Their Derivatives
Metabolite | PRE | FRP | POST | SEM | p-Value |
---|---|---|---|---|---|
Adenine | 3.87 a | 0.93 b | 3.30 a | 0.49 | 0.02 |
Cytosine | 5.93 | 10.3 | 7.30 | 2.43 | 0.48 |
Thymine | 153 a | 21.7 b | 164 a | 26.0 | 0.02 |
Tyrosine | 217 a | 50.0 b | 130 ab | 27.5 | 0.01 |
Uracil | 772 a | 165 b | 672 a | 29.2 | <0.01 |
Inosine | 108 a | 28.1 b | 35.2 b | 9.69 | 0.01 |
Hypoxanthine | 404 a | 74.6 b | 326 a | 23.2 | <0.01 |
Xanthine | 464 a | 89.5 b | 377 a | 26.1 | <0.01 |
2-deoxy-D-ribose | 289 a | 14.2 b | 185 a | 37.9 | 0.01 |
Erythronic acid | 22.0 a | 2.43 b | 22.5 a | 4.40 | 0.03 |
Ribose | 3535 a | 748 b | 3015 a | 128 | <0.01 |
3.3.3. Fatty Acids and Associated Metabolites
Metabolite | PRE | FRP | POST | SEM | p-Value |
---|---|---|---|---|---|
Fatty acids | |||||
Tetradecanoic acid 1 (C14:0) | 86.2 a | 39.5 b | 84.4 a | 5.42 | <0.01 |
Pentadecanoic acid (C15:0) | 26.4 a | 6.77 b | 17.4 ab | 2.61 | 0.01 |
Palmitic acid (C16:0) | 1275 a | 394 b | 688 b | 79.3 | <0.01 |
Stearic acid (C18:0) | 3816 a | 597 b | 1166 b | 311 | <0.01 |
Oleic acid C18:1 (11) | 129 a | 12.0 b | 59.9 ab | 24.3 | 0.05 |
Oleic acid C18:1 (9) | 80.1 a | 14.1 b | 49.9 ab | 8.25 | <0.01 |
Heptadecanoic acid 2 (C17:0) | 16.7 a | 2.77 b | 9.50 ab | 2.36 | 0.02 |
Fatty acid-related metabolites | |||||
Hexadecanol | 15.6 a | 4.77 b | 20.7 a | 1.66 | <0.01 |
Octadecanol 3 | 6.63 | 3.37 | 5.07 | 1.56 | 0.39 |
Tetracosanol | 9.13 a | 1.67 b | 5.40 ab | 1.20 | 0.01 |
Stigmastan-3-ol | 24.7 ab | 14.6 b | 37.2 a | 3.29 | 0.01 |
3.3.4. Metabolites Associated with Energy Sources
Metabolite | PRE | FRP | POST | SEM | p-Value |
---|---|---|---|---|---|
Disaccharides | |||||
Cellobiose | 5050 | 884 | 1978 | 1129 | 0.09 |
Maltose | 1444 | 220 | 411 | 318 | 0.07 |
Monoglycerides and derivatives | |||||
Arabinose | 142 ab | 88.1 b | 178 a | 21.0 | 0.04 |
Arabitol | 5.03 | 2.73 | 4.87 | 0.59 | 0.06 |
Fructose | 90.0 a | 4.83 b | 30.1 b | 7.66 | <0.01 |
Glucose | 13,810 a | 1576 c | 5872 b | 323 | <0.01 |
N-acetyl glucosamine | 106 a | 9.23 c | 57.3 b | 6.66 | <0.01 |
Mannose | 21.6 | 2.50 | 32.6 | 13.9 | 0.38 |
Other | |||||
Glycerol | 763 a | 243 b | 840 a | 93.9 | <0.01 |
Glycerol-3-phosphate | 8.27 a | 3.37 b | 8.27 a | 0.79 | 0.01 |
3.3.5. Other Metabolites
Metabolite | PRE | FRP | POST | SEM | p-Value |
---|---|---|---|---|---|
1,3-dihydroxyacetone | 44.4 | 8.60 | 47.0 | 14.9 | 0.21 |
2-quinolinecarboxylic acid, 4,8-dihydroxy | 4.40 a | 1.07 b | 3.40 a | 0.36 | <0.01 |
3-(3-hydroxyphenyl)propionic acid | 12.53 | 4.00 | 17.1 | 5.83 | 0.34 |
3-hydroxybutanoic acid | 4.10 | 1.67 | 1.27 | 0.72 | 0.08 |
Aminomalonic acid | 47.0 | 18.6 | 34.4 | 8.60 | 0.14 |
Azelaic acid | 241 a | 96.0 b | 149 ab | 21.9 | 0.01 |
Benzeneacetic acid | 210 | 210 | 130 | 29.1 | 0.18 |
Benzoic acid | 9.17 | 7.63 | 7.00 | 1.74 | 0.68 |
Benzoic acid, 3-hydroxy | 2.43 | 1.80 | 3.00 | 1.12 | 0.76 |
Dodecanedioic acid | 15.4 | 10.1 | 16.1 | 5.32 | 0.70 |
Ethanolamine | 106 | 67.2 | 77.4 | 18.4 | 0.23 |
Glutaric acid | 8.10 | 8.17 | 13.5 | 1.87 | 0.14 |
Glycolic acid | 32.6 ab | 11.4 b | 36.8 a | 6.08 | 0.04 |
Hydrocinnamic acid | 466 a | 174 b | 416 a | 29.9 | <0.01 |
Indole-3-acetic acid | 1.87 | 1.70 | 2.47 | 0.36 | 0.36 |
Inositol | 34.3 a | 1.77 b | 31.7 ab | 8.34 | 0.04 |
Inositol-2-phosphate | 8.93 | 1.83 | 8.70 | 2.17 | 0.10 |
Lactic acid | 140 | 98.7 | 193 | 30.0 | 0.17 |
Lactose | 5.30 | 0.33 | 3.90 | 1.27 | 0.08 |
Malic acid | 170 a | 26.9 c | 108 b | 12.7 | <0.01 |
Nicotinic acid 1 | 30.6 a | 5.80 b | 18.7 a | 2.38 | <0.01 |
O-phosphoethanolamine | 42.9 a | 9.57 b | 47.0 a | 5.22 | <0.01 |
Propan-1,2-diol | 20.7 | 18.1 | 33.4 | 5.88 | 0.23 |
Pyrrole-2-carboxylic acid | 4.97 b | 8.07 a | 7.43 ab | 0.67 | 0.04 |
Suberic acid | 9.17 a | 4.37 b | 7.20 a | 0.58 | <0.01 |
Valeramide | 3.47 | 3.10 | 3.03 | 0.80 | 0.88 |
Metabolite | PRE | POST | SEM | p-Value |
---|---|---|---|---|
1-Pentadecanol | 2.91 | 4.54 | 2.09 | 0.64 |
2,8-Quinolinediol | 18.5 | 18.6 | 2.09 | 0.96 |
2-Methylsuccinic acid | 6.82 | 3.13 | 0.86 | 0.09 |
3-Hydroxyphenylacetic acid | 42.2 | 33.0 | 5.25 | 0.27 |
3-Hydroxypyruvic acid | 1.48 | 1.17 | 0.25 | 0.48 |
Adipic acid | 9.75 | 8.23 | 2.23 | 0.68 |
Dodecanoic acid (C12:0) | 11.0 | 10.9 | 1.03 | 0.93 |
Eicosanoic acid | 25.0 a | 6.18 b | 2.39 | 0.02 |
Galactose | 36.4 | 16.3 | 8.25 | 0.23 |
Glyceraldehyde | 0.83 | 1.03 | 0.29 | 0.66 |
Glycylproline | 7.32 | 5.42 | 0.92 | 0.28 |
Guanine | 1.55 | 1.06 | 0.55 | 0.37 |
Linoleic acid | 25.7 | 13.9 | 7.54 | 0.35 |
N-acetyl mannosamine | 15.1 | 10.4 | 3.03 | 0.38 |
Panthotenic acid 1 | 15.9 a | 6.96 b | 0.81 | 0.02 |
Pseudo uridine | 18.5 | 10.9 | 2.21 | 0.12 |
Sedoheptulose | 39.2 | 38.7 | 19.4 | 0.99 |
Sorbitol | 5.92 | 8.56 | 1.28 | 0.28 |
Pathway ID | Name | Match index | p-Value | Matched Metabolites |
---|---|---|---|---|
Pathways associated with amino acids | ||||
KO00220 | Arginine biosynthesis | 21.74% | <0.0001 | Fumaric acid; L-Glutamic acid; Ornithine; L-Glutamine; N-Acetylglutamic acid; L-Aspartic acid; Urea |
KO00250 | Alanine, aspartate, and glutamate metabolism | 21.43% | <0.0001 | Gamma-Aminobutyric acid; Fumaric acid; L-Glutamic acid; L-Alanine; Succinic acid; L-Glutamine; L-Aspartic acid; Pyruvic acid |
KO00410 | beta-Alanine metabolism | 20.00% | <0.0001 | 1,3-Diaminopropane; Beta-Alanine; Gamma-Aminobutyric acid; Pantothenic acid; Uracil; L-Aspartic acid; Spermidine |
KO00970 | Aminoacyl-tRNA biosynthesis | 17.31% | <0.0001 | Glycine; L-Glutamic acid; L-Tyrosine; L-Alanine; L-Threonine; L-Isoleucine; L-Lysine; L-Glutamine; L-Valine; L-Phenylalanine; L-Proline; L-Aspartic acid; L-Leucine; L-Tryptophan |
KO00470 | D-Amino acid metabolism | 16.07% | <0.0001 | Glycine; L-Glutamic acid; L-Alanine; L-Lysine; Ornithine; L-Glutamine; N-Acetylglutamic acid; Putrescine; Cadaverine; L-Proline; L-Aspartic acid; Pyruvic acid |
KO00480 | Glutathione metabolism | 15.63% | 0.0001 | Glycine; L-Glutamic acid; Ornithine; Putrescine; Cadaverine; Spermidine |
KO00290 | Valine, leucine, and isoleucine biosynthesis | 13.04% | 0.0039 | L-Threonine; L-Isoleucine; L-Valine; Pyruvic acid; L-Leucine |
KO00910 | Nitrogen metabolism | 10.53% | 0.0287 | L-Glutamic acid; L-Glutamine |
KO00430 | Taurine and hypotaurine metabolism | 9.09% | 0.0377 | L-Glutamic acid; L-Alanine; Pyruvic acid |
KO00260 | Glycine, serine, and threonine metabolism | 8.51% | 0.0040 | 1,3-Diaminopropane; Glycine; L-Threonine; Hydroxypyruvic acid; Glyoxylic acid; Glyceric acid; L-Aspartic acid; Pyruvic acid; L-Tryptophan |
KO00330 | Arginine and proline metabolism | 7.94% | 0.0018 | 1,3-Diaminopropane; Gamma-Aminobutyric acid; L-Glutamic acid; Ornithine; Putrescine; Glyoxylic acid; L-Proline; Pyruvic acid; Urea; Spermidine |
KO00350 | Tyrosine metabolism | 7.14% | 0.0076 | p-Hydroxyphenylacetic acid; Fumaric acid; L-Tyrosine; Succinic acid; Pyruvic acid |
KO00360 | Phenylalanine metabolism | 6.98% | 0.0207 | Fumaric acid; L-Tyrosine; Succinic acid; L-Phenylalanine; Phenylacetic acid; Pyruvic acid |
KO00310 | Lysine degradation | 5.77% | 0.0361 | L-Lysine; Succinic acid; Cadaverine |
Pathways associated with nitrogenous bases and derivatives | ||||
KO00230 | Purine metabolism | 9.30% | <0.0001 | Adenine; Adenosine; Glycine; Guanine; Hypoxanthine; Inosine; Xanthine; L-Glutamine; Glyoxylic acid; Urea |
KO00030 | Pentose phosphate pathway | 8.33% | 0.0137 | D-Glucose; D-Ribose; Gluconic acid; Glyceric acid; Pyruvic acid |
KO00240 | Pyrimidine metabolism | 8.20% | 0.0015 | Beta-Alanine; Orotic acid; Thymine; Uracil; L-Glutamine; Urea |
Pathways associated with fatty acids | ||||
KO01040 | Biosynthesis of unsaturated fatty acids | 11.11% | 0.0015 | Palmitic acid; Linoleic acid; Stearic acid; Arachidic acid |
KO00650 | Butanoate metabolism | 9.09% | 0.0032 | Gamma-Aminobutyric acid; Fumaric acid; L-Glutamic acid; Succinic acid; Pyruvic acid; 3-Hydroxybutyric acid |
KO00061 | Fatty acid biosynthesis | 5.66% | 0.0379 | Palmitic acid; Myristic acid (also called Tetradecanoic acid); Dodecanoic acid |
Pathways associated with energy sources | ||||
KO00052 | Galactose metabolism | 10.87% | 0.0004 | Glycerol; D-Galactose; myo-Inositol; Sorbitol; Isomaltose |
KO00020 | Citrate cycle (TCA cycle) | 10.00% | 0.0316 | Fumaric acid; Succinic acid; Pyruvic acid |
KO00630 | Glyoxylate and dicarboxylate metabolism | 8.93% | 0.0010 | Glycine; L-Glutamic acid; Succinic acid; L-Glutamine; Hydroxypyruvic acid; Glyoxylic acid; Glyceric acid; Pyruvic acid |
KO00520 | Amino sugar and nucleotide sugar metabolism | 4.50% | 0.0192 | D-Xylose; D-Galactose; N-Acetyl-D-glucosamine; D-Fructose; N-Acetyl mannosamine |
Pathways associated with vitamins | ||||
KO00770 | Pantothenate and CoA biosynthesis | 14.81% | 0.0005 | Beta-Alanine; Pantothenic acid; Uracil; L-Valine; L-Aspartic acid; Pyruvic acid |
KO00760 | Nicotinate and nicotinamide metabolism | 7.84% | 0.0054 | Gamma-Aminobutyric acid; Fumaric acid; Succinic acid; Nicotinic acid; L-Aspartic acid; Pyruvic acid |
Other predicted pathways | ||||
KO00997 | Biosynthesis of various other secondary metabolites | 8.89% | 0.0034 | L-Tyrosine; L-Alanine; L-Lysine; Ornithine; L-Phenylalanine; L-Tryptophan |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McCann, J.C.; Wickersham, T.A.; Loor, J.J. High-throughput methods redefine the rumen microbiome and its relationship with nutrition and metabolism. Bioinform. Biol. Insights 2014, 8, 109–125. [Google Scholar] [CrossRef] [PubMed]
- Gruninger, R.J.; Ribeiro, G.O.; Cameron, A.; McAllister, T.A. Invited review: Application of meta-omics to understand the dynamic nature of the rumen microbiome and how it responds to diet in ruminants. Animal 2019, 13, 1843–1854. [Google Scholar] [CrossRef] [PubMed]
- Leduc, A.; Souchet, S.; Gelé, M.; Le Provost, F.; Boutinaud, M. Effect of feed restriction on dairy cow milk production: A review. J. Anim. Sci. 2021, 99, skab130. [Google Scholar] [CrossRef] [PubMed]
- Horst, E.A.; Mayorga, E.J.; Al-Qaisi, M.; Rodriguez-Jimenez, S.; Goetz, B.M.; Abeyta, M.A.; Gorden, P.J.; Kvidera, S.K.; Baumgard, L.H. Evaluating effects of zinc hydroxychloride on biomarkers of inflammation and intestinal integrity during feed restriction. J. Dairy Sci. 2020, 103, 11911–11929. [Google Scholar] [CrossRef] [PubMed]
- Kvidera, S.K.; Horst, E.A.; Sanz Fernandez, M.V.; Abuajamieh, M.; Ganesan, S.; Gorden, P.J.; Green, H.B.; Schoenberg, K.M.; Trout, W.E.; Keating, A.F.; et al. Characterizing effects of feed restriction and glucagon-like peptide 2 administration on biomarkers of inflammation and intestinal morphology. J. Dairy Sci. 2017, 100, 9402–9417. [Google Scholar] [CrossRef] [PubMed]
- Pisoni, L.; Devant, M.; Blanch, M.; Pastor, J.J.; Marti, S. Simulation of feed restriction and fasting: Effects on animal recovery and gastrointestinal permeability in unweaned Angus-Holstein calves. J. Dairy Sci. 2022, 105, 2572–2586. [Google Scholar] [CrossRef] [PubMed]
- Marques, R.S.; Bohnert, D.W.; de Sousa, O.A.; Brandao, A.P.; Schumaher, T.F.; Schubach, K.M.; Vilela, M.P.; Rett, B.; Cooke, R.F. Impact of 24-h feed, water, or feed and water deprivation on feed intake, metabolic, and inflammatory responses in beef heifers. J. Anim. Sci. 2019, 97, 398–406. [Google Scholar] [CrossRef] [PubMed]
- Albornoz, R.I.; Aschenbach, J.R.; Barreda, D.R.; Penner, G.B. Feed restriction reduces short-chain fatty acid absorption across the reticulorumen of beef cattle independent of diet. J. Anim. Sci. 2013, 91, 4730–4738. [Google Scholar] [CrossRef]
- Zhang, S.; Albornoz, R.I.; Aschenbach, J.R.; Barreda, D.R.; Penner, G.B. Short-term feed restriction impairs the absorptive function of the reticulo-rumen and total tract barrier function in beef cattle. J. Anim. Sci. 2013, 91, 1685–1695. [Google Scholar] [CrossRef]
- Zhang, S.; Aschenbach, J.R.; Barreda, D.R.; Penner, G.B. Recovery of absorptive function of the reticulo-rumen and total tract barrier function in beef cattle after short-term feed restriction. J. Anim. Sci. 2013, 91, 1696–1706. [Google Scholar] [CrossRef]
- Murdoch, G.K.; Dixon, W.T.; Okine, E.K.; Christopherson, R.J. Bovine tissue rnRNA abundance related to acute cold exposure and acute feeding restriction. Can. J. Anim. Sci. 2005, 85, 157–164. [Google Scholar] [CrossRef]
- Pinto, A.C.J.; Bertoldi, G.P.; Felizari, L.D.; Dias, E.F.F.; Demartini, B.L.; Nunes, A.B.C.P.; Squizatti, M.M.; Silvestre, A.M.; Oliveira, L.F.R.; Skarlupka, J.H.; et al. Ruminal fermentation pattern, bacterial community composition, and nutrient digestibility of nellore cattle submitted to either nutritional restriction or intake of concentrate feedstuffs prior to adaptation period. Front. Microbiol. 2020, 11, 553979. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.; Xue, Y.; Guo, C.; Liu, J.; Mao, S. The response of ruminal fermentation, epithelium-associated microbiota, and epithelial barrier function to severe feed restriction in pregnant ewes. J. Anim. Sci. 2018, 96, 4293–4305. [Google Scholar] [CrossRef] [PubMed]
- Ametaj, B.N.; Zebeli, Q.; Saleem, F.; Psychogios, N.; Lewis, M.J.; Dunn, S.M.; Xia, J.; Wishart, D.S. Metabolomics reveals unhealthy alterations in rumen metabolism with increased proportion of cereal grain in the diet of dairy cows. Metabolomics 2010, 6, 583–594. [Google Scholar] [CrossRef]
- Saleem, F.; Ametaj, B.N.; Bouatra, S.; Mandal, R.; Zebeli, Q.; Dunn, S.M.; Wishart, D.S. A metabolomics approach to uncover the effects of grain diets on rumen health in dairy cows. J. Dairy Sci. 2012, 95, 6606–6623. [Google Scholar] [CrossRef] [PubMed]
- Penner, G.B.; Taniguchi, M.; Guan, L.L.; Beauchemin, K.A.; Oba, M. Effect of dietary forage to concentrate ratio on volatile fatty acid absorption and the expression of genes related to volatile fatty acid absorption and metabolism in ruminal tissue. J. Dairy Sci. 2009, 92, 2767–2781. [Google Scholar] [CrossRef] [PubMed]
- Kent-Dennis, C.; Pasternak, A.; Plaizier, J.C.; Penner, G.B. Potential for a localized immune response by the ruminal epithelium in nonpregnant heifers following a short-term subacute ruminal acidosis challenge. J. Dairy Sci. 2019, 102, 7556–7569. [Google Scholar] [CrossRef]
- Kent-Dennis, C.; Aschenbach, J.R.; Griebel, P.J.; Penner, G.B. Effects of lipopolysaccharide exposure in primary bovine ruminal epithelial cells. J. Dairy Sci. 2020, 103, 9587–9603. [Google Scholar] [CrossRef]
- Gorka, P.; Schurmann, B.L.; Walpole, M.E.; Blonska, A.; Li, S.; Plaizier, J.C.; Kowalski, Z.M.; Penner, G.B. Effect of increasing the proportion of dietary concentrate on gastrointestinal tract measurements and brush border enzyme activity in Holstein steers. J. Dairy Sci. 2017, 100, 4539–4551. [Google Scholar] [CrossRef]
- Minuti, A.; Palladino, A.; Khan, M.J.; Alqarni, S.; Agrawal, A.; Piccioli-Capelli, F.; Hidalgo, F.; Cardoso, F.C.; Trevisi, E.; Loor, J.J. Abundance of ruminal bacteria, epithelial gene expression, and systemic biomarkers of metabolism and inflammation are altered during the peripartal period in dairy cows. J. Dairy Sci. 2015, 98, 8940–8951. [Google Scholar] [CrossRef]
- Elolimy, A.A.; Arroyo, J.M.; Batistel, F.; Iakiviak, M.A.; Loor, J.J. Association of residual feed intake with abundance of ruminal bacteria and biopolymer hydrolyzing enzyme activities during the peripartal period and early lactation in Holstein dairy cows. J. Anim. Sci. Biotechnol. 2018, 9, 43. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Xu, C.; Zhang, D.; Ju, F.; Ni, Y.J.I. MetOrigin: Discriminating the origins of microbial metabolites for integrative analysis of the gut microbiome and metabolome. IMeta 2022, 1, e10. [Google Scholar] [CrossRef] [PubMed]
- Hailemariam, S.; Zhao, S.G.; Wang, J.Q. Complete genome sequencing and transcriptome analysis of nitrogen metabolism of Succinivibrio dextrinosolvensStrain Z6 isolated from dairy cow rumen. Front. Microbiol. 2020, 11, 1826. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.K.; Kim, S.W.; Kim, M.H.; Upadhaya, S.D.; Kam, D.K.; Ha, J.K. Direct-fed microbials for ruminant animals. Asian-Australas. J. Anim. Sci. 2010, 23, 1657–1667. [Google Scholar] [CrossRef]
- Chan, L.; Slater, J.; Hasbargen, J.; Herndon, D.N.; Veech, R.L.; Wolf, S. Neurocardiac toxicity of racemic D,L-lactate fluids. Integr. Physiol. Behav. Sci. 1994, 29, 383–394. [Google Scholar] [CrossRef] [PubMed]
- Shabat, S.K.; Sasson, G.; Doron-Faigenboim, A.; Durman, T.; Yaacoby, S.; Berg Miller, M.E.; White, B.A.; Shterzer, N.; Mizrahi, I. Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants. ISME J. 2016, 10, 2958–2972. [Google Scholar] [CrossRef] [PubMed]
- Kamke, J.; Kittelmann, S.; Soni, P.; Li, Y.; Tavendale, M.; Ganesh, S.; Janssen, P.H.; Shi, W.; Froula, J.; Rubin, E.M.; et al. Rumen metagenome and metatranscriptome analyses of low methane yield sheep reveals a Sharpea-enriched microbiome characterised by lactic acid formation and utilisation. Microbiome 2016, 4, 56. [Google Scholar] [CrossRef] [PubMed]
- Louis, P.; Duncan, S.H.; Sheridan, P.O.; Walker, A.W.; Flint, H.J. Microbial lactate utilisation and the stability of the gut microbiome. Gut Microbiome 2022, 3, e3. [Google Scholar] [CrossRef]
- Brynestad, S.; Granum, P.E. Clostridium perfringens and foodborne infections. Int. J. Food Microbiol. 2002, 74, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Brook, I. Current concepts in the management of Clostridium tetani infection. Expert Rev. Anti-Infect. Ther. 2008, 6, 327–336. [Google Scholar]
- Johnson, E.A. Clostridium botulinum. In Food Microbiology, 5th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019; pp. 487–512. [Google Scholar] [CrossRef]
- Cai, L.; Hartanto, R.; Zhang, J.; Qi, D. Clostridium butyricum improves rumen fermentation and growth performance of heat-stressed goats in vitro and in vivo. Animals 2021, 11, 3261. [Google Scholar] [CrossRef]
- Lindstrom, M.; Myllykoski, J.; Sivela, S.; Korkeala, H. Clostridium botulinum in cattle and dairy products. Crit. Rev. Food Sci. Nutr. 2010, 50, 281–304. [Google Scholar] [CrossRef]
- Kalender, H.; Kilic, A.; Atil, E. Enterotoxemia in a cow due to Clostridium perfringens type A. Turk. J. Vet. Anim. Sci. 2007, 31, 83–84. [Google Scholar]
- Lebrun, M.; Mainil, J.G.; Linden, A. Cattle enterotoxaemia and Clostridium perfringens: Description, diagnosis and prophylaxis. Vet. Record 2010, 167, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Guo, P.; Zhang, K.; Ma, X.; He, P. Clostridium species as probiotics: Potentials and challenges. J. Anim. Sci. Biotechnol. 2020, 11, 24. [Google Scholar] [CrossRef] [PubMed]
- Attwood, G.; Li, D.; Pacheco, D.; Tavendale, M. Production of indolic compounds by rumen bacteria isolated from grazing ruminants. J. Appl. Microbiol. 2006, 100, 1261–1271. [Google Scholar] [CrossRef] [PubMed]
- Meiske, J.; Salsbury, R.; Hoefer, J.; Luecke, R. The effect of starvation and subsequent refeeding on some activities of rumen microorganisms in vitro. J. Anim. Sci. 1958, 17, 774–781. [Google Scholar] [CrossRef]
- Pan, P.; Gu, Y.; Sun, D.L.; Wu, Q.L.; Zhou, N.Y. Microbial diversity biased estimation caused by intragenomic heterogeneity and interspecific conservation of 16S rRNA genes. Appl. Environ. Microbiol. 2023, 89, e0210822. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Tang, G.; Wang, Y.; Yu, J.; Chen, L.; Chen, J.; Wu, Y.; Zhang, Y.; Cao, Y.; Yao, J. Rumen bacterial cluster identification and its influence on rumen metabolites and growth performance of young goats. Anim. Nutr. 2023, 15, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Takeda, K.; Akira, S. Toll-like receptors. Curr. Protoc. Immunol. 2015, 109, 14.12.1–14.12.10. [Google Scholar]
- Jing, L.; Zhang, R.; Liu, Y.; Zhu, W.; Mao, S. Intravenous lipopolysaccharide challenge alters ruminal bacterial microbiota and disrupts ruminal metabolism in dairy cattle. Br. J. Nutr. 2014, 112, 170–182. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Chen, K.; Li, Y.; Hao, N.; Wang, X.; Ouyang, P. Advances in cadaverine bacterial production and its applications. Engineering 2017, 3, 308–317. [Google Scholar] [CrossRef]
- Barbieri, F.; Montanari, C.; Gardini, F.; Tabanelli, G. Biogenic amine production by lactic acid bacteria: A review. Foods 2019, 8, 17. [Google Scholar] [CrossRef]
- Schaefer, D.M.; Davis, C.L.; Bryant, M.P. Ammonia saturation constants for predominant species of rumen bacteria. J. Dairy Sci. 1980, 63, 1248–1263. [Google Scholar] [CrossRef] [PubMed]
- Fumagalli, M.; Lecca, D.; Abbracchio, M.P.; Ceruti, S. Pathophysiological role of purines and pyrimidines in neurodevelopment: Unveiling new pharmacological approaches to congenital brain diseases. Front. Pharmacol. 2017, 8, 941. [Google Scholar] [CrossRef] [PubMed]
- Xi, H.; Schneider, B.L.; Reitzer, L. Purine catabolism in Escherichia coli and function of xanthine dehydrogenase in purine salvage. J. Bacteriol. 2000, 182, 5332–5341. [Google Scholar] [CrossRef] [PubMed]
- Chandel, N.S. Nucleotide Metabolism. Cold Spring Harb. Perspect. Biol. 2021, 13, a040592. [Google Scholar] [CrossRef] [PubMed]
- Mu, Y.; Lin, X.; Wang, Z.; Hou, Q.; Wang, Y.; Hu, Z. High-production dairy cattle exhibit different rumen and fecal bacterial community and rumen metabolite profile than low-production cattle. MicrobiologyOpen 2019, 8, e00673. [Google Scholar] [CrossRef] [PubMed]
- Jenson, I. BACILLUS|Introduction. In Encyclopedia of Food Microbiology, 2nd ed.; Batt, C.A., Tortorello, M.L., Eds.; Academic Press: Oxford, UK, 2014; pp. 111–117. [Google Scholar]
- Parsons, J.B.; Rock, C.O. Bacterial lipids: Metabolism and membrane homeostasis. Prog. Lipid Res. 2013, 52, 249–276. [Google Scholar] [CrossRef]
- Kramer, E.; Stamer, E.; Mahlkow, K.; Lüpping, W.; Krieter, J. Relationship between water intake, dry matter intake and daily milk yield on a German research farm. Livest. Sci. 2008, 115, 99–104. [Google Scholar] [CrossRef]
- Keweloh, H.; Heipieper, H.J. Trans unsaturated fatty acids in bacteria. Lipids 1996, 31, 129–137. [Google Scholar] [CrossRef]
- Das, U.N. Arachidonic acid and other unsaturated fatty acids and some of their metabolites function as endogenous antimicrobial molecules: A review. J. Adv. Res. 2018, 11, 57–66. [Google Scholar] [CrossRef]
- Jenkins, T.C. Lipid metabolism in the rumen. J. Dairy Sci. 1993, 76, 3851–3863. [Google Scholar] [CrossRef]
- Or-Rashid, M.M.; Odongo, N.E.; McBride, B.W. Fatty acid composition of ruminal bacteria and protozoa, with emphasis on conjugated linoleic acid, vaccenic acid, and odd-chain and branched-chain fatty acids. J. Anim. Sci. 2007, 85, 1228–1234. [Google Scholar] [CrossRef] [PubMed]
- Salvador López, J.M.; Van Bogaert, I.N.A. Microbial fatty acid transport proteins and their biotechnological potential. Biotechnol. Bioeng. 2021, 118, 2184–2201. [Google Scholar] [CrossRef] [PubMed]
- Fillet, S.; Adrio, J.L. Microbial production of fatty alcohols. World J. Microbiol. Biotechnol. 2016, 32, 152. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, S.; Chen, J.; Zhou, J.; Wang, Y.; Yang, M.; Qi, X.; Xing, J.; Wang, Q.; Ma, Y. High production of fatty alcohols in Escherichia coli with fatty acid starvation. Microb. Cell Factories 2016, 15, 129. [Google Scholar] [CrossRef]
- Togashi, N.; Shiraishi, A.; Nishizaka, M.; Matsuoka, K.; Endo, K.; Hamashima, H.; Inoue, Y. Antibacterial activity of long-chain fatty alcohols against Staphylococcus aureus. Molecules 2007, 12, 139–148. [Google Scholar] [CrossRef]
- Mukherjee, K.; Tribedi, P.; Mukhopadhyay, B.; Sil, A.K. Antibacterial activity of long-chain fatty alcohols against mycobacteria. FEMS Microbiol. Lett. 2013, 338, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Chalupa, W.; Evans, J.L.; Stillions, M.C. Influence of ethanol on rumen fermentation and nitrogen metabolism. J. Anim. Sci. 1964, 23, 802–807. [Google Scholar] [CrossRef]
- Emery, R.S.; Lewis, T.R.; Everett, J.P.; Lassiter, C.A. Effect of ethanol on rumen fermentation. J. Dairy Sci. 1959, 42, 1182–1186. [Google Scholar] [CrossRef]
- Morrison, I.M. Carbohydrate chemistry and rumen digestion. Proc. Nutr. Soc. 1979, 38, 269–274. [Google Scholar] [CrossRef]
- Weimer, P.J. Degradation of cellulose and hemicellulose by ruminal microorganisms. Microorganisms 2022, 10, 2345. [Google Scholar] [CrossRef]
- Bertoft, E. Understanding starch structure: Recent progress. Agronomy 2017, 7, 56. [Google Scholar] [CrossRef]
- Rowland, A.P.; Roberts, J.D. Lignin and cellulose fractionation in decomposition studies using acid-detergent fibre methods. Commun. Soil Sci. Plant Anal. 1994, 25, 269–277. [Google Scholar] [CrossRef]
- Diatta, A.A.; Min, D.; Jagadish, S.V.K. Chapter Two—Drought stress responses in non-transgenic and transgenic alfalfa—Current status and future research directions. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2021; Volume 170, pp. 35–100. [Google Scholar]
- Ouellette, R.J.; Rawn, J.D. 28—Carbohydrates. In Organic Chemistry, 2nd ed.; Ouellette, R.J., Rawn, J.D., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 889–928. [Google Scholar]
- Wang, Y.; Horlamus, F.; Henkel, M.; Kovacic, F.; Schläfle, S.; Hausmann, R.; Wittgens, A.; Rosenau, F. Growth of engineered Pseudomonas putida KT2440 on glucose, xylose, and arabinose: Hemicellulose hydrolysates and their major sugars as sustainable carbon sources. GCB Bioenergy 2019, 11, 249–259. [Google Scholar] [CrossRef]
- Strobel, H.J.; Dawson, K.A. Xylose and arabinose utilization by the rumen bacterium Butyrivibrio fibrisolvens. FEMS Microbiol. Lett. 1993, 113, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Hall, M.B.; Weimer, P.J. Divergent utilization patterns of grass fructan, inulin, and other nonfiber carbohydrates by ruminal microbes. J. Dairy Sci. 2016, 99, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Piknova, M.; Guczynska, W.; Miltko, R.; Javorsky, P.; Kasperowicz, A.; Michalowski, T.; Pristas, P. Treponema zioleckii sp. nov., a novel fructan-utilizing species of rumen treponemes. FEMS Microbiol. Lett. 2008, 289, 166–172. [Google Scholar]
- Kasperowicz, A.; Stan-Glasek, K.; Guczynska, W.; Piknová, M.; Pristaš, P.; Nigutová, K.; Javorský, P.; Michałowski, T. Fructanolytic and saccharolytic enzymes of the rumen bacterium Pseudobutyrivibrio ruminis strain 3—Preliminary study. Folia Microbiol. 2010, 55, 329–331. [Google Scholar] [CrossRef] [PubMed]
- Lambert, A.; Østerås, M.; Mandon, K.; Poggi, M.-C.; Rudulier, D.L. Fructose uptake in sinorhizobium meliloti is mediated by a high-affinity ATP-binding cassette transport system. J. Bacteriol. 2001, 183, 4709–4717. [Google Scholar] [CrossRef] [PubMed]
- Kornberg, H.L. Fructose transport by Escherichia-coli. Philos. Trans. R. Soc. Lond. Ser. B-Biol. Sci. 1990, 326, 505–513. [Google Scholar]
- Gay, P.; Delobbe, A. Fructose transport in Bacillus-subtilis. Eur. J. Biochem. 1977, 79, 363–373. [Google Scholar] [CrossRef] [PubMed]
- Matthews, C.; Crispie, F.; Lewis, E.; Reid, M.; O’Toole, P.W.; Cotter, P.D. The rumen microbiome: A crucial consideration when optimising milk and meat production and nitrogen utilisation efficiency. Gut Microbes 2019, 10, 115–132. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Nutrient Requirements of Dairy Cattle, 8th revised ed.; The National Academies Press: Washington, DC, USA, 2021; p. 502. [Google Scholar]
- Lardinois, C.C.; Mills, R.C.; Elvehjem, C.A.; Hart, E.B. Rumen synthesis of the vitamin B complex as influenced by ration composition. J. Dairy Sci. 1944, 27, 579–583. [Google Scholar] [CrossRef]
- Wegner, M.; Booth, A.; Elvehjem, C.; Hart, E. Rumen synthesis of the vitamin B complex. Proc. Soc. Exp. Biol. Med. 1940, 45, 769–771. [Google Scholar] [CrossRef]
- Ragaller, V.; Lebzien, P.; Südekum, K.H.; Hüther, L.; Flachowsky, G. Pantothenic acid in ruminant nutrition: A review. J. Anim. Physiol. Anim. Nutr. 2011, 95, 6–16. [Google Scholar] [CrossRef] [PubMed]
- Völker, D.; Hüther, L.; Daş, G.; Abel, H. Pantothenic acid supplementation to support rumen microbes? Arch. Anim. Nutr. 2011, 65, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Schwab, E.C.; Schwab, C.G.; Shaver, R.D.; Girard, C.L.; Putnam, D.E.; Whitehouse, N.L. Dietary forage and nonfiber carbohydrate contents influence B-vitamin intake, duodenal flow, and apparent ruminal synthesis in lactating dairy cows. J. Dairy Sci. 2006, 89, 174–187. [Google Scholar] [CrossRef] [PubMed]
- Wolin, M.; Miller, T. Microbe-microbe interactions. In The Rumen Microbial Ecosystem; Hobson, P.N., Ed.; Elsevier Applied Science: London, UK, 1988; pp. 343–359. [Google Scholar]
- Matsugo, S.; Nakamura, Y. Pyrrole-2-carboxaldehydes: Origins and physiological activities. Molecules 2023, 28, 2599. [Google Scholar] [CrossRef]
- Król, B.; Słupczyńska, M.; Wilk, M.; Asghar, M.U.; Cwynar, P. Anaerobic rumen fungi and fungal direct-fed microbials in ruminant feeding. J. Anim. Feed. Sci. 2023, 32, 3–16. [Google Scholar] [CrossRef]
- Saye, L.M.G.; Navaratna, T.A.; Chong, J.P.J.; O’Malley, M.A.; Theodorou, M.K.; Reilly, M. The anaerobic fungi: Challenges and opportunities for industrial lignocellulosic biofuel production. Microorganisms 2021, 9, 694. [Google Scholar] [CrossRef]
- Chang, H.; Wang, X.; Zeng, H.; Zhai, Y.; Huang, N.; Wang, C.; Han, Z. Comparison of ruminal microbiota, metabolomics, and milk performance between Montbéliarde×Holstein and Holstein cattle. Front. Vet. Sci. 2023, 10, 1178093. [Google Scholar] [CrossRef]
- van Gylswyk, N.O. Succiniclasticum ruminis gen. nov., sp. nov., a ruminal bacterium converting succinate to propionate as the sole energy-yielding mechanism. Int. J. Syst. Bacteriol. 1995, 45, 297–300. [Google Scholar]
- O’Herrin, S.M.; Kenealy, W.R. Glucose and carbon dioxide metabolism by Succinivibrio dextrinosolvens. Appl. Environ. Microbiol. 1993, 59, 748–755. [Google Scholar] [CrossRef]
- Wang, X.A.; Xu, T.W.; Zhang, X.L.; Zhao, N.; Hu, L.Y.; Liu, H.J.; Zhang, Q.; Geng, Y.Y.; Kang, S.P.; Xu, S.X. The response of ruminal microbiota and metabolites to different dietary protein levels in Tibetan sheep on the Qinghai-Tibetan plateau. Front. Vet. Sci. 2022, 9, 922817. [Google Scholar] [CrossRef]
Species | Period | p-Value | ||
---|---|---|---|---|
PRE | FRP | POST | ||
>100‱ in PRE | ||||
Clostridium spp. (C122) | 578.27 b | 687.05 ab | 989.57 a | 0.03 |
Selenomonas ruminantium | 140.65 | 89.01 | 119.34 | 0.10 |
<100‱, >0.1‱ in PRE | ||||
Lactobacillus spp. (C25) | 0.63 a | 0.09 b | 0.58 a | <0.01 |
Escherichia coli (EC42405) | 1.43 a | 0.19 b | 1.14 a | <0.01 |
Fibrobacter succinogenes | 0.79 a | 0.29 b | 0.72 ab | 0.02 |
Megaspheara elsdenii | 1.32 a | 0.28 b | 0.70 ab | <0.01 |
Butyrivibrio fibrisolvens | 0.64 a | 0.41 a | 0.10 b | <0.01 |
Succinimonas amylolytica | 0.25 ab | 1.87 a | 0.06 b | 0.02 |
Bacteroides spp. (BF25) | 1.39 a | 0.46 ab | 0.14 b | 0.05 |
Succinivibrio dextrinosolvens | 0.55 b | 76.00 a | 1.36 b | <0.01 |
Rumicoccus flavefaciens | 1.80 | 0.63 | 0.87 | 0.31 |
Rumicoccus albus | 0.31 | 0.05 | 0.21 | 0.17 |
<0.1‱ in PRE | ||||
Streptococcus bovis | 0.018 b | 0.211 a | 0.010 b | 0.01 |
Bifidobacteria spp. (N124) | 0.008 b | 0.130 a | 0.002 b | <0.01 |
Prevotella bryantii | 0.035 ab | 0.009 b | 0.129 a | <0.01 |
Eubacterium ruminantium | 3.29 × 10−6 ab | 9.02 × 10−6 a | 1.48 × 10−6 b | <0.01 |
Metabolite | PRE | FRP | POST | SEM | p-Value |
---|---|---|---|---|---|
Amino acids | |||||
Alanine | 788 a | 256 b | 468 b | 72.9 | 0.01 |
Aspartic acid | 728 | 288 | 552 | 121 | 0.11 |
Beta-alanine | 9.43 a | 2.50 b | 4.63 b | 0.99 | 0.01 |
Glutamic acid | 556 a | 121 b | 289 b | 59.7 | 0.01 |
Glutamine | 918 a | 273 b | 690 a | 92.9 | 0.01 |
Glycine | 504 a | 117 b | 314 ab | 46.1 | <0.01 |
Isoleucine | 361 a | 69.0 b | 190 ab | 55.9 | 0.03 |
Leucine | 210 | 41.7 | 91.1 | 45.4 | 0.09 |
Lysine | 1160 a | 248 b | 707 ab | 132 | 0.01 |
Phenylalanine | 157 | 48.7 | 108 | 30.3 | 0.11 |
Proline | 122 | 19.4 | 84.6 | 39.3 | 0.25 |
Serine | 314 a | 73.4 b | 178 ab | 32.3 | 0.01 |
Threonine | 394 a | 89.6 b | 189 ab | 62.9 | 0.04 |
Tryptophan | 8.50 | 1.73 | 3.03 | 2.25 | 0.16 |
Valine | 362 a | 80.4 c | 226 b | 28.1 | <0.01 |
Amino acid-related metabolites | |||||
Cadaverine | 33.9 a | 4.77 b | 24.5 a | 4.41 | 0.02 |
Fumaric acid | 6.73 a | 3.07 b | 5.60 a | 0.28 | <0.01 |
N-Acetylglutamic acid | 133 a | 39.3 c | 84.7 b | 10.2 | <0.01 |
Ornithine | 127 a | 15.0 c | 49.3 b | 5.01 | <0.01 |
Putrescine | 339 a | 24.3 b | 128 ab | 68.2 | 0.04 |
γ-Aminobutyric acid | 20.2 a | 10.6 b | 14.2 ab | 1.41 | 0.02 |
1,3-diaminopropane | 30.8 a | 6.80 b | 16.9 b | 3.45 | 0.01 |
Glyoxylic acid | 160 | 83.9 | 139 | 17.8 | 0.06 |
Succinic acid | 109 b | 128 b | 205 a | 14.4 | 0.01 |
p-hydroxyphenylacetic acid | 10.9 b | 12.9 b | 22.8 a | 1.83 | 0.01 |
Glyceric acid | 70.2 | 42.6 | 45.2 | 31.3 | 0.80 |
Pyruvic acid | 2.30 | 1.53 | 3.13 | 0.53 | 0.17 |
Spermidine | 31.5 | 11.9 | 34.0 | 6.77 | 0.11 |
Urea | 11.3 | 12.1 | 10.4 | 1.37 | 0.69 |
Amino acid derivatives | |||||
N-methylalanine | 11.3 a | 1.43 b | 13.2 a | 1.87 | 0.01 |
L-methionine sulfoxide | 18.4 a | 3.27 b | 9.97 ab | 2.98 | 0.03 |
N-alpha-acetyl-l-lysine | 86.0 a | 28.5 b | 50.8 ab | 9.05 | 0.01 |
Pentanoic acid, 5-amino | 26.0 | 10.8 | 12.1 | 5.65 | 0.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Q.; Galvão, M.C.; Alharthi, A.S.; Alhidary, I.A.; Gionbelli, M.P.; McCann, J.C.; Loor, J.J. Feed Restriction in Angus Steers Impacts Ruminal Bacteria, Its Metabolites, and Causes Epithelial Inflammation. Ruminants 2024, 4, 387-405. https://doi.org/10.3390/ruminants4030028
Jiang Q, Galvão MC, Alharthi AS, Alhidary IA, Gionbelli MP, McCann JC, Loor JJ. Feed Restriction in Angus Steers Impacts Ruminal Bacteria, Its Metabolites, and Causes Epithelial Inflammation. Ruminants. 2024; 4(3):387-405. https://doi.org/10.3390/ruminants4030028
Chicago/Turabian StyleJiang, Qianming, Matheus Castilho Galvão, Abdulrahman S. Alharthi, Ibrahim A. Alhidary, Mateus P. Gionbelli, Joshua C. McCann, and Juan J. Loor. 2024. "Feed Restriction in Angus Steers Impacts Ruminal Bacteria, Its Metabolites, and Causes Epithelial Inflammation" Ruminants 4, no. 3: 387-405. https://doi.org/10.3390/ruminants4030028
APA StyleJiang, Q., Galvão, M. C., Alharthi, A. S., Alhidary, I. A., Gionbelli, M. P., McCann, J. C., & Loor, J. J. (2024). Feed Restriction in Angus Steers Impacts Ruminal Bacteria, Its Metabolites, and Causes Epithelial Inflammation. Ruminants, 4(3), 387-405. https://doi.org/10.3390/ruminants4030028