Effects of Caffeine Doses on Rumen Fermentation Profile and Nutrient Digestibility Using a Lactating Cow Diet under Continuous Cultures Conditions
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Treatments
2.2. Continuous Culture Conditions
2.3. Sample Collection and Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Caffeine Effects on Nutrient Digestibility
3.2. Caffeine Effects on Volatile Fatty Acids, pH, and Ammonia
3.3. Caffeine Effects on Protozoa Populations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patra, A.K.; Saxena, J. A New Perspective on the Use of Plant Secondary Metabolites to Inhibit Methanogenesis in the Rumen. Phytochemistry 2010, 71, 1198–1222. [Google Scholar] [CrossRef] [PubMed]
- Nathanson, J.A. Caffeine and Related Methylxanthines: Possible Naturally Occurring Pesticides. Science 1984, 226, 184–187. [Google Scholar] [CrossRef]
- Mathavan, S.; Premalatha, Y.; Christopher, M.S.M. Effects of Caffeine and Theophylline on the Fecundity of Four Lepidopteran Species. Exp. Biol. 1985, 44, 133–138. [Google Scholar]
- Hollingsworth, R.G.; Armstrong, J.W.; Campbell, E. Caffeine as a Novel Toxicant for Slugs and Snails. Ann. Appl. Biol. 2003, 142, 91–97. [Google Scholar] [CrossRef]
- Kim, Y.S.; Sano, H. Pathogen Resistance of Transgenic Tobacco Plants Producing Caffeine. Phytochemistry 2008, 69, 882–888. [Google Scholar] [CrossRef] [PubMed]
- Sledz, W.; Los, E.; Paczek, A.; Rischka, J.; Motyka, A.; Zoledowska, S.; Piosik, J.; Lojkowska, E. Antibacterial Activity of Caffeine against Plant Pathogenic Bacteria. Acta Biochim. Pol. 2015, 62, 605–612. [Google Scholar] [CrossRef]
- Prabhudessai, V.; Ganguly, A.; Mutnuri, S. Effect of Caffeine and Saponin on Anaerobic Digestion of Food Waste. Ann. Microbiol. 2009, 59, 643–648. [Google Scholar] [CrossRef]
- Corro, G.; Pal, U.; Bañuelos, F.; Rosas, M. Generation of Biogas from Coffee-Pulp and Cow-Dung Co-Digestion: Infrared Studies of Postcombustion Emissions. Energy Convers. Manag. 2013, 74, 471–481. [Google Scholar] [CrossRef]
- Rico, C.; Diego, R.; Valcarce, A.; Rico, J.L. Biogas Production from Various Typical Organic Wastes Generated in the Region of Cantabria (Spain): Methane Yields and Co-Digestion Tests. Smart Grid Renew. Energy 2014, 05, 128–136. [Google Scholar] [CrossRef]
- Low, J.H.; Rahman, W.A.W.A.; Jamaluddin, J. Structural elucidation of tannins of spent coffee grounds by CP-MAS 13C NMR and MALDI-TOF MS. Ind. Crops Prod. 2015, 69, 456–461. [Google Scholar] [CrossRef]
- Pandey, A.; Soccol, C.R.; Nigam, P.; Brand, D.; Mohan, R.; Roussos, S. Biotechnological Potential of Coffee Pulp and Coffee Husk for Bioprocesses. Biochem. Eng. J. 2000, 6, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Teather, R.M.; Sauer, F.D. A Naturally Compartmented Rumen Simulation System for the Continuous Culture of Rumen Bacteria and Protozoa. J. Dairy Sci. 1988, 71, 666–673. [Google Scholar] [CrossRef]
- Whitney, A.K.; Weir, T.L. Interaction of Caffeine with the SOS Response Pathway in Escherichia coli. Gut Pathog. 2015, 7, 21. [Google Scholar] [CrossRef] [PubMed]
- Pavlin, A.; Busby, S.J.W.; Butala, M. DNA Repair|The LexA Regulatory System. Encycl. Biol. Chem. Third Ed. 2021, 4, 323–333. [Google Scholar] [CrossRef]
- Sandlie, I.; Lossius, I.; Sjåstad, K.; Kleppe, K. Mechanism of Caffeine-Induced Inhibition of DNA Synthesis in Escherichia coli. FEBS Lett. 1983, 151, 237–242. [Google Scholar] [CrossRef]
- Selby, C.P.; Sancar, A. Molecular Mechanisms of DNA Repair Inhibition by Caffeine. Proc. Natl. Acad. Sci. USA 1990, 87, 3522–3525. [Google Scholar] [CrossRef] [PubMed]
- Van Soest, P.J. Nutritional Ecology of the Ruminant. In Nutritional Ecology of the Ruminant; Cornell University Press: Ithaca, NY, USA, 2019; pp. 253–280. ISBN 978-1-5017-3235-5. [Google Scholar]
- Ungerfeld, E.M. Metabolic Hydrogen Flows in Rumen Fermentation: Principles and Possibilities of Interventions. Front. Microbiol. 2020, 11, 589. [Google Scholar] [CrossRef]
- Niu, M.; Kebreab, E.; Hristov, A.N.; Oh, J.; Arndt, C.; Bannink, A.; Bayat, A.R.; Brito, A.F.; Boland, T.; Casper, D.; et al. Prediction of Enteric Methane Production, Yield, and Intensity in Dairy Cattle Using an Intercontinental Database. Glob. Chang. Biol. 2018, 24, 3368–3389. [Google Scholar] [CrossRef] [PubMed]
- Moss, A.R.; Jouany, J.P.; Newbold, J. Methane Production by Ruminants: Its Contribution to Global Warming. Anim. Res. 2000, 49, 231–253. [Google Scholar] [CrossRef]
- Widjaja, T.; Iswanto, T.; Altway, A.; Shovitri, M.; Rachmania Sri, J. Methane Production from Coffee Pulp by Microorganism of Rumen Fluid and Cow Dung in Co-Digestion. Chem. Eng. Trans. 2017, 56, 1465–1470. [Google Scholar] [CrossRef]
- Wallace, R.J. Antimicrobial Properties of Plant Secondary Metabolites. Proc. Nutr. Soc. 2004, 63, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Patra, A.K.; Saxena, J. Dietary Phytochemicals as Rumen Modifiers: A Review of the Effects on Microbial Populations. Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 2009, 96, 363–375. [Google Scholar] [CrossRef] [PubMed]
- Kamra, D.N.; Agarwal, N.; Chaudhary, L.C. Inhibition of Ruminal Methanogenesis by Tropical Plants Containing Secondary Compounds. Int. Congr. Ser. 2006, 1293, 156–163. [Google Scholar] [CrossRef]
- Rochfort, S.; Parker, A.J.; Dunshea, F.R. Plant Bioactives for Ruminant Health and Productivity. Phytochemistry 2008, 69, 299–322. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; O’Donnell, A.J.; Barboline, J.J.; Barkman, T.J. Convergent Evolution of Caffeine in Plants by Co-Option of Exapted Ancestral Enzymes. Proc. Natl. Acad. Sci. USA 2016, 113, 10613–10618. [Google Scholar] [CrossRef]
- Slyter, L.L.; Bryant, M.P.; Wolin, M.J. Effect of pH on Population and Fermentation in a Continuously Cultured Rumen Ecosystem. Appl. Microbiol. 1966, 14, 573–578. [Google Scholar] [CrossRef] [PubMed]
- AOAC International. Official Methods of Analysis, 17th ed.; AOAC International: Rockville, MD, USA, 2000. [Google Scholar]
- Erwin, E.S.; Marco, G.J.; Emery, E.M. Volatile Fatty Acid Analyses of Blood and Rumen Fluid by Gas Chromatography. J. Dairy Sci. 1961, 44, 1768–1771. [Google Scholar] [CrossRef]
- Yang, C.M.J.; Varga, G.A. Effect of Three Concentrate Feeding Frequencies on Rumen Protozoa, Rumen Digesta Kinetics, and Milk Yield in Dairy Cows. J. Dairy Sci. 1989, 72, 950–957. [Google Scholar] [CrossRef] [PubMed]
- Chaney, A.L.; Marbach, E.P. Modified Reagents for Determination of Urea and Ammonia. Clin. Chem. 1962, 8, 130–132. [Google Scholar] [CrossRef]
- Bach Knudsen, K.E. Carbohydrate and Lignin Contents of Plant Materials Used in Animal Feeding. Anim. Feed Sci. Technol. 1997, 67, 319–338. [Google Scholar] [CrossRef]
- Dehority, A.B. Laboratory Manual for Classification and Morphology of Rumen Ciliate Protozoa; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2018; ISBN 978-1-315-89481-2. [Google Scholar]
- Xu, C.C.; Cai, Y.; Zhang, J.G.; Ogawa, M. Fermentation Quality and Nutritive Value of a Total Mixed Ration Silage Containing Coffee Grounds at Ten or Twenty Percent of Dry Matter. J. Anim. Sci. 2007, 85, 1024–1029. [Google Scholar] [CrossRef] [PubMed]
- Moe, P.W.; Tyrrell, H.F. Methane Production in Dairy Cows. J. Dairy Sci. 1979, 62, 1583–1586. [Google Scholar] [CrossRef]
- Wallace, R.J.; McEwan, N.R.; McIntosh, F.M.; Teferedegne, B.; Newbold, C.J. Natural Products as Manipulators of Rumen Fermentation. Asian-Australas. J. Anim. Sci. 2002, 15, 1458–1468. [Google Scholar] [CrossRef]
- Chanu, Y.M.; Paul, S.S.; Dey, A.; Dahiya, S.S. Reducing Ruminal Ammonia Production With Improvement in Feed Utilization Efficiency and Performance of Murrah Buffalo (Bubalus bubalis) Through Dietary Supplementation of Plant-Based Feed Additive Blend. Front. Vet. Sci. 2020, 7, 464. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.K.; Dey, A.; Paul, S.S.; Singh, M.; Dahiya, S.S.; Punia, B.S. Associative Effects of Plant Secondary Metabolites in Modulating in Vitro Methanogenesis, Volatile Fatty Acids Production and Fermentation of Feed in Buffalo (Bubalus bubalis). Agrofor. Syst. 2020, 94, 1555–1566. [Google Scholar] [CrossRef]
- Fuentes, M.C.; Calsamiglia, S.; Cardozo, P.W.; Vlaeminck, B. Effect of pH and Level of Concentrate in the Diet on the Production of Biohydrogenation Intermediates in a Dual-Flow Continuous Culture. J. Dairy Sci. 2009, 92, 4456–4466. [Google Scholar] [CrossRef] [PubMed]
- Pina, D.S.; Valadares Filho, S.C.; Tedeschi, L.O.; Barbosa, A.M.; Valadares, R.F.D. Influence of Different Levels of Concentrate and Ruminally Undegraded Protein on Digestive Variables in Beef Heifers. J. Anim. Sci. 2009, 87, 1058–1067. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.J.; Wang, S.P.; Zhou, H. Influences of Flavomycin, Ropadiar, and Saponin on Nutrient Digestibility, Rumen Fermentation, and Methane Emission from Sheep. Anim. Feed Sci. Technol. 2009, 148, 157–166. [Google Scholar] [CrossRef]
- Luz, F.C.; Cordiner, S.; Manni, A.; Mulone, V.; Rocco, V. Anaerobic Digestion of Coffee Grounds Soluble Fraction at Laboratory Scale: Evaluation of the Biomethane Potential. Appl. Energy 2017, 207, 166–175. [Google Scholar] [CrossRef]
- Mills, C.E.; Tzounis, X.; Oruna-Concha, M.J.; Mottram, D.S.; Gibson, G.R.; Spencer, J.P.E. In Vitro Colonic Metabolism of Coffee and Chlorogenic Acid Results in Selective Changes in Human Faecal Microbiota Growth. Br. J. Nutr. 2015, 113, 1220–1227. [Google Scholar] [CrossRef]
- Hristov, A.N.; Lee, C.; Hristova, R.; Huhtanen, P.; Firkins, J.L. A Meta-Analysis of Variability in Continuous-Culture Ruminal Fermentation and Digestibility Data. J. Dairy Sci. 2012, 95, 5299–5307. [Google Scholar] [CrossRef] [PubMed]
- Fuchigami, M.; Senshu, T.; Horiguchi, M. A Simple Continuous Culture System for Rumen Microbial Digestion Study and Effects of Defaunation and Dilution Rates. J. Dairy Sci. 1989, 72, 3070–3078. [Google Scholar] [CrossRef] [PubMed]
- Karnati, S.K.R.; Sylvester, J.T.; Ribeiro, C.V.D.M.; Gilligan, L.E.; Firkins, J.L. Investigating Unsaturated Fat, Monensin, or Bromoethanesulfonate in Continuous Cultures Retaining Ruminal Protozoa. I. Fermentation, Biohydrogenation, and Microbial Protein Synthesis. J. Dairy Sci. 2009, 92, 3849–3860. [Google Scholar] [CrossRef] [PubMed]
- Cardozo, P.W.; Calsamiglia, S.; Ferret, A.; Kamel, C. Effects of Alfalfa Extract, Anise, Capsicum, and a Mixture of Cinnamaldehyde and Eugenol on Ruminal Fermentation and Protein Degradation in Beef Heifers Fed a High-Concentrate Diet. J. Anim. Sci. 2006, 84, 2801–2808. [Google Scholar] [CrossRef] [PubMed]
- Patra, A.K.; Saxena, J. The Effect and Mode of Action of Saponins on the Microbial Populations and Fermentation in the Rumen and Ruminant Production. Nutr. Res. Rev. 2009, 22, 204–219. [Google Scholar] [CrossRef]
- Szumacher-Strabel, M.; Cieślak, A. Potential of Phytofactors to Mitigate Rumen Ammonia and Methane Production. J. Anim. Feed Sci. 2010, 19, 319–337. [Google Scholar] [CrossRef]
- Benchaar, C.; Calsamiglia, S.; Chaves, A.V.; Fraser, G.R.; Colombatto, D.; McAllister, T.A.; Beauchemin, K.A. A Review of Plant-Derived Essential Oils in Ruminant Nutrition and Production. Anim. Feed Sci. Technol. 2008, 145, 209–228. [Google Scholar] [CrossRef]
Diet Ingredient (%DM) | |
Corn silage | 42.8 |
Ground corn | 17.7 |
Soybean meal | 11.2 |
Citrus pulp | 0.2 |
Beet pulp | 0.2 |
SoyPlus | 9.3 |
Soy hulls | 17.0 |
Mineral mix | 1.6 |
Nutrient Composition | |
% Dry Matter (DM) a | 89.3 |
Crude Protein (CP), % DM a | 17.1 |
Rumen Degradable Protein (RDP), % CP a | 57.7 |
Rumen Undegradable Protein (RUP), % CP a | 42.3 |
Neutral Detergent Fiber (NDF), % DM a | 31.5 |
Acid Detergent Fiber (ADF), % DM a | 20.1 |
Starch, % DM b | 28.0 |
Sugar, % DM b | 3.6 |
Soluble Fiber, % DM b | 7.9 |
Fat, % DM a | 3.1 |
Caffeine Concentrations, ppm * | p-Value | ||||||
---|---|---|---|---|---|---|---|
Digestibility (% DM) | 0 | 50 | 100 | 150 | SE | Linear | Quadratic |
DM | 65.5 a | 66.3 a | 64.0 ab | 62.8 b | 0.46 | 0.01 | 0.14 |
OM | 72.3 ab | 73.2 a | 71.3 ab | 70.3 b | 0.37 | 0.01 | 0.12 |
NDF | 54.8 | 57.5 | 55.7 | 54.0 | 1.20 | 0.51 | 0.12 |
ADF | 51.1 | 52.5 | 51.7 | 49.4 | 0.92 | 0.28 | 0.13 |
Starch | 97.9 a | 98.0 a | 97.8 ab | 97.8 b | 0.03 | 0.01 | 0.13 |
Caffeine Concentrations * | p-Value | ||||||
---|---|---|---|---|---|---|---|
Item | 0 ppm | 50 ppm | 100 ppm | 150 ppm | SE | Linear | Quadratic |
Total VFA, mM | 76.52 | 75.79 | 88.46 | 78.76 | 6.66 | 0.46 | 0.54 |
VFA, mol/100 mol | |||||||
Acetic acid | 39.36 | 41.45 | 40.10 | 42.84 | 2.17 | 0.32 | 0.87 |
Propionic acid | 23.23 | 26.71 | 30.46 | 27.04 | 2.86 | 0.16 | 0.16 |
Butyric acid | 21.65 | 18.84 | 18.26 | 18.64 | 2.35 | 0.39 | 0.52 |
Isovaleric acid | 0.98 | 1.00 | 1.25 | 1.21 | 0.33 | 0.53 | 0.93 |
Valeric acid | 11.95 | 10.28 | 8.09 | 8.39 | 1.52 | 0.09 | 0.53 |
Caproic acid | 2.75 | 1.64 | 1.77 | 1.86 | 0.41 | 0.20 | 0.18 |
Isoacids | 0.10 | 0.08 | 0.08 | 0.01 | 0.05 | 0.27 | 0.63 |
Ammonia, µM | 3.98 d | 2.67 a | 2.90 b | 3.48 c | 0.08 | <0.01 | <0.001 |
Caffeine Concentrations * | p-Value | ||||||
---|---|---|---|---|---|---|---|
Culture pH | 0 ppm | 50 ppm | 100 ppm | 150 ppm | SE | Linear | Quadratic |
pH | 6.07 a | 6.11 a | 6.00 b | 5.99 b | 0.02 | <0.01 | 0.15 |
Maximum pH | 6.37 ab | 6.40 a | 6.30 bc | 6.28 c | 0.02 | <0.01 | 0.16 |
Minimum pH | 5.74 | 5.78 | 5.73 | 5.67 | 0.04 | 0.18 | 0.09 |
pH, h < 6.0 | 5.00 b | 4.50 b | 8.00 a | 7.00 a | 0.35 | <0.01 | 0.39 |
Caffeine Concentrations * | p-Value | ||||||
---|---|---|---|---|---|---|---|
Protozoa 102/mL | 0 ppm | 50 ppm | 100 ppm | 150 ppm | SE | Linear | Quadratic |
Total Protozoa | 67.30 | 58.48 | 67.30 | 63.84 | 5.47 | 0.95 | 0.62 |
Entodinium spp. | 24.44 | 25.89 | 26.90 | 27.68 | 3.43 | 0.28 | 0.88 |
Epidinium spp. | 17.30 | 16.41 | 16.29 | 16.52 | 1.01 | 0.56 | 0.63 |
Daysitricha spp. | 7.03 | 4.80 | 8.82 | 6.36 | 1.55 | 0.78 | 0.94 |
Isotricha spp. | 1.12 | 0.78 | 2.12 | 1.23 | 0.40 | 0.34 | 0.48 |
Diplodinium spp. | 16.96 a | 9.93 b | 12.83 ab | 12.05 ab | 1.32 | 0.03 | 0.10 |
Ophryosoloex spp. | 0.45 | 0.67 | 0.33 | 0.00 | 0.23 | 0.09 | 0.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toledo, M.; Hussein, S.M.; Peña, M.; Aguerre, M.J.; Bridges, W.; Lascano, G.J. Effects of Caffeine Doses on Rumen Fermentation Profile and Nutrient Digestibility Using a Lactating Cow Diet under Continuous Cultures Conditions. Ruminants 2024, 4, 406-417. https://doi.org/10.3390/ruminants4030029
Toledo M, Hussein SM, Peña M, Aguerre MJ, Bridges W, Lascano GJ. Effects of Caffeine Doses on Rumen Fermentation Profile and Nutrient Digestibility Using a Lactating Cow Diet under Continuous Cultures Conditions. Ruminants. 2024; 4(3):406-417. https://doi.org/10.3390/ruminants4030029
Chicago/Turabian StyleToledo, Mónica, Saad M. Hussein, Manuel Peña, Matias J. Aguerre, William Bridges, and Gustavo J. Lascano. 2024. "Effects of Caffeine Doses on Rumen Fermentation Profile and Nutrient Digestibility Using a Lactating Cow Diet under Continuous Cultures Conditions" Ruminants 4, no. 3: 406-417. https://doi.org/10.3390/ruminants4030029
APA StyleToledo, M., Hussein, S. M., Peña, M., Aguerre, M. J., Bridges, W., & Lascano, G. J. (2024). Effects of Caffeine Doses on Rumen Fermentation Profile and Nutrient Digestibility Using a Lactating Cow Diet under Continuous Cultures Conditions. Ruminants, 4(3), 406-417. https://doi.org/10.3390/ruminants4030029