Comparison of Different Variants of Intermediate Cluster Disinfection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Farms
2.2. Preparation of Treatment Solutions
2.3. Sampling Method
2.4. Sampling
2.5. Microbiological Examination
2.6. Statistics
3. Results
3.1. Effect of the Treatments—Total Bacterial Count (TBC)
3.2. Effect of the Treatments—Bacterial Load of Presumptive Staphylococcus aureus
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dufour, S.; Fréchette, A.; Barkema, H.W.; Mussell, A.; Scholl, D.T. Invited review: Effect of udder health management practices on herd somatic cell count. J. Dairy Sci. 2011, 94, 563–579. [Google Scholar] [CrossRef] [PubMed]
- Hässig, M.; Sigrist, S.M.; Corti, S.; Giezendanner, N.; Stephan, R. The role of bacterial contamination of milking utensils and disinfecting solutions as a possible cause of clinical mastitis in dairy cows. Schweiz. Arch. Tierheilkd. 2011, 153, 263–268. [Google Scholar] [CrossRef] [PubMed]
- De Visscher, A.; Supré, K.; Haesebrouck, F.; Zadoks, R.N.; Piessens, V.; Van Coillie, E.; Piepers, S.; De Vliegher, S. Further evidence for the existence of environmental and host-associated species of coagulase-negative staphylococci in dairy cattle. Vet. Microbiol. 2014, 172, 466–474. [Google Scholar] [CrossRef] [PubMed]
- Woudstra, S.; Wente, N.; Zhang, Y.; Leimbach, S.; Kirkeby, C.; Gussmann, M.K.; Kromker, V. Reservoirs of Staphylococcus spp. and Streptococcus spp. Associated with Intramammary Infections of Dairy Cows. Pathogens 2023, 12, 699. [Google Scholar] [CrossRef]
- Newbould, F.H.S.; Barnum, D.A. The reduction of the microflora of milking machine inflations by teat dipping and teat cup pasteurization. J. Milk Food Technol. 1960, 23, 374–376. [Google Scholar] [CrossRef]
- Newbould, F.H. Disinfection in the prevention of udder infections: A review. Can. Vet. J. 1965, 6, 29–37. [Google Scholar]
- Krömker, V. Short Textbook Dairy Science and Milk Hygiene; Parey: Stuttgart, Germany, 2006. [Google Scholar]
- Kunigk, L.; Almeida, M.C. Action of peracetic acid on Escherichia coli and Staphylococcus aureus in suspension or settled on stainless steel surfaces. Braz. J. Microbiol. 2001, 32, 38–41. [Google Scholar] [CrossRef]
- Bützer, P. Peroxyessigsäure: Einfach, aber wirksam (Peroxyacetic acid: Simple, but effective). CLB Chem. Labor Biotech. 2012, 62, 96–115. [Google Scholar]
- Fröhling, A.; Wienke, M.; Rose-Meierhöfer, S.; Schlüter, O. Improved method for mastitis detection and evaluation of disinfectant efficiency during milking process. Food Bioprocess Technol. 2010, 3, 892–900. [Google Scholar] [CrossRef]
- Laroussi, M.; Bekeschus, S.; Keidar, M.; Bogaerts, A.; Fridman, A.; Lu, X.; Ostrikov, K.; Hori, M.; Stapelmann, K.; Miller, V. Low-temperature plasma for biology, hygiene, and medicine: Perspective and roadmap. IEEE Trans. Radiat. Plasma Med. Sci. 2022, 6, 127–157. [Google Scholar] [CrossRef]
- Hoeben, W.F.L.M.; van Ooij, P.P.; Schram, D.C.; Huiskamp, T.; Pemen, A.J.M.; Lukeš, P. On the Possibilities of Straightforward Characterization of Plasma Activated Water. Plasma Chem. Plasma Process. 2019, 39, 597–626. [Google Scholar] [CrossRef]
- Traylor, M.J.; Pavlovich, M.J.; Karim, S.; Hait, P.; Sakiyama, Y.; Clark, D.S.; Graves, D.B. Long-term antibacterial efficacy of air plasma-activated water. J. Phys. D Appl. Phys. 2011, 44, 472001. [Google Scholar] [CrossRef]
- Yusupov, M.; Bogaerts, A.; Huygh, S.; Snoeckx, R.; Van Duin, A.C.; Neyts, E.C. Plasma-induced destruction of bacterial cell wall components: A reactive molecular dynamics simulation. J. Phys. Chem. C 2013, 117, 5993–5998. [Google Scholar] [CrossRef]
- Scheib, S.; Leimbach, S.; Avramidis, G.; Bellmann, M.; Nitz, J.; Ochs, C.; Tellen, A.; Wente, N.; Zhang, Y.; Viöl, W.; et al. Intermediate Cluster Disinfection: Which Disinfection Solution Is Most Effective on Milking Liners? A Comparison of Microorganism Reduction on Liner Inner Surfaces Using Quantitative Swab Sampling Technique. Pathogens 2023, 12, 560. [Google Scholar] [CrossRef]
- Scheib, S.; Wente, N.; Leimbach, S.; Krömker, V. Comparison of different swab techniques for the quantitative analysis of mastitis relevant pathogens on liner surfaces. Milk Sci. Int.-Milchwiss. 2023, 76, 1–7. [Google Scholar] [CrossRef]
- Faille, C.; Brauge, T.; Leleu, G.; Hanin, A.; Denis, C.; Midelet, G. Comparison of the performance of the biofilm sampling methods (swab, sponge, contact agar) in the recovery of Listeria monocytogenes populations considering the seafood environment conditions. Int. J. Food Microbiol. 2020, 325, 108626. [Google Scholar] [CrossRef]
- Pfannenschmidt, F. Qualification of the Wet-Dry-Swab-Technique DIN 10113; 1997-07 for the Determination of the Hygienic Status in Milking Machines. Diss Stiftung Tierärztliche Hochschule Hannover. 2003. Available online: https://nbn-resolving.org/urn:nbn:de:gbv:95-87922 (accessed on 1 December 2003).
- Paduch, J.-H.; Krömker, V. Besiedlung von Zitzenhaut und Zitzenkanal laktierender Milchrinder durch euterpathogene Mikroorganismen. Tierärztliche Prax. Ausg. G Großtiere/Nutztiere 2011, 39, 71–76. [Google Scholar] [CrossRef]
- Hohmann, M.-F.; Wente, N.; Zhang, Y.; Klocke, D.; Krömker, V. Comparison of two teat skin sampling methods to quantify teat contamination. Milk Sci. Int.-Milchwiss. 2020, 73, 2–6. [Google Scholar]
- Reybrouck, G. The testing of disinfectants. Int. Biodeterior. Biodegrad. 1998, 41, 269–272. [Google Scholar] [CrossRef]
- Skarbye, A.P.; Krogh, M.A.; Denwood, M.; Bjerring, M.; Ostergaard, S. Effect of enhanced hygiene on transmission of Staphylococcus aureus, Streptococcus agalactiae, and Streptococcus dysgalactiae in dairy herds with automatic milking systems. J. Dairy Sci. 2021, 104, 7195–7209. [Google Scholar] [CrossRef]
- Große-Peclum, V.; Siekmann, L.; Krischek, C.; Avramidis, G.; ten Bosch, L.; Harms, M.; Ochs, C.; Ortmann, R.; Hoedemaker, M.; Ahlfeld, B.; et al. An In Vitro Model Using TRIS-Buffered Plasma-Activated Water to Reduce Pathogenic Microorganisms Involved in Digital Dermatitis Infection in Cattle. Appl. Sci. 2022, 12, 12325. [Google Scholar] [CrossRef]
- Rahman, M.; Hasan, M.S.; Islam, R.; Rana, R.; Sayem, A.; Sad, M.A.A.; Matin, A.; Raposo, A.; Zandonadi, R.P.; Han, H. Plasma-activated water for food safety and quality: A review of recent developments. Int. J. Environ. Res. Public Health 2022, 19, 6630. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Zhou, R.; Wang, P.; Xian, Y.; Mai-Prochnow, A.; Lu, X.; Cullen, P.J.; Ostrikov, K.; Bazaka, K. Plasma-activated water: Generation, origin of reactive species and biological applications. J. Phys. D Appl. Phys. 2020, 53, 303001. [Google Scholar] [CrossRef]
Treatment | Mean | Std. Deviation 3 |
---|---|---|
Control | 4.3 | 0.4 |
Water | 4.3 | 0.3 |
PABS 1 | 4.2 | 0.4 |
PAS 2 | 3.3 | 1 |
Treatment (T1) | Treatment (T2) | Estimated Means of Treatment (T1) | Mean Difference (T1–T2) | Std. Error (T1) 3 | p-Level |
---|---|---|---|---|---|
control | PABS | 4.2 | 0.1 | 0.3 | 0.6 |
water | −0.1 | 0.5 | |||
PAS | 0.9 * | <0.001 | |||
PABS 1 | control | 4.1 | −0.2 | 0.3 | 0.6 |
water | −0.9 | 0.3 | |||
PAS | 0.8 * | <0.001 | |||
water | control | 4.3 | 0.1 | 0.3 | 0.5 |
PABS | 0.2 | 0.3 | |||
PAS | 1.0 * | <0.001 | |||
PAS 2 | control | 3.3 | −0.9 * | 0.3 | <0.001 |
PABS | −0.8 * | <0.001 | |||
water | −1.0 * | <0.001 |
Treatment | Mean | Std. Deviation 3 |
---|---|---|
Control | 2.5 | 0.7 |
Water | 2.5 | 0.6 |
PABS 1 | 2.1 | 0.7 |
PAS 2 | 1 | 0.9 |
Treatment (T1) | Treatment (T2) | Estimated Means of T1 | Mean Difference (T1–T2) | Std. Error (T1) 3 | p-Level |
---|---|---|---|---|---|
control | PABS | 2.4 | 0.3 * | 0.14 | 0.007 |
water | −0.1 | 0.878 | |||
PAS | 1.5 * | <0.001 | |||
PABS 1 | control | 2.1 | −0.3 * | 0.14 | 0.007 |
water | −0.4 * | 0.004 | |||
PAS | 1.2 * | <0.001 | |||
water | control | 2.5 | 0.1 | 0.14 | 0.878 |
PABS | 0.3 * | 0.004 | |||
PAS | 1.6 * | <0.001 | |||
PAS 2 | control | 0.9 | −1.5 * | 0.14 | <0.001 |
PABS | −1.2 * | <0.001 | |||
water | −1.6 * | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schulze, M.; Nankemann, F.; Tellen, A.; Nitz, J.; Zhang, Y.; Leimbach, S.; Krömker, V. Comparison of Different Variants of Intermediate Cluster Disinfection. Hygiene 2025, 5, 12. https://doi.org/10.3390/hygiene5010012
Schulze M, Nankemann F, Tellen A, Nitz J, Zhang Y, Leimbach S, Krömker V. Comparison of Different Variants of Intermediate Cluster Disinfection. Hygiene. 2025; 5(1):12. https://doi.org/10.3390/hygiene5010012
Chicago/Turabian StyleSchulze, Muriel, Franziska Nankemann, Anne Tellen, Julia Nitz, Yanchao Zhang, Stefanie Leimbach, and Volker Krömker. 2025. "Comparison of Different Variants of Intermediate Cluster Disinfection" Hygiene 5, no. 1: 12. https://doi.org/10.3390/hygiene5010012
APA StyleSchulze, M., Nankemann, F., Tellen, A., Nitz, J., Zhang, Y., Leimbach, S., & Krömker, V. (2025). Comparison of Different Variants of Intermediate Cluster Disinfection. Hygiene, 5(1), 12. https://doi.org/10.3390/hygiene5010012