Evaluation of Dunaliella salina Growth in Different Salinities for Potential Application in Saline Water Treatment and Biomass Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation for the Initial Trial
2.1.1. Salinity Assessment
2.1.2. Cell Counting
2.1.3. Dry Weight Assessment
2.1.4. Chlorophyll Assessment
2.2. Upscaling
2.3. Statistical Analysis
3. Results
3.1. Initial Trial
3.2. Upscaling
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chenoweth, J. Minimum water requirement for social and economic development. Desalination 2008, 229, 245–256. [Google Scholar] [CrossRef]
- Lall, U.; Heikkila, T.; Siegfried, T. Water in the 21st century: Defining the elements of global crises and potential solutions on jstor. J. Int. Aff. Editor. Board 2008, 61, 1–17. Available online: https://www.jstor.org/stable/24358108 (accessed on 13 December 2023).
- Bromley, D.W.; Taylor, D.C.; Parker, D.E. Water Reform and Economic Development: Institutional Aspects of Water Management in the Developing Countries. Econ. Dev. Cult. Chang. 1980, 28, 365–387. [Google Scholar] [CrossRef]
- Brown, C.; Lall, U. Water and economic development: The role of variability and a framework for resilience. Nat. Resour. Forum 2006, 30, 306–317. [Google Scholar] [CrossRef]
- Bhateria, R.; Jain, D. Water quality assessment of lake water: A review. Sustain. Water Resour. Manag. 2016, 2, 161–173. [Google Scholar] [CrossRef]
- Ayoub, J.; Alward, R. Water requirements and remote arid areas: The need for small-scale desalination. Desalination 1996, 107, 131–147. [Google Scholar] [CrossRef]
- McGinn, P.J.; Dickinson, K.E.; Park, K.C.; Whitney, C.G.; MacQuarrie, S.P.; Black, F.J.; Frigon, J.-C.; Guiot, S.R.; O’Leary, S.J. Assessment of the bioenergy and bioremediation potentials of the microalga Scenedesmus sp. AMDD cultivated in municipal wastewater effluent in batch and continuous mode. Algal Res. 2012, 1, 155–165. [Google Scholar] [CrossRef]
- Pittman, J.K.; Dean, A.P.; Osundeko, O. The potential of sustainable algal biofuel production using wastewater resources. Bioresour. Technol. 2011, 102, 17–25. [Google Scholar] [CrossRef]
- Abdel-Raouf, N.; Al-Homaidan, A.A.; Ibraheem, I.B.M. Microalgae and wastewater treatment. Saudi J. Biol. Sci. 2012, 19, 257–275. [Google Scholar] [CrossRef]
- Curto, D.; Franzitta, V.; Guercio, A. A Review of the Water Desalination Technologies. Appl. Sci. 2021, 11, 670. [Google Scholar] [CrossRef]
- Gao, L.; Zhang, J.; Liu, G. Life cycle assessment for algae-based desalination system. Desalination 2021, 512, 115148. [Google Scholar] [CrossRef]
- Ghobashy, M.O.I.; Bahattab, O.; Alatawi, A.; Aljohani, M.M.; Helal, M.M.I. A Novel Approach for the Biological Desalination of Major Anions in Seawater Using Three Microalgal Species: A Kinetic Study. Sustainability 2022, 14, 7018. [Google Scholar] [CrossRef]
- Mohsenpour, S.F.; Hennige, S.; Willoughby, N.; Adeloye, A.; Gutierrez, T. Integrating micro-algae into wastewater treatment: A review. Sci. Total. Environ. 2021, 752, 142168. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Zhang, X.; Fan, L.; Gray, S.; Li, M. Algae-Based Approach for Desalination: An Emerging Energy-Passive and Environmentally Friendly Desalination Technology. ACS Sustain. Chem. Eng. 2021, 9, 8663–8678. [Google Scholar] [CrossRef]
- El-Sayed, A.B.; El-Fouly, M.M.; El-Nour, E.-Z.A.E.-M.A.A. Immobilized Microalga Scenedesmus sp. for Biological Desalination of Red Sea Water: I. Effect on Growth. Nat. Sci. 2010, 8, 69–76. Available online: https://www.researchgate.net/publication/236983851_Immobilized_Microalga_Scenedesmus_sp_for_Biological_Desalination_of_Red_Sea_Water_I_Effect_on_Growth (accessed on 25 May 2024).
- Maru, M.; Sahle-Demissie, E.; Zewge, F. A review on biodesalination using halophytic microalgae: Opportunities and challenges. J. Water Supply Res. Technol. 2021, 70, jws2021068. [Google Scholar] [CrossRef]
- De-Bashan, L.E.; Bashan, Y. Immobilized microalgae for removing pollutants: Review of practical aspects. Bioresour. Technol. 2010, 101, 1611–1627. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, R.; Guieysse, B. Algal–bacterial processes for the treatment of hazardous contaminants: A review. Water Res. 2006, 40, 2799–2815. [Google Scholar] [CrossRef] [PubMed]
- Uma, L.; Selvaraj, K.; Subramanian, G.; Nagarkar, S.; Manjula, R. Biotechnological Potential of Marine Cyanobacteria in Wastewater Treatment—Disinfection of Raw Sewage by Oscillatoria willei BDU 130511. J. Microbiol. Biotechnol. 2002, 12, 699–701. Available online: https://www.jmb.or.kr/journal/view.html?spage=699&volume=12&number=4 (accessed on 13 December 2023).
- Mallick, N. Biotechnological potential of immobilized algae for wastewater N, P and metal removal: A review. BioMetals 2002, 15, 377–390. [Google Scholar] [CrossRef]
- Moayedi, A.; Yargholi, B.; Pazira, E.; Babazadeh, H. Investigated of Desalination of Saline Waters by Using Dunaliella salina Algae and Its Effect on Water Ions. Civ. Eng. J. 2019, 5, 2450–2460. [Google Scholar] [CrossRef]
- Sergany, E.; Hosseiny, E.; Nadi, E. The Optimum Algae Dose in Water Desalination by Algae Ponds. Int. Res. J. Adv. Eng. Sci. 2019, 4, 152–154. [Google Scholar]
- Laliberté, G.; Lessard, P.; de la Noüe, J.; Sylvestre, S. Effect of phosphorus addition on nutrient removal from wastewater with the cyanobacterium Phormidium bohneri. Bioresour. Technol. 1997, 59, 227–233. [Google Scholar] [CrossRef]
- Burkholder, J.M.; Glibert, P.M.; Skelton, H.M. Mixotrophy, a major mode of nutrition for harmful algal species in eutrophic waters. Harmful Algae 2008, 8, 77–93. [Google Scholar] [CrossRef]
- Martínez, M.E.; Sánchez, S.; Jiménez, J.M.; El Yousfi, F.; Muñoz, L. Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresour. Technol. 2000, 73, 263–272. [Google Scholar] [CrossRef]
- Dunaliella salina (Dunal) Teodoresco: AlgaeBase. Available online: https://www.algaebase.org/search/species/detail/?species_id=27814 (accessed on 20 May 2024).
- Farhat, N.; Rabhi, M.; Falleh, H.; Jouini, J.; Abdelly, C.; Smaoui, A. Optimization of salt concentrations for a higher carotenoid production in Dunaliella salina (chlorophyceae)1. J. Phycol. 2011, 47, 1072–1077. [Google Scholar] [CrossRef]
- Ehrenfeld, J.; Cousin, J.-L. Ionic regulation of the unicellular green alga Dunaliella tertiolecta: Response to hypertonic shock. J. Membr. Biol. 1984, 77, 45–55. [Google Scholar] [CrossRef]
- Katz, A.; Bental, M.; Degani, H.; Avron, M. In vivo pH regulation by a Na+/H+ antiporter in the halotolerant alga Dunaliella salina. Plant Physiol. 1991, 96, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Katz, A.; Kaback, H.; Avron, M. Na+/H+ antiport in isolated plasma membrane vesicles from the halotolerant alga Dunaliella salina. FEBS Lett. 1986, 202, 141–144. [Google Scholar] [CrossRef]
- Katz, A.; Kleyman, T.R.; Pick, U. Utilization of Amiloride Analogs for Characterization and Labeling of the Plasma Membrane Na+/H+ Antiporter from Dunaliella salina. Biochemistry 1994, 33, 2389–2393. [Google Scholar] [CrossRef]
- Mishra, A.; Mandoli, A.; Jha, B. Physiological characterization and stress-induced metabolic responses of Dunaliella salina isolated from salt pan. J. Ind. Microbiol. Biotechnol. 2008, 35, 1093–1101. [Google Scholar] [CrossRef]
- Rippka, R. Isolation and Purification of Cyanobacteria. Methods Enzymol. 1988, 167, 3–27. [Google Scholar] [CrossRef]
- Carr, C.J.; Scoville, J.; Ruble, J.; Condie, C.; Davis, G.; Floyd, C.L.; Kelly, L.; Monson, K.; Reichert, E.; Sarigul, B.; et al. An Audit and Comparison of pH, Measured Concentration, and Particulate Matter in Mannitol and Hypertonic Saline Solutions. Front. Neurol. 2021, 12, 667842. [Google Scholar] [CrossRef]
- Uchida, H.; Kayakawa, Y.; Maeda, Y. Ultra high-resolution seawater density sensor based on a refractive index measurement using the spectroscopic interference method. Nat. Sci. Rep. 2019, 9, 15482. [Google Scholar] [CrossRef]
- Lewis, E.L.; Perkin, R.G. Salinity: Its definition and calculation. J. Geophys. Res. Oceans 1978, 83, 466–478. [Google Scholar] [CrossRef]
- Škufca, D.; Božič, D.; Hočevar, M.; Jeran, M.; Zavec, A.B.; Kisovec, M.; Podobnik, M.; Podobnik, T.; Tomazin, R.; Iglič, A.; et al. Interaction between Microalgae P. tricornutum and Bacteria Thalassospira sp. for Removal of Bisphenols from Conditioned Media. Int. J. Mol. Sci. 2022, 23, 8447. [Google Scholar] [CrossRef] [PubMed]
- Marie, D.; Simon, N.; Vaulot, D. Algal Culturing Techniques; Academic Press: Cambridge, MA, USA, 2005. [Google Scholar]
- Moheimani, N.R.; Borowitzka, M.A.; Isdepsky, A.; Sing, S.F. Standard methods for measuring growth of algae and their composition. Algae Biofuels Energy 2013, 5, 265–284. [Google Scholar] [CrossRef]
- Strickland, J.D.H.; Parsons, T.R. A Practical Handbook of Seawater Analysis. Ottawa: Fisheries Research Board of Canada, Bulletin 167, 1968. 293 pp. Int. Rev. der Gesamten Hydrobiol. Hydrogr. 1970, 55, 167. [Google Scholar] [CrossRef]
- Jeffrey, S.W.; Humphrey, G.F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanz. 1975, 167, 191–194. [Google Scholar] [CrossRef]
- ESS Method 150.1: Chlorophyll-Spectrophotometric. Environ. Sci. Sect. 1991. Available online: http://polk.wateratlas.usf.edu/upload/documents/methd150.pdf (accessed on 25 April 2024).
- Chen, L.; Li, D.; Song, L.; Hu, C.; Wang, G.; Liu, Y. Effects of Salt Stress on Carbohydrate Metabolism in Desert Soil Alga Microcoleus vaginatus Gom. J. Integr. Plant Biol. 2006, 48, 914–919. [Google Scholar] [CrossRef]
- El Arroussi, H.; Benhima, R.; Bennis, I.; El Mernissi, N.; Wahby, I. Improvement of the potential of Dunaliella tertiolecta as a source of biodiesel by auxin treatment coupled to salt stress. Renew. Energy 2015, 77, 15–19. [Google Scholar] [CrossRef]
- Moayedi, A.; Yargholi, B.; Pazira, E.; Babazadeh, H. Investigation of bio-desalination potential algae and their effect on water quality. Desalination Water Treat. 2021, 212, 78–86. [Google Scholar] [CrossRef]
- Priya, A.; Gnanasekaran, L.; Dutta, K.; Rajendran, S.; Balakrishnan, D.; Soto-Moscoso, M. Biosorption of heavy metals by microorganisms: Evaluation of different underlying mechanisms. Chemosphere 2022, 307, 135957. [Google Scholar] [CrossRef]
- Ramesh, B.; Saravanan, A.; Kumar, P.S.; Yaashikaa, P.; Thamarai, P.; Shaji, A.; Rangasamy, G. A review on algae biosorption for the removal of hazardous pollutants from wastewater: Limiting factors, prospects and recommendations. Environ. Pollut. 2023, 327, 121572. [Google Scholar] [CrossRef]
- Wei, J.; Gao, L.; Shen, G.; Yang, X.; Li, M. The role of adsorption in microalgae biological desalination: Salt removal from brackish water using Scenedesmus obliquus. Desalination 2020, 493, 114616. [Google Scholar] [CrossRef]
- Çelekli, A.; Bozkurt, H. Bio-sorption of cadmium and nickel ions using Spirulina platensis: Kinetic and equilibrium studies. Desalination 2011, 275, 141–147. [Google Scholar] [CrossRef]
- Mirzaei, M.; Jazini, M.; Aminiershad, G.; Refardt, D. Biodesalination of saline aquaculture wastewater with simultaneous nutrient removal and biomass production using the microalgae Arthrospira and Dunaliella in a circular economy approach. Desalination 2024, 581, 117564. [Google Scholar] [CrossRef]
- Sedjati, S.; Santosa, G.; Yudiati, E.; Supriyantini, E.; Ridlo, A.; Kimberly, F. Chlorophyll and Carotenoid Content of Dunaliella salina at Various Salinity Stress and Harvesting Time. IOP Conf. Ser. Earth Environ. Sci. 2019, 246, 012025. [Google Scholar] [CrossRef]
- Ma, X.; Zhou, W.; Fu, Z.; Cheng, Y.; Min, M.; Liu, Y.; Zhang, Y.; Chen, P.; Ruan, R. Effect of wastewater-borne bacteria on algal growth and nutrients removal in wastewater-based algae cultivation system. Bioresour. Technol. 2014, 167, 8–13. [Google Scholar] [CrossRef]
- Morowvat, M.H.; Ghasemi, Y. Culture medium optimization for enhanced β-carotene and biomass production by Dunaliella salina in mixotrophic culture. Biocatal. Agric. Biotechnol. 2016, 7, 217–223. [Google Scholar] [CrossRef]
- Djunaedi, A.; Suryono, C.A.; Sardjito, S. Kandungan Pigmen Polar Dan Biomassa Pada Mikroalga Dunaliella salina Dengan Salinitas Berbeda. J. Kelaut. Trop. 2017, 20, 1–6. [Google Scholar] [CrossRef]
- Félix, F.C.C.d.S.; Hidalgo, V.B.; de Carvalho, A.K.F.; Caetano, N.d.S.; Da Rós, P.C.M. Assessing the application of marine microalgae Dunaliella salina in a biorefinery context: Production of value-added biobased products. Biofuels Bioprod. Biorefining 2024, 18, 439–452. [Google Scholar] [CrossRef]
- Schagerl, M.; Siedler, R.; Konopáčová, E.; Ali, S.S. Estimating Biomass and Vitality of Microalgae for Monitoring Cultures: A Roadmap for Reliable Measurements. Cells 2022, 11, 2455. [Google Scholar] [CrossRef] [PubMed]
- Fisher, T.; Minnaard, J.; Dubinsky, Z. Photoacclimation in the marine alga Nannochloropsis sp. (Eustigmatophyte): A kinetic study. J. Plankton Res. 1996, 18, 1797–1818. [Google Scholar] [CrossRef]
- Colusse, G.A.; Mendes, C.R.B.; Duarte, M.E.R.; de Carvalho, J.C.; Noseda, M.D. Effects of different culture media on physiological features and laboratory scale production cost of Dunaliella salina. Biotechnol. Rep. 2020, 27, e00508. [Google Scholar] [CrossRef]
- Sarkheil, M.; Ameri, M.; Safari, O. Application of alginate-immobilized microalgae beads as biosorbent for removal of total ammonia and phosphorus from water of African cichlid (Labidochromis lividus) recirculating aquaculture system. Environ. Sci. Pollut. Res. 2022, 29, 11432–11444. [Google Scholar] [CrossRef]
Salinity | 9 | 19 | 27 | 35 | 45 | 51 | 60 | 67 | 75 | 83 | 87 | 96 | 103 | 105 | 110 | 120 | 124 | 134 | 140 | 144 | 165 |
Media | ASN III |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanoeiro, J.R.; Fehrenbach, G.W.; Murray, P.; Pedrosa, R.; Chen, Y. Evaluation of Dunaliella salina Growth in Different Salinities for Potential Application in Saline Water Treatment and Biomass Production. Aquac. J. 2024, 4, 92-103. https://doi.org/10.3390/aquacj4030007
Tanoeiro JR, Fehrenbach GW, Murray P, Pedrosa R, Chen Y. Evaluation of Dunaliella salina Growth in Different Salinities for Potential Application in Saline Water Treatment and Biomass Production. Aquaculture Journal. 2024; 4(3):92-103. https://doi.org/10.3390/aquacj4030007
Chicago/Turabian StyleTanoeiro, João Rui, Gustavo W. Fehrenbach, Patrick Murray, Rui Pedrosa, and Yuanyuan Chen. 2024. "Evaluation of Dunaliella salina Growth in Different Salinities for Potential Application in Saline Water Treatment and Biomass Production" Aquaculture Journal 4, no. 3: 92-103. https://doi.org/10.3390/aquacj4030007
APA StyleTanoeiro, J. R., Fehrenbach, G. W., Murray, P., Pedrosa, R., & Chen, Y. (2024). Evaluation of Dunaliella salina Growth in Different Salinities for Potential Application in Saline Water Treatment and Biomass Production. Aquaculture Journal, 4(3), 92-103. https://doi.org/10.3390/aquacj4030007