Effect of Commercial Diets on Growth and Digestive Physiology in Guppies (Poecilia reticulata)
Abstract
1. Introduction
2. Materials and Methods
2.1. Obtaining Organisms
2.2. Experimental Diets
2.3. Experimental Design
2.4. Evaluation of Growth and Survival Rates
2.5. Sample Collection
2.6. Quantification of Digestive Enzyme Activity
2.7. In Vitro Digestibility Analysis
2.8. Histological Analysis
2.9. Statistical Analysis
3. Results
3.1. Growth and Survival Rates
3.2. Digestive Enzyme Activity
3.3. In Vitro Digestibility
3.4. Histological Analysis
4. Discussion
4.1. Growth and Feed Indexes
4.2. Nutrition in the Aquarium Hobby
4.3. Food Manufacturing and Effects on Fish
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miller, S.M.; Mitchell, M.A. ORNAMENTAL FISH; Elsevier eBooks: Cambridge, MA, USA, 2009; pp. 39–72. [Google Scholar] [CrossRef]
- Novák, J.; Kalous, L.; Patoka, J. Modern ornamental aquaculture in Europe: Early history of freshwater fish imports. Rev. Aquac. 2020, 12, 2042–2060. [Google Scholar] [CrossRef]
- Gomes-Silva, G.; Cyubahiro, E.; Wronski, T.; Riesch, R.; Apio, A.; Plath, M. Water pollution affects fish community structure and alters evolutionary trajectories of invasive guppies (Poecilia reticulata). Sci. Total Environ. 2020, 730, 138912. [Google Scholar] [CrossRef] [PubMed]
- Kodric-Brown, A.; Nicoletto, P. Female choice in the guppy (Poecilia reticulata): The interaction between male color and display. Behav. Ecol. Sociobiol. 2001, 50, 346–351. [Google Scholar] [CrossRef]
- Imai, M.; Mizoguchi, T.; Wang, M.; Li, Y.; Hasegawa, Y.; Tonoki, A.; Itoh, M. The Guppy (Poecilia reticulata) Is a Useful Model for Analyzing Age-Dependent Changes in Metabolism, Motor Function, and Gene Expression. Exp. Gerontol. 2022, 160, 111708. [Google Scholar] [CrossRef] [PubMed]
- Fraser, B.A.; Weadick, C.J.; Janowitz, I.; Rodd, F.H.; Hughes, K.A. Sequencing and Characterization of the Guppy (Poecilia reticulata) Transcriptome. BMC Genom. 2011, 12, 202. [Google Scholar] [CrossRef]
- Chaabani, A.; Labonne, L.; Durrieu, V.; Rouilly, A.; Skiba, F.; Evon, P. Preconditioner influence on twin-screw extrusion cooking of starch-based feed pellets: The example of Fish Feed. Aquac. Eng. 2022, 98, 102268. [Google Scholar] [CrossRef]
- Ebeneezar, S.; Linga Prabu, D.; Sajina, K.A. Feeds and feed management in mariculture. In Winter School on Mariculture Technologies for Income Multiplication, Employment, Livelihood and Empowerment; ICAR-Central Marine Fisheries Research Institute: Kochi, India, 2023; pp. 242–255. Available online: http://eprints.cmfri.org.in/17104/ (accessed on 24 November 2024).
- Papáček, Š.; Petera, K.; Císař, P.; Stejskal, V.; Saberioon, M. Experimental & Computational Fluid Dynamics Study of the Suitability of Different Solid Feed Pellets for Aquaculture Systems. Appl. Sci. 2020, 10, 6954. [Google Scholar] [CrossRef]
- Garzón, J.S.V.; Espinosa, M.C.G. Aspectos nutricionales de peces ornamentales de agua dulce. Rev. Politécnica 2019, 15, 82–93. [Google Scholar] [CrossRef]
- Wu, G. Amino acids: Metabolism, functions, and nutrition. Amino Acids 2009, 37, 1–17. [Google Scholar] [CrossRef]
- Velasco-Santamaría, Y.; Corredor-Santamaría, W. Nutritional Requirements of Freshwater Ornamental Fish: A Review. 2011. Available online: https://www.redalyc.org/articulo.oa?id=69322446003 (accessed on 18 November 2024).
- Kruger, D.; Britz, P.; Sales, J. Influence of Varying Dietary Protein Content at Three Lipid Concentrations on Growth Characteristics of Juvenile Swordtails (Xiphophorus helleri Heckel 1848). Aquar. Sci. Conserv. 2001, 3, 275–280. [Google Scholar] [CrossRef]
- Dahlgren, B.T. The effects of three different dietary protein levels on the fecundity in the guppy, Poecilia reticulata (Peters). J. Fish Biol. 1980, 16, 83–97. [Google Scholar] [CrossRef]
- Sales, J.; Janssens, G.P. Nutrient requirements of ornamental fish. Aquat. Living Resour. 2003, 16, 533–540. [Google Scholar] [CrossRef]
- NOM-062-ZOO-1999; Norma Oficial Mexicana: Especificaciones Técnicas Para La Producción, Cuidado Y Uso De Los Animales De Labora-Torio. Gobierno de México: Ciudad de México, Mexico, 2001. Available online: https://www.gob.mx/senasica/documentos/nom-062-zoo-1999 (accessed on 13 April 2024).
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Anson, M.L. The estimation of pepsin, trypsin, papain, and cathepsin with hemoglobin. J. Gen. Physiol. 1938, 22, 79–89. [Google Scholar] [CrossRef]
- Sarath, G.; de La Motte, R.S.; Wagner, F.W. Protease assay methods. In Proteolytic Enzymes: A Practical Approach; Beynon, R.J., Bonde, J.S., Eds.; Oxford University Press: Oxford, UK, 1989; pp. 25–54. [Google Scholar]
- Erlanger, B.F.; Kokowsky, N.; Cohen, W. The preparation and properties of two new chromogenic substrates of trypsin. Arch. Biochem. Biophys. 1961, 95, 271–278. [Google Scholar] [CrossRef]
- DelMar, E.; Largman, C.; Brodrick, J.; Geokas, M. A sensitive new substrate for chymotrypsin. Anal. Biochem. 1979, 99, 316–320. [Google Scholar] [CrossRef]
- Dimes, L.; Haard, N. Estimation of protein digestibility—I. Development of an in vitro method for estimating protein digestibility in salmonids (Salmo gairdneri). Comp. Biochem. Physiol. Part A Physiol. 1994, 108, 349–362. [Google Scholar] [CrossRef]
- Fernando, G.K.A.W.; Jayakody, S.; Wijenayake, W.M.H.K.; Galappaththy, G.N.L.; Yatawara, M.; Harishchandra, J. A comparison of the larvivorous habits of exotic Poecilia reticulata and native Aplocheilus parvus. BMC Ecol. 2018, 18, 25. [Google Scholar] [CrossRef]
- Motlagh, H.A.; Safari, O.; Selahvarzi, Y.; Baghalian, A.; Kia, E. Non-specific immunity promotion in response to garlic extract supplemented diets in female Guppy (Poecilia reticulata). Fish Shellfish Immunol. 2019, 97, 96–99. [Google Scholar] [CrossRef]
- Lim, L.C.; Dhert, P.; Chew, W.Y.; Dermaux, V.; Nelis, H.; Sorgeloos, P. Enhancement of Stress Resistance of the Guppy Poecilia reticulata through Feeding with Vitamin C Supplement. J. World Aquac. Soc. 2002, 33, 32–40. [Google Scholar] [CrossRef]
- Sultana, R.; Khatoon, H.; Rahman, M.R.; Haque, M.E.; Nayma, Z.; Mukta, F.A. Potentiality of Nannochloropsis sp. as partial dietary replacement of fishmeal on growth, proximate composition, pigment and breeding performance in guppy (Poecilia reticulata). Bioresour. Technol. Rep. 2022, 18, 101112. [Google Scholar] [CrossRef]
- Kithsiri, P.; Prakash Sharma, H.M.; Syeddain Zaidi, S.G.; Pal, A.K.; Venkateshwarlu, G. Growth and reproductive performance of female guppy, Poecilia reticulata (Peters) fed diets with different nutrient levels. Indian J. Fish. 2010, 57, 65–71. Available online: https://epubs.icar.org.in/index.php/IJF/article/view/7526 (accessed on 27 November 2024).
- Prabhu, P.A.J.; Schrama, J.W.; Kaushik, S.J. Mineral requirements of fish: A systematic review. Rev. Aquac. 2014, 8, 172–219. [Google Scholar] [CrossRef]
- Shim, K.; Ng, S. Magnesium requirement of the guppy (Poecilia reticulata Peters). Aquaculture 1988, 73, 131–141. [Google Scholar] [CrossRef]
- Shim, K.; Ho, C. Calcium and phosphorus requirements of guppy Poecilia reticulata. Nippon. Suisan Gakkaishi 1989, 55, 1953–1955. [Google Scholar] [CrossRef]
- Nath, P.; Khozin-Goldberg, I.; Cohen, Z.; Boussiba, S.; Zilberg, D. Dietary supplementation with the microalgae Parietochloris incisa increases survival and stress resistance in guppy (Poecilia reticulata) fry. Aquac. Nutr. 2011, 18, 167–180. [Google Scholar] [CrossRef]
- Anka, I.Z.; Jothi, J.S.; Sarker, J.; Talukder, A.; Islam, S.M. Growth performance and survival of guppy (Poecilia reticulata): Different formulated diets effect. Asian J. Med. Biol. Res. 2016, 2, 451–457. [Google Scholar] [CrossRef]
- Kumaratunga, P.; Radampola, K. Effect of different commercial feeds on growth and reproductive performance of Guppy, Poecilia reticulata Peters. J. Univ. Ruhuna 2019, 7, 6–11. [Google Scholar] [CrossRef]
- Sharon, G.; Fridman, S.; Reiss-Hevlin, N.; Sinai, T.; Boisot, P.; Zilberg, D. Effects of different commercial diets on growth performance, health and resistance to Tetrahymena sp. infection in guppies, Poecilia reticulata(Peters). Aquac. Res. 2014, 47, 2276–2286. [Google Scholar] [CrossRef]
- Harpaz, S.; Slosman, T.; Segev, R. Effect of feeding guppy fish fry (Poecilia reticulata) diets in the form of powder versus flakes. Aquac. Res. 2005, 36, 996–1000. [Google Scholar] [CrossRef]
- Dernekbasi, S.; Una, H.; Karayucel, I.; Aral, O. Effect of Dietary Supplementation of Different Rates of Spirulina (Spirulina platensis) on Growth and Feed Conversion in Guppy (Poecilia reticulata Peters, 1860). J. Anim. Vet. Adv. 2010, 9, 1395–1399. [Google Scholar] [CrossRef]
- Evers, H.; Pinnegar, J.K.; Taylor, M.I. Where are they all from?—Sources and sustainability in the ornamental freshwater fish trade. J. Fish Biol. 2019, 94, 909–916. [Google Scholar] [CrossRef] [PubMed]
- Borges, A.K.M.; Oliveira, T.P.R.; Rosa, I.L.; Braga-Pereira, F.; Ramos, H.A.C.; Rocha, L.A.; Alves, R.R.N. Caught in the (inter)net: Online trade of ornamental fish in Brazil. Biol. Conserv. 2021, 263, 109344. [Google Scholar] [CrossRef]
- Tangendjaja, B. Quality Control of Feed Ingredients for Aquaculture; Elsevier eBooks: Cambridge, MA, USA, 2022; pp. 165–194. [Google Scholar] [CrossRef]
- Sicuro, B. Nutrition in ornamental aquaculture: The raise of anthropocentrism in aquaculture? Rev. Aquac. 2017, 10, 791–799. [Google Scholar] [CrossRef]
- De Fonseka, R.; Radampola, K. Feasibility of using sailfin catfish meal as an alternative to commercial fishmeal in the diets of juvenile guppy (Poecilia reticulata). J. Fish. 2022, 10, 101203. [Google Scholar] [CrossRef]
- Tocher, D.R. Metabolism and functions of lipids and fatty acids in teleost fish. Rev. Fish. Sci. 2003, 11, 107–184. [Google Scholar] [CrossRef]
- Tocher, D.R. Fatty acid requirements in ontogeny of marine and freshwater fish. Aquac. Res. 2010, 41, 717–732. [Google Scholar] [CrossRef]
- Rainuzzo, J.R.; Reitan, K.I.; Olsen, Y. The significance of lipids at early stages of marine fish: A review. Aquaculture 1997, 155, 103–115. [Google Scholar] [CrossRef]
- Kasprzak, R.; Grzeszkiewicz, A.B.; Górecka, A. Performance of Co-Housed Neon Tetras (Paracheirodon innesi) and Glowlight Rasboras (Trigonostigma hengeli) Fed Commercial Flakes and Lyophilized Natural Food. Animals 2021, 11, 3520. [Google Scholar] [CrossRef]
- Pigott, G.M.; Tucker, B.W. Special Feeds; Elsevier eBooks: Cambridge, MA, USA, 2023; pp. 651–669. [Google Scholar] [CrossRef]
- Hardy, R.W.; Barrows, F.T. Diet Formulation and Manufacture; Elsevier eBooks: Cambridge, MA, USA, 2003; pp. 505–600. [Google Scholar] [CrossRef]
- Sørensen, M. A review of the effects of ingredient composition and processing conditions on the physical qualities of extruded high-energy fish feed as measured by prevailing methods. Aquac. Nutr. 2012, 18, 233–248. [Google Scholar] [CrossRef]
- Boucher, R.L.; Chung, W.; Ng, J.; Tan, L.; Wu, C.; Lee, C. Impact of extrusion temperature and moisture incorporation on nutrient digestibility in barramundi (Lates calcarifer) diet. Aquaculture 2024, 592, 741209. [Google Scholar] [CrossRef]
- Glencross, B.; Grobler, T.; Huyben, D. Digestible nutrient and energy values of corn and wheat glutens fed to Atlantic salmon (Salmo salar) are affected by feed processing method. Aquaculture 2021, 544, 737133. [Google Scholar] [CrossRef]
- My, A.; At, M.; Jk, I. Effect of pelletizing machines on floatation and water stability of farm-made fish feeds. Int. J. Fish. Aquat. Stud. 2016, 4, 98–103. [Google Scholar]
- Epifânio, C.M.; De MDantas, F.; Fonseca, F.A.; Gonçalves, G.S.; Viegas, E.M.; Gonçalves, L.U. Effects of the extrusion process on the physical properties of micro pellets and the growth performance of juvenile Nile tilapia. Anim. Feed. Sci. Technol. 2024, 318, 116122. [Google Scholar] [CrossRef]
- Xing, S.; Liang, X.; Wang, H.; Xie, X.; Wierenga, P.A.; Schrama, J.W.; Xue, M. The impacts of physical properties of extruded feed on the digestion kinetics, gastrointestinal emptying and stomach water fluxes of spotted seabass (Lateolabrax maculatus). Aquaculture 2023, 570, 739442. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Ao, H.; Liu, L.; Chen, Y. Effects of extruded and pelleted diets with different protein levels on growth performance and nutrient retention of largemouth bass (Micropterus salmoides). Aquac. Rep. 2023, 29, 101479. [Google Scholar] [CrossRef]
Nutrients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
Protein (%) | 42 | 46 | 44 | 45 |
Fiber (%) | 6 | 3 | 2 | 1.2 |
Lipids (%) | 5 | 11 | 10 | 16 |
Ash (%) | 11 | - | - | 11 |
Vitamin C (mg/kg) | - | 446 | 336 | - |
Wet (%) | 8 | 6 | 6 | 10 |
OMEGA-3 (mg/kg) | - | 500 | - | - |
Phosphorus (%) | - | 1 | 1.1 | - |
Indexes | T1 | T2 | T3 | T4 |
---|---|---|---|---|
FI (g/d) | 0.198 ± 0.008 | 0.193 ± 0.011 | 0.194 ± 0.012 | 0.191 ± 0.013 |
AWG (g/fish) | 0.056 ± 0.015 b | 0.096 ± 0.003 a | 0.052 ± 0.007 b | 0.076 ± 0.010 ab |
SGR (%/d) | 3.307 ± 0.413 b | 4.049 ± 0.324 a | 3.121 ± 0.056 b | 3.794 ± 0.076 ab |
S (%) | 96 ± 5.656 a | 82.666 ± 4.618 b | 89.333 ± 4.618 ab | 98 ± 2.828 a |
FCR | 2.810 ± 0.076 ab | 1.911 ± 0.084 c | 3.330 ± 0.434 a | 2.292 ± 0.231 bc |
K | 17.495 ± 1.827 b | 19.117 ± 1.842 b | 23.306 ± 0.048 a | 19.379 ± 1.458 b |
Measures | T1 | T2 | T3 | T4 |
---|---|---|---|---|
Enterocytes height (µm) | 11.51 ± 0.91 a | 9.39 ± 1.2 8 bc | 8.62 ± 0.11 c | 10.70 ± 0.05 ab |
Fold height (µm) | 56.64 ± 2.23 a | 50.67 ± 4.38 ab | 47.78 ± 1.85 b | 46.77 ± 1.42 b |
Hepatocyte diameter (µm) | 5.50 ± 0.30 a | 5.18 ± 0.23 ab | 4.94 ± 0.06 b | 4.55 ± 0.08 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trejo-Sánchez, Y.J.; Pérez-Jiménez, G.M.; Núñez-Nogueira, G.; Jiménez-Martínez, L.D.; Méndez-Marín, O.; Asencio-Alcudia, G.G.; Rodríguez-Estrada, U.; Martínez-García, R.; Álvarez-González, C.A.; Sepúlveda-Quiroz, C.A. Effect of Commercial Diets on Growth and Digestive Physiology in Guppies (Poecilia reticulata). Aquac. J. 2025, 5, 10. https://doi.org/10.3390/aquacj5030010
Trejo-Sánchez YJ, Pérez-Jiménez GM, Núñez-Nogueira G, Jiménez-Martínez LD, Méndez-Marín O, Asencio-Alcudia GG, Rodríguez-Estrada U, Martínez-García R, Álvarez-González CA, Sepúlveda-Quiroz CA. Effect of Commercial Diets on Growth and Digestive Physiology in Guppies (Poecilia reticulata). Aquaculture Journal. 2025; 5(3):10. https://doi.org/10.3390/aquacj5030010
Chicago/Turabian StyleTrejo-Sánchez, Yael José, Graciela María Pérez-Jiménez, Gabriel Núñez-Nogueira, Luis Daniel Jiménez-Martínez, Otilio Méndez-Marín, Gloria Gertrudys Asencio-Alcudia, Uriel Rodríguez-Estrada, Rafael Martínez-García, Carlos Alfonso Álvarez-González, and César Antonio Sepúlveda-Quiroz. 2025. "Effect of Commercial Diets on Growth and Digestive Physiology in Guppies (Poecilia reticulata)" Aquaculture Journal 5, no. 3: 10. https://doi.org/10.3390/aquacj5030010
APA StyleTrejo-Sánchez, Y. J., Pérez-Jiménez, G. M., Núñez-Nogueira, G., Jiménez-Martínez, L. D., Méndez-Marín, O., Asencio-Alcudia, G. G., Rodríguez-Estrada, U., Martínez-García, R., Álvarez-González, C. A., & Sepúlveda-Quiroz, C. A. (2025). Effect of Commercial Diets on Growth and Digestive Physiology in Guppies (Poecilia reticulata). Aquaculture Journal, 5(3), 10. https://doi.org/10.3390/aquacj5030010