Previous Issue
Volume 4, June
 
 

Knowledge, Volume 4, Issue 3 (September 2024) – 3 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
15 pages, 22297 KiB  
Article
SmartLabAirgap: Helping Electrical Machines Air Gap Field Learning
by Carla Terron-Santiago, Javier Martinez-Roman, Jordi Burriel-Valencia and Angel Sapena-Bano
Knowledge 2024, 4(3), 382-396; https://doi.org/10.3390/knowledge4030021 - 11 Jul 2024
Viewed by 206
Abstract
Undergraduate courses in electrical machines often include an introduction to the air gap magnetic field as a basic element in the energy conversion process. The students must learn the main properties of the field produced by basic winding configurations and how they relate [...] Read more.
Undergraduate courses in electrical machines often include an introduction to the air gap magnetic field as a basic element in the energy conversion process. The students must learn the main properties of the field produced by basic winding configurations and how they relate to the winding current and frequency. This paper describes a new test equipment design aimed at helping students achieve these learning goals. The test equipment is designed based on four main elements: a modified slip ring induction machine, a winding current driver board, the DAQ boards, and a PC-based virtual instrument. The virtual instrument provides the winding current drivers with suitable current references depending on the user selected machine operational status (single- or three-phase/winding with DC or AC current) and measures and displays the air gap magnetic field for that operational status. Students’ laboratory work is organized into a series of experiments that guide their achievement of these air gap field-related abilities. Student learning, assessed based on pre- and post-lab exams and end-of-semester exams, has increased significantly. The students’ opinions of the relevance, usefulness, and motivational effects of the laboratory were also positive. Full article
(This article belongs to the Special Issue New Trends in Knowledge Creation and Retention)
24 pages, 15296 KiB  
Article
Gesture Recognition of Filipino Sign Language Using Convolutional and Long Short-Term Memory Deep Neural Networks
by Karl Jensen Cayme, Vince Andrei Retutal, Miguel Edwin Salubre, Philip Virgil Astillo, Luis Gerardo Cañete, Jr. and Gaurav Choudhary
Knowledge 2024, 4(3), 358-381; https://doi.org/10.3390/knowledge4030020 - 8 Jul 2024
Viewed by 248
Abstract
In response to the recent formalization of Filipino Sign Language (FSL) and the lack of comprehensive studies, this paper introduces a real-time FSL gesture recognition system. Unlike existing systems, which are often limited to static signs and asynchronous recognition, it offers dynamic gesture [...] Read more.
In response to the recent formalization of Filipino Sign Language (FSL) and the lack of comprehensive studies, this paper introduces a real-time FSL gesture recognition system. Unlike existing systems, which are often limited to static signs and asynchronous recognition, it offers dynamic gesture capturing and recognition of 10 common expressions and five transactional inquiries. To this end, the system sequentially employs cropping, contrast adjustment, grayscale conversion, resizing, and normalization of input image streams. These steps serve to extract the region of interest, reduce the computational load, ensure uniform input size, and maintain consistent pixel value distribution. Subsequently, a Convolutional Neural Network and Long-Short Term Memory (CNN-LSTM) model was employed to recognize nuances of real-time FSL gestures. The results demonstrate the superiority of the proposed technique over existing FSL recognition systems, achieving an impressive average accuracy, recall, and precision rate of 98%, marking an 11.3% improvement in accuracy. Furthermore, this article also explores lightweight conversion methods, including post-quantization and quantization-aware training, to facilitate the deployment of the model on resource-constrained platforms. The lightweight models show a significant reduction in model size and memory utilization with respect to the base model when executed in a Raspberry Pi minicomputer. Lastly, the lightweight model trained with the quantization-aware technique (99%) outperforms the post-quantization approach (97%), showing a notable 2% improvement in accuracy. Full article
27 pages, 475 KiB  
Article
Shannon Holes, Black Holes, and Knowledge: The Essential Tension for Autonomous Human–Machine Teams Facing Uncertainty
by William Lawless and Ira S. Moskowitz
Knowledge 2024, 4(3), 331-357; https://doi.org/10.3390/knowledge4030019 - 5 Jul 2024
Viewed by 228
Abstract
We develop a new theory of knowledge with mathematics and a broad-based series of case studies to seek a better understanding of what constitutes knowledge in the field and its value for autonomous human–machine teams facing uncertainty in the open. Like humans, as [...] Read more.
We develop a new theory of knowledge with mathematics and a broad-based series of case studies to seek a better understanding of what constitutes knowledge in the field and its value for autonomous human–machine teams facing uncertainty in the open. Like humans, as teammates, artificial intelligence (AI) machines must be able to determine what constitutes the usable knowledge that contributes to a team’s success when facing uncertainty in the field (e.g., testing “knowledge” in the field with debate; identifying new knowledge; using knowledge to innovate), its failure (e.g., troubleshooting; identifying weaknesses; discovering vulnerabilities; exploitation using deception), and feeding the results back to users and society. It matters not whether a debate is public, private, or unexpressed by an individual human or machine agent acting alone; regardless, in this exploration, we speculate that only a transparent process advances the science of autonomous human–machine teams, assists in interpretable machine learning, and allows a free people and their machines to co-evolve. The complexity of the team is taken into consideration in our search for knowledge, which can also be used as an information metric. We conclude that the structure of “knowledge”, once found, is resistant to alternatives (i.e., it is ordered); that its functional utility is generalizable; and that its useful applications are multifaceted (akin to maximum entropy production). Our novel finding is the existence of Shannon holes that are gaps in knowledge, a surprising “discovery” to only find Shannon there first. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop