Eco-Friendly Chitosan Composites: Transforming Miscanthus, Mushroom, Textile and Olive Waste into Sustainable Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Reinforcements Preparation
2.3. Composites Manufacturing
2.4. Chemical Composition Analysis of Reinforcements Materials
2.5. Apparent, Bulk Density and Porosity Measurements
2.6. Thermal Conductivity Properties
2.7. Surface Contact Angle Property Measurements and Analysis
2.8. Water Absorption Capacity and Thickness Swelling by Immersion Properties
2.9. Optical Microscope Observation
2.10. Experimental Methods for Assessing Mechanical Properties
3. Results
3.1. Chemical Composition of Reinforcements
3.2. Panels Apparent Density, Porosity and Thermal Conductivity
3.3. Optical Microscopic Observations
3.4. Surface Contact Angle Properties
3.5. Water Absorption Capacity and Thickness Swelling
3.6. Mechanical Properties
3.6.1. Bending Properties
3.6.2. Internal Bond Strength (IB)
3.6.3. Compression
3.6.4. Critical Discussion of Data Using a Comparative Radar Chart
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Damette, O.; Delacote, P. Unsustainable Timber Harvesting, Deforestation and the Role of Certification. Ecol. Econ. 2011, 70, 1211–1219. [Google Scholar] [CrossRef]
- Morillo, J.A.; Antizar-Ladislao, B.; Monteoliva-Sánchez, M.; Ramos-Cormenzana, A.; Russell, N.J. Bioremediation and Biovalorisation of Olive-Mill Wastes. Appl. Microbiol. Biotechnol. 2009, 82, 25–39. [Google Scholar] [CrossRef] [PubMed]
- El Kassis, E.; Otazaghine, B.; El Hage, R.; Sonnier, R. Assessment of Olive Pomace Wastes as Flame Retardants. J. Appl. Polym. Sci. 2019, 137, 47715. [Google Scholar] [CrossRef]
- Topal, H.; Atimtay, A.T.; Durmaz, A. Olive Cake Combustion in a Circulating Fluidized Bed. Fuel 2003, 82, 1049–1056. [Google Scholar] [CrossRef]
- La Rubia-García, M.D.; Yebra-Rodríguez, Á.; Eliche-Quesada, D.; Corpas-Iglesias, F.A.; López-Galindo, A. Assessment of Olive Mill Solid Residue (Pomace) as an Additive in Lightweight Brick Production. Constr. Build. Mater. 2012, 36, 495–500. [Google Scholar] [CrossRef]
- Aceña-Heras, S.; Novak, J.; Cayuela, M.L.; Peñalosa, J.M.; Moreno-Jiménez, E. Mushroom Cultivation in the Circular Economy. Appl. Microbiol. Biotechnol. 2018, 102, 7795–7803. [Google Scholar] [CrossRef]
- Rezania, S.; Hara, H. Environmentally Sustainable Applications of Agro-Based Spent Mushroom Substrate (SMS): An Overview Energy Generation and Wastewater Treatment Using Microalgae View Project Areas of Interest: English Language and Literature; Effects of Technology and Sociopsychological Aspects on Education and Instruction View Project Mohd Fadhil Md Din Universiti Teknologi Malaysia. Artic. J. Mater. Cycles Waste Manag. 2018, 20, 1383–1396. [Google Scholar] [CrossRef]
- Cunha Zied, D.; Sánchez, J.E.; Noble, R.; Pardo-Giménez, A. Use of Spent Mushroom Substrate in New Mushroom Crops to Promote the Transition towards a Circular Economy. Agronomy 2020, 10, 1239. [Google Scholar] [CrossRef]
- Rinker, D.L. Spent Mushroom Substrate Uses. In Edible and Medicinal Mushrooms: Technology and Applications; Wiley: Hoboken, NJ, USA, 2017; pp. 427–454. [Google Scholar] [CrossRef]
- Phan, C.W.; Sabaratnam, V. Potential Uses of Spent Mushroom Substrate and Its Associated Lignocellulosic Enzymes. Appl. Microbiol. Biotechnol. 2012, 96, 863–873. [Google Scholar] [CrossRef]
- Cunha Zied, D.; Pardo-Giménez, A. Edible and Medicinal Mushrooms: Technology and Applications; Wiley: Hoboken, NJ, USA, 2017. [Google Scholar]
- Khoo, S.C.; Peng, W.X.; Yang, Y.; Ge, S.B.; Soon, C.F.; Ma, N.L.; Sonne, C. Development of Formaldehyde-Free Bio-Board Produced from Mushroom Mycelium and Substrate Waste. J. Hazard. Mater. 2020, 400, 123296. [Google Scholar] [CrossRef]
- Xing, Y.; Brewer, M.; El-Gharabawy, H.; Griffith, G.; Jones, P. Growing and Testing Mycelium Bricks as Building Insulation Materials. IOP Conf. Ser. Earth Environ. Sci. 2018, 121, 022032. [Google Scholar] [CrossRef]
- Jones, M.; Huynh, T.; Dekiwadia, C.; Daver, F.; John, S. Mycelium Composites: A Review of Engineering Characteristics and Growth Kinetics. J. Bionanosci. 2017, 11, 241–257. [Google Scholar] [CrossRef]
- Eitzinger, J.; Kössler, C. Microclimatological Characteristics of a Miscanthus (Miscanthus Cv. Giganteus) Stand during Stable Conditions at Night in the Nonvegetative Winter Period. Theor. Appl. Climatol. 2002, 72, 245–257. [Google Scholar] [CrossRef]
- El Bassam, N. Energy Plant Species: Their Use and Impact on Environment and Development; Routledge: London, UK, 2013; ISBN 1134255667. [Google Scholar]
- Muthuraj, R.; Misra, M.; Mohanty, A.K. Injection Molded Sustainable Biocomposites from Poly(Butylene Succinate) Bioplastic and Perennial Grass. ACS Sustain. Chem. Eng. 2015, 3, 2767–2776. [Google Scholar] [CrossRef]
- Eschenhagen, A.; Raj, M.; Rodrigo, N.; Zamora, A.; Labonne, L.; Evon, P.; Welemane, H. Investigation of Miscanthus and Sunflower Stalk Fiber-Reinforced Composites for Insulation Applications. Adv. Civ. Eng. 2019, 2019, 9328087. [Google Scholar] [CrossRef]
- Muthuraj, R.; Misra, M.; Mohanty, A.K. Biodegradable Biocomposites from Poly(Butylene Adipate-Co-Terephthalate) and Miscanthus: Preparation, Compatibilization, and Performance Evaluation. J. Appl. Polym. Sci. 2017, 134, 45448. [Google Scholar] [CrossRef]
- Khalaf, Y.; El Hage, P.; Dimitrova Mihajlova, J.; Bergeret, A.; Lacroix, P.; El Hage, R. Influence of Agricultural Fibers Size on Mechanical and Insulating Properties of Innovative Chitosan-Based Insulators. Constr. Build. Mater. 2021, 287, 123071. [Google Scholar] [CrossRef]
- El Hage, R.; Khalaf, Y.; Lacoste, C.; Nakhl, M.; Lacroix, P.; Bergeret, A. A Flame Retarded Chitosan Binder for Insulating Miscanthus/Recycled Textile Fibers Reinforced Biocomposites. J. Appl. Polym. Sci. 2018, 136, 47306. [Google Scholar] [CrossRef]
- Rubino, C.; Aracil, M.B.; Gisbert-Payá, J.; Liuzzi, S.; Stefanizzi, P.; Cantó, M.Z.; Martellotta, F. Composite Eco-Friendly Sound Absorbing Materials Made of Recycled Textile Waste and Biopolymers. Materials 2019, 12, 4020. [Google Scholar] [CrossRef]
- Patti, A.; Cicala, G.; Acierno, D. Eco-Sustainability of the Textile Production: Waste Recovery and Current Recycling in the Composites World. Polymers 2020, 13, 134. [Google Scholar] [CrossRef]
- El Hage, R.; Chrusciel, L.; Desharnais, L.; Brosse, N. Effect of Autohydrolysis of Miscanthus x Giganteus on Lignin Structure and Organosolv Delignification. Bioresour. Technol. 2010, 101, 9321–9329. [Google Scholar] [CrossRef] [PubMed]
- Lacoste, C.; El, R.; Bergeret, A.; Corn, S.; Lacroix, P. Sodium Alginate Adhesives as Binders in Wood Fi Bers / Textile Waste Fi Bers Biocomposites for Building Insulation. Carbohydr. Polym. 2018, 184, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Mati-Baouche, N.; De Baynast, H.; Lebert, A.; Sun, S.; Lopez-Mingo, C.J.S.; Leclaire, P.; Michaud, P. Mechanical, Thermal and Acoustical Characterizations of an Insulating Bio-Based Composite Made from Sunflower Stalks Particles and Chitosan. Ind. Crops Prod. 2014, 58, 244–250. [Google Scholar] [CrossRef]
- Dutta, P.K.; Joydeep, D.; Tripathi, V.S. Chitin and Chitosan: Properties and Applications. J. Sci. Ind. Res. 2004, 63, 20–31. [Google Scholar] [CrossRef]
- Barbosa, M.A.; Granja, P.L.; Barrias, C.C.; Amaral, I.F. Polysaccharides as Scaffolds for Bone Regeneration. Itbm-Rbm 2005, 26, 212–217. [Google Scholar] [CrossRef]
- Hemmilä, V.; Adamopoulos, S.; Karlsson, O.; Kumar, A. Development of Sustainable Bio-Adhesives for Engineered Wood Panels-A Review. RSC Adv. 2017, 7, 38604–38630. [Google Scholar] [CrossRef]
- Antov, P.; Savov, V.; Neykov, N. Sustainable Bio-Based Adhesives for Eco-Friendly Wood Composites a Review. Wood Res. 2020, 65, 51–62. [Google Scholar] [CrossRef]
- Pizzi, A. Wood Products and Green Chemistry. Ann. For. Sci. 2016, 73, 185–203. [Google Scholar] [CrossRef]
- Sørensen, A.; Teller, P.J.; Hilstrøm, T.; Ahring, B.K. Hydrolysis of Miscanthus for Bioethanol Production Using Dilute Acid Presoaking Combined with Wet Explosion Pre-Treatment and Enzymatic Treatment. Bioresour. Technol. 2008, 99, 6602–6607. [Google Scholar] [CrossRef]
- Medouni-haroune, L.; Zaidi, F.; Medouni-adrar, S.; Kecha, M. Olive Pomace: From an Olive Mill Waste to a Resource, an Overview of the New Treatments. J. Crit. Rev. 2018, 5, 1–6. [Google Scholar] [CrossRef]
- Khedari, J.; Suttisonk, B.; Pratinthong, N.; Hirunlabh, J. New Lightweight Composite Construction Materials with Low Thermal Conductivity. Cem. Concr. Compos. 2001, 23, 65–70. [Google Scholar] [CrossRef]
- Yenier, Z.; Seki, Y.; Şen, I.; Sever, K.; Mermer, Ö.; Sarikanat, M. Manufacturing and Mechanical, Thermal and Electrical Characterization of Graphene Loaded Chitosan Composites. Compos. Part B Eng. 2016, 98, 281–287. [Google Scholar] [CrossRef]
- Huhtamäki, T.; Tian, X.; Korhonen, J.T.; Ras, R.H.A. Surface-Wetting Characterization Using Contact-Angle Measurements. Nat. Protoc. 2018, 13, 1521–1538. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, S.L.; Mendes, R.F.; Mendes, L.M.; Freire, T.P. Particleboard Panels Made from Sugarcane Bagasse: Characterization for Use in the Furniture Industry. Mater. Res. 2016, 19, 914–922. [Google Scholar] [CrossRef]
- Bektas, I.; Guler, C.; Kalaycioğlu, H.; Mengeloglu, F.; Nacar, M. The Manufacture of Particleboards Using Sunflower Stalks (Helianthus annuus L.) and Poplar Wood (Populus alba L.). J. Compos. Mater. 2005, 39, 467–473. [Google Scholar] [CrossRef]
- Yang, H.-S.; Kim, D.-J.; Kim, H.-J. Rice Straw–Wood Particle Composite for Sound Absorbing Wooden Construction Materials. Bioresour. Technol. 2003, 86, 117–121. [Google Scholar] [CrossRef]
- Nemli, G.; Kırcı, H.; Serdar, B.; Ay, N. Suitability of Kiwi (Actinidia sinensis Planch.) Prunings for Particleboard Manufacturing. Ind. Crops Prod. 2003, 17, 39–46. [Google Scholar] [CrossRef]
- Guler, C.; Copur, Y.; Tascioglu, C. The Manufacture of Particleboards Using Mixture of Peanut Hull (Arachis hypoqaea L.) and European Black Pine (Pinus nigra Arnold) Wood Chips. Bioresour. Technol. 2008, 99, 2893–2897. [Google Scholar] [CrossRef]
- EN 312; Particleboards: Specifications. British Standard Institution: London, UK, 2010.
- El Hage, R.; Brosse, N.; Navarrete, P.; Pizzi, A. Extraction, Characterization and Utilization of Organosolv Miscanthus Lignin for the Conception of Environmentally Friendly Mixed Tannin/Lignin Wood Resins. J. Adhes. Sci. Technol. 2012, 25, 1549–1560. [Google Scholar] [CrossRef]
- Ping, L.; Hage, R.E.L.; Pizzi, A.; Guo, Z.D.; Brosse, N. Extraction of Polyphenolics from Lignocellulosic Materials and Agricultural Byproducts for the Formulation of Resin for Wood Adhesives. J. Biobased Mater. Bioenergy 2012, 5, 460–465. [Google Scholar] [CrossRef]
- Çöpür, Y.; Güler, C.; Akgül, M.; Taşçıoğlu, C. Some Chemical Properties of Hazelnut Husk and Its Suitability for Particleboard Production. Build. Environ. 2007, 42, 2568–2572. [Google Scholar] [CrossRef]
- Mazuki, A.A.M.; Akil, H.M.; Safiee, S.; Ishak, Z.A.M.; Bakar, A.A. Degradation of Dynamic Mechanical Properties of Pultruded Kenaf Fiber Reinforced Composites after Immersion in Various Solutions. Compos. Part B Eng. 2011, 42, 71–76. [Google Scholar] [CrossRef]
Formulation Labels | Types of Wastes (60/40 w/w) | Wastes Weight (g) | Dry Chitosan (g) | Ratio Wastes/Chitosan (wt. %) |
---|---|---|---|---|
MOP | Miscanthus/olive pomace | 60 | 4.5 | 93/7 |
MOS | Miscanthus/olive stones | 60 | 4.5 | 93/7 |
MOF | Miscanthus/oil-free pomace | 60 | 4.5 | 93/7 |
SMSOP | Spent mushroom substrate/olive pomace | 60 | 4.5 | 93/7 |
SMSOS | Spent mushroom substrate/Olive stones | 60 | 4.5 | 93/7 |
SMSOF | Spent mushroom substrate/oil-free pomace | 60 | 4.5 | 93/7 |
TOP | Textile wastes/olive pomace | 60 | 4.5 | 93/7 |
TOS | Textile wastes/Olive stones | 60 | 4.5 | 93/7 |
TOF | Textile wastes/oil-free pomace | 60 | 4.5 | 93/7 |
Reinforcement | Cellulose (%) | Hemicellulose (%) | Lignin (%) | Extractives (%) |
---|---|---|---|---|
OP | 22.55 ± 1.59 | 21.6 ± 0.97 | 28.37 ± 0.26 | 26.28 ± 0.13 |
SMS | 20.91 ± 0.21 | 9.99 ± 0.35 | 25.08 ± 0.96 | 5.06 ± 0.49 |
OS | 22.92 ± 2.50 | 24.75 ± 2.06 | 26.03 ± 0.52 | 6.16 ± 0.13 |
M | 40.07 ± 2.54 | 21.20 ± 1.40 | 26.72 ± 0.37 | 0.95 ± 0.01 |
Formulations Labels | MOP | MOS | MOF | SMSOP | SMSOS | SMSOF | TOP | TOS | TOF | |
---|---|---|---|---|---|---|---|---|---|---|
MOE values (MPa) | median value | 1418.6 | 1676.0 | 1653.3 | 758.1 | 1328.7 | 1370.7 | 1079.7 | 1281.4 | 1270.0 |
maximum value | 1622.9 | 1779.2 | 1817.8 | 796.1 | 1328.7 | 1383.8 | 1085.1 | 1292.4 | 1382.7 | |
minimum value | 1324.3 | 1632.9 | 1648.4 | 756.5 | 1328.7 | 1322.8 | 939.4 | 1045.8 | 1235.5 | |
mean value | 1455.2 ± 152.6 | 1696 ± 75.2 | 1706.5 ± 96.4 | 770.2 ± 22.4 | 1313.7 ± 23.7 | 1359.1 ± 32.1 | 1034.7 ± 82.6 | 1206.5 ± 139.4 | 1296.1 ± 77 | |
MOR values (MPa) | median value | 6.4 | 9.2 | 12.7 | 2.9 | 5.3 | 4.6 | 4.8 | 4.4 | 5.3 |
maximum value | 8.2 | 9.5 | 13.0 | 4.4 | 5.3 | 4.6 | 5.1 | 4.5 | 6.6 | |
minimum value | 5.8 | 8.4 | 10.8 | 2.2 | 5.3 | 4.2 | 3.0 | 3.1 | 4.7 | |
mean value | 6.8 ± 1.2 | 9.0 ± 0.6 | 12.2 ± 1.2 | 3.2 ± 1.1 | 4.5 ± 0.8 | 4.4 ± 0.2 | 4.3 ± 1.1 | 4.0 ± 0.8 | 6.5 ± 2.6 |
Formulations Labels | Mean Value (MPa) | Median Value (MPa) | Maximum Value (MPa) | Minimum Value (MPa) |
---|---|---|---|---|
MOP | 0.29 ± 0.007 | 0.285 | 0.29 | 0.28 |
MOS | 0.31 ± 0.074 | 0.32 | 0.39 | 0.22 |
MOF | 0.33 ± 0.041 | 0.35 | 0.36 | 0.28 |
SMSOP | 0.31 ± 0.073 | 0.3 | 0.39 | 0.25 |
SMSOS | 0.25 ± 0.037 | 0.285 | 0.29 | 0.28 |
SMSOF | 0.33 ± 0.009 | 0.335 | 0.34 | 0.33 |
TOP | 0.20 ± 0.032 | 0.185 | 0.19 | 0.18 |
TOS | 0.23 ± 0.015 | 0.23 | 0.24 | 0.22 |
TOF | 0.17 ± 0.034 | 0.16 | 0.21 | 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalaf, Y.; El Hage, P.; Mansour, S.; Brosse, N.; Mihajlova, J.D.; Bergeret, A.; Lacroix, P.; El Hage, R. Eco-Friendly Chitosan Composites: Transforming Miscanthus, Mushroom, Textile and Olive Waste into Sustainable Materials. AppliedChem 2024, 4, 302-319. https://doi.org/10.3390/appliedchem4030019
Khalaf Y, El Hage P, Mansour S, Brosse N, Mihajlova JD, Bergeret A, Lacroix P, El Hage R. Eco-Friendly Chitosan Composites: Transforming Miscanthus, Mushroom, Textile and Olive Waste into Sustainable Materials. AppliedChem. 2024; 4(3):302-319. https://doi.org/10.3390/appliedchem4030019
Chicago/Turabian StyleKhalaf, Yasmina, Peter El Hage, Souha Mansour, Nicolas Brosse, Julia Dimitrova Mihajlova, Anne Bergeret, Patrick Lacroix, and Roland El Hage. 2024. "Eco-Friendly Chitosan Composites: Transforming Miscanthus, Mushroom, Textile and Olive Waste into Sustainable Materials" AppliedChem 4, no. 3: 302-319. https://doi.org/10.3390/appliedchem4030019
APA StyleKhalaf, Y., El Hage, P., Mansour, S., Brosse, N., Mihajlova, J. D., Bergeret, A., Lacroix, P., & El Hage, R. (2024). Eco-Friendly Chitosan Composites: Transforming Miscanthus, Mushroom, Textile and Olive Waste into Sustainable Materials. AppliedChem, 4(3), 302-319. https://doi.org/10.3390/appliedchem4030019